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Local Refinement for Partial Differential Equations
Variety of problems that exhibit multiscale behavior, in the form of localized
large gradients separated by large regions where the solution is smooth.

• Shocks and interfaces.

• Self-gravitating flows in astrophysics.

• Complex engineering geometries.

• Combustion.

• Magnetohydrodynamics: space weather, magnetic fusion.

In adaptive methods, one adjusts the computational effort locally to maintain a
uniform level of accuracy throughout the problem domain.



Adaptive Mesh Refinement (AMR)
Modified equation analysis: finite difference solutions to partial differential
equations behave like solutions to the original equations with a modified
right-hand side.
For linear steady-state problems LU = f :

ε = Uh − U , ε ≈ L−1τ

For nonlinear, time=dependent problems

∂U

∂t
+ L(U) = 0 ⇒ ∂Uh

∂t
+ L(Uh) = τ

In both cases, The truncation error τ = τ(U) = (∆x)pM(U), where M is a
(p+ q)-order differential operator.



Block-Structured Local Refinement (Berger and Oliger, 1984)
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Refined regions are organized into rectangular patches
Refinement performed in time as well as in space.



AMR Design Issues

Accuracy: effect of truncation error on solution error.

• How does one estimate the error?

• Failure of error cancellation can lead to large truncation errors at boundaries
between refinement levels.

Stability: boundary conditions at refinement boundaries.

• Well-posedness of initial-boundary value problem.

• Refinement in time.

• Conservation and free-stream preservation.

The principal difficulty in designing block-structured AMR methods is
determining the relationship between the numerical algorithms and the
well-posedness of the free boundary-value problem for the underlying PDEs.



Conservation Form
Our spatial discretizations are based on conservative finite difference
approximations.

∇ · ~F ≈ D(~F ) ≡ 1
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Such methods satisfy a discrete form of the divergence theorem:∑
j∈Ω

D(F )j =
1
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This class of discretizations essential for discontinuities, desirable for a large
class of engineering applications.



AMR for Hyperbolic Conservation Laws (Berger and Colella, 1989)
We assume that the underlying uniform-grid method is an explicit conservative
difference method.

Unew := Uold −∆t(D~F ) , ~F = ~F (Uold)

x

y

On a two-level AMR grid, we have U c, Uf , and the update is performed in the
following steps.

• Update solution on entire coarse grid: U c := U c −∆tcDc ~F c.

• Update solution on entire fine grid: Uf := Uf −∆tfDf ~F f (nrefine times).

• Synchronize coarse and fine grid solutions.



Synchronization of Multilevel Solution

• Average coarse-grid solution onto fine grid.

• Correct coarse cells adjacent to fine grid to maintain conservation.

U c := U c +
∆tc

h
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Typically, need a generalization of GKS theory for free boundary problem to
guarantee stability (Berger, 1985). Stability not a problem for upwind methods.



Discretizing Elliptic PDE’s
Naive approach:

• Solve ∆ψc = gc on coarse grid.

• Solve ∆ψf = gf on fine grid, using coarse grid values to interpolate boundary
conditions.

Such an algorithm yields coarse-grid solution accuracy on the fine grid (Bai and
Brandt, Thompson and Ferziger).

ψc ≈ ψexact + ∆−1τ c. Using ψc to interpolate boundary conditions for fine
calculation introduces coarse-grid error on fine grid.



Solution: compute ψcomp, the solution of the properly-posed problem on the composite
grid.

∆cψcomp =gc on Ωc − C(Ωf )

∆fψcomp =gf on Ωf

[
ψ

]
= 0,

[∂ψ
∂n

]
= 0 on ∂Ωc/f

The Neumann matching conditions are flux matching conditions, and are discretized by
computing a single-valued flux at the boundary. On the fine grid, one is still solving the
same BVP as in the naive case, but with coarse grid values that have been modified to
account for the Neumann matching conditions.
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Modified equation: ψcomp = ψexact + ∆−1τ comp, where τ is a local function of the
solution derivatives.



Truncation Errors at Coarse-Fine Interfaces
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+O(∆x) (not O(∆x2))

For nonlinear time-dependent problems:

∂Umod

∂t
+ ∇ · Fmod = τ = O(∆x) at C/F boundary

= O(∆x2) otherwise

For linear steady-state problems:

ψcomputed = ψexact + L−1τ

How does solution respond to singular forcing ?



Convergence Results for Poisson’s equation (τ, ε ∼ hP )

D Norm ∆x ||L(Ue) − ρ||h ||L(Ue) − ρ||2h R P

2 L∞ 1/32 1.57048e-02 2.80285e-02 1.78 0.84

2 L∞ 1/64 8.08953e-03 1.57048e-02 1.94 0.96

3 L∞ 1/16 2.72830e-02 5.60392e-02 2.05 1.04

3 L∞ 1/32 1.35965e-02 2.72830e-02 2.00 1.00

3 L1 1/32 8.35122e-05 3.93200e-04 4.70 2.23

D Norm ∆x ||Uh − Ue|| ||U2h − Ue|| R P

2 L∞ 1/32 5.13610e-06 1.94903e-05 3.79 1.92

2 L∞ 1/64 1.28449e-06 5.13610e-06 3.99 2.00

3 L∞ 1/16 3.53146e-05 1.37142e-04 3.88 1.96

3 L∞ 1/32 8.88339e-06 3.53146e-05 3.97 1.99



ψcomp ≈ ψexact + ∆−1τ comp. τ = O(h) on a set with volume O(h)⇒ the
contribution to the solution error is still O(h2).



Error Estimation and Grid Generation
To generate AMR grids, identify points needing refinement, and cover the parts
of the grid so tagged with a union of rectangles.
Engineering Approach: use magnitude of some set of solution derivatives.
Mathematical Approach: compute Richardson estimate of truncation error.

• Truncation error is singular at refinement level boundaries→ leads to spurious
refinement (solution operator smooths effect of truncation error on the solution
error).

• Ignoring truncation error at refinement level boundaries can lead to greater
error in problems that have only a single scale.

• Possible approaches: weight truncation error at refinement level boundaries by
surface-to-volume ratio; apply Richardson to fluxes; use estimates of higher
derivatives corresponding to truncation error operator.

What does one do for multiphysics problems ?



Wave Equation Solver

• Write second-order wave equation as first-order system in time.

∂ϕ

∂t
= π

∂π

∂t
= ∆ϕ = ∇ · ~F

• Discretize Laplacian on AMR grid using RK4 in time, quadratic interpolation
in space for coarse-fine boundary conditions.

• Refinement in time: linear interpolation in time for coarse-fine boundary
conditions, treat π as a conserved quantity for the purpose of refluxing.



Time Discretization for Parabolic Problems
Example: time-dependent Landau-Ginzburg equation

∂φ

∂t
= ∆φ+ f(φ)

The marginal stability of the Crank-Nicolson method shown on the left suggests
trying other more robust implicit Runge-Kutta methods that are second-order
accurate and L0 stable (Twizell, Gumel, and Arigu, 1996).

(I − r1∆)(I − r2∆)φn+1 = (I + a∆)φn + ∆t(I + r4∆)fn+ 1
2

r1 + r2 + a = ∆t , r1 + r2 + r4 =
∆t
2

, r1 + r2 >
∆t
2



Advection by an Incompressible Velocity Field

∂ρ

∂t
+∇ · (ρ~u) = 0

~u = −k(ρ)∇ψ , ∇ · ~u = 0

AMR Hyperbolic algorithm:

• ρc := ρc −∆tcD(ρ~u) on Ωc;

• ρf := ρf −∆tfD(ρ~u) on Ωf (nrefine times);

• Synchronize coarse and fine solutions: average fine solution onto the coarse
grid, and correct for conservation on coarse cells adjacent to fine grid.

What do we do for the elliptic PDE solution at the intermediate times ?
Freestream preservation: for the PDE, ρ ≡ const.⇒ ∂ρ

∂t ≡ 0. Can we preserve
this at the discrete level ?



Boundary Conditions for Elliptic Solvers (Almgren et. al., 1998)
Idea: solve Poisson equation at a level using interpolated coarse boundary
condition that includes lagged correction for the Neumann mismatch.
• At the beginning of the coarse time step, ψc(tc) is known. As part of the coarse
time step, solve −∇ · k(ρ)∇ψc on Ωc. At that time, also solve the composite
problem: −∇ · k(ρ)∇ψcomp, and compute δψ = ψcomp − ψc.
• At intermediate times tint, solve

−∇ · k(ρ)∇ψf = 0 on Ωf

ψf = I(ψc(tint) + δψ)

x

t



Freestream Preservation
∇ · (ρ~u) ≈ D · (ρ~u)

x

y

Since D(~u) = 0, we want that ρ = ρ0 = const⇒ D(ρ~u) = ρ0D(~u) = 0. Away
from coarse-fine boundaries, this condition can be guaranteed by our choice of
discretization. At coarse-fine boundaries, this can fail due to refinement in time,
with a coarse-fine correction that looks like

ρ0

(
uc,s
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Volume Discrepancy Correction
We carry an additional conserved scalar that measures the integrated extent that
we have compressed or expanded the fluid.

∂Λ
∂t

+∇ · (Λ~u) = 0 , Λ(x, 0) ≡ 1

We then modify the right-hand side to the pressure equation to introduce local
compressions / expansions to offset the failure of Λ ≡ 1

−∇ · k(ρ)∇ψ = ∇ · ~u = η(Λ− 1) , η = O
( 1
∆t

)



AMR Calculation of Inviscid Shear Layer (Martin and Colella, 2000)
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AMR Calculation of Brown-Roshko Shear Layer (Almgren, et. al., 1998)



Comparison to Experimental Measurements



Magnetohydrodynamics (Samtaney, et. al., 2003)
Fluid representation: AMR for magnetohydrodynamics, based on semi-implicit
methods.

• Explicit upwind discretizations for hyperbolic terms.

• Implicit discretizations for parabolic operators.

• Projection to enforce ∇ · ~B = 0 constraint.



AMR Stability and Accuracy Issues for Other Applications

• Low-Mach number combustion. Interaction of pressure constraint, inhomogeneous
divergence constraint with refinement in time (Pember, et. al., 1998).

• Sn radiation, radiative heat transfer. Collection of steady-state, linear hyperbolic
equations coupled by source terms. AMR / multigrid iteration scheme needs to respect
upwinding. Radiation - matter coupling is stiff in optically thin regions, requires more
implicit treatment of coarse-fine conservation (Jessee et. al., 1998; Howell et. al., 1999).

• Charged-fluid models of plasmas, semiconductor devices. Semi-implicit formulation in
terms of classical PDE’s leads to efficient and stable treatment of stiff dielectric relaxation
time scale. Positivity-preservation for nonlinear elliptic systems (Colella, Dorr, Wake,
1999; Bettencourt, 1998).

• AMR for particle methods (PIC, PPPM). Relationship between the particle distribution
and the refinement criterion (Almgren, Buttke, and Colella,1994).

• Mapped Grids. Coarse-fine stability for steady state problems. C2 grid mappings lead
to control volumes that depend on refinement level (Berger and Jameson, 1985; Bell,
Colella, Tangenstein, Welcome, 1991; Dudek and Colella, 1999).



Chombo: a Software Framework for Block-Structured AMR
Requirement: to support a wide variety of applications that use block-structured
AMR using a common software framework.

• Mixed-language model: C++ for higher-level data structures, Fortran for
regular single-grid calculations.

• Reuseable components. Component design based on mapping of
mathematical abstractions to classes.

• Build on public-domain standards: MPI, HDF5, VTK.

• Interoperability with other SciDAC ISIC tools: grid generation (TSTT), solvers
(TOPS), performance analysis tools (PERC).

Previous work: BoxLib (LBNL/CCSE), KeLP (Baden, et. al., UCSD), FIDIL
(Hilfinger and Colella).



Layered Design

• Layer 1. Data and operations on unions of boxes – set calculus, rectangular
array library (with interface to Fortran), data on unions of rectangles, with
SPMD parallelism implemented by distributing boxes over processors.

• Layer 2. Tools for managing interactions between different levels of refinement
in an AMR calculation – interpolation, averaging operators, coarse-fine
boundary conditions.

• Layer 3. Solver libraries – AMR-multigrid solvers, Berger-Oliger
time-stepping.

• Layer 4. Complete parallel applications.

• Utility layer. Support, interoperability libraries – API for HDF5 I/O,
visualization package implemented on top of VTK, C API’s.



Examples of Layer 1 Classes (BoxTools )

• IntVect i ∈ Zd. Can translate i1 ± i2, coarsen i
s , refine i ∗ s.

• Box B ⊂ Zd is a rectangle: B = [ilow, ihigh]. B can be translated, coarsened,
refined. Supports different centerings (node-centered vs. cell-centered) in each
coordinate direction.

• IntVectSet I ⊂ Zd is an arbitrary subset of Zd. I can be shifted, coarsened,
refined. One can take unions and intersections, with other IntVectSet s and
with Boxes, and iterate over an IntVectSet .

• FArrayBox A(Box B, int nComps) : multidimensional arrays of Reals
constructed with B specifying the range of indices in space, nCompthe number
of components. Real* FArrayBox::dataPointer returns pointer to the
contiguous block of data that can be passed to Fortran.



Example: explicit heat equation solver on a single grid

// C++ code:

Box domain(-IntVect:Unit,nx*IntVect:Unit);

FArrayBox soln(grow(domain,1), 1);

soln.setVal(1.0);

for (int nstep = 0;nstep < 100; nstep++)

{

heatsub2d_(soln.dataPtr(0),

&(soln.loVect()[0]), &(soln.hiVect()[0]),

&(soln.loVect()[1]), &(soln.hiVect()[1]),

region.loVect(), region.hiVect(),

&dt, &dx, &nu);

}



c Fortran code:

subroutine heatsub2d(phi,nlphi0, nhphi0,nlphi1, nhphi1,

& nlreg, nhreg, dt, dx, nu)

real*8 lphi(nlphi0:nhphi0,nlphi1:nhphi1)

real*8 phi(nlphi0:nhphi0,nlphi1:nhphi1)

real*8 dt,dx,nu

integer nlreg(2),nhreg(2)

c Remaining declarations, setting of boundary conditions goes here.

...

do j = nlreg(2), nhreg(2)

do i = nlreg(1), nhreg(1)

lapphi =

& (phi(i+1,j)+phi(i,j+1)

& +phi(i-1,j)+phi(i,j-1)

& -4.0d0*phi(i,j))/(dx*dx)

lphi(i,j) = lapphi

enddo

enddo



c Increment solution with rhs.

do j = nlreg(2), nhreg(2)

do i = nlreg(1), nhreg(1)

phi(i,j) = phi(i,j) + nu*dt*lphi(i,j)

enddo

enddo

return

end



Distributed Data on Unions of Rectangles
Provides a general mechanism for distributing data defined on unions of rectangles onto
processors, and communications between processors.
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• Metadata of which all processors have a copy: BoxLayout is a collection of Boxes and
processor assignments: {Bk, pk}nGrids

k=1 . DisjointBoxLayout:public BoxLayout is a
BoxLayout for which the Boxes must be disjoint.

• template <class T> LevelData<T> and other container classes hold data
distributed over multiple processors. For each k = 1 ... nGrids , an ”array” of type
T corresponding to the box Bk is allocated on processor pk. Straightforward API’s for
copying, exchanging ghost cell data, iterating over the arrays on your processor in a
SPMD manner.



Example: explicit heat equation solver, parallel case
p=0 p=1 p=2

p=3 p=0 p=1

p=2 p=3 p=0

Want to apply the same algorithm as before, except that the data for the domain
is decomposed into pieces and distributed to processors.

• LevelData<T>::exchange() : obtains ghost cell data from valid regions on
other patches.

• DataIterator : iterates over only the patches that are owned on the current
processor.



// C++ code:

Box domain;

DisjointBoxLayout dbl;

// Break domain into blocks, and construct the DisjointBoxLayout.

makeGrids(domain,dbl,nx);

LevelData<FArrayBox> phi(dbl, 1, IntVect::TheUnitVector());

for (int nstep = 0;nstep < 100;nstep++)

{

...

// Apply one time step of explicit heat solver: fill ghost cell values,

// and apply the operator to data on each of the Boxes owned by this

// processor.

phi.exchange();

DataIterator dit = dbl.dataIterator();

// Iterator iterates only over those boxes that are on this processor.



for (dit.reset();dit.ok();++dit)

{

FArrayBox& soln = phi[dit()];

Box& region = dbl[dit()];

heatsub2d_(soln.dataPtr(0),

&(soln.loVect()[0]), &(soln.hiVect()[0]),

&(soln.loVect()[1]), &(soln.hiVect()[1]),

region.loVect(), region.hiVect(),

domain.loVect(), domain.hiVect(),

&dt, &dx, &nu);

}

}



Software Reuse by Templating Dataholders
Classes can be parameterized by types, using the class template language
feature in C++.
BaseFAB<T> is a multidimensional array whihc can be defined for for any type
T. FArrayBox: public BaseFAB<Real>

In LevelData<T> , T can be any type that ”looks like” a multidimensional array.
Examples include:

• Ordinary multidimensional arrays, e.g. LevelData<FArrayBox> .

• A composite array type for supporting embedded boundary computations:

• Binsorted lists of particles, e.g. BaseFab<List<ParticleType>>



Layer 2: Coarse-Fine Interactions (AMRTools ).
The operations that couple different levels of refinement are among the most
difficult to implement AMR.

• Interpolating between levels (FineInterp ).

• Interpolation of boundary conditions (PWLFillpatch, QuadCFInterp ).

• Averaging down onto coarser grids (CoarseAverage ).

• Managing conservation at coarse-fine boundaries (LevelFluxRegister ).

These operations typically involve interprocessor communication and irregular
computation.



Example: class LevelFluxRegister

Uc := Uc +
∆tc

h
(F c,s

ic− 1
2 e
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Z

∑
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if− 1
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)

The coarse and fine fluxes are computed at different times in the program, and on
different processors. We rewrite the process in the following steps:

δF = 0

δF := δF − ∆tcF c

δF := δF + ∆tf < F f >

Uc := Uc +DR(δF )



A LevelFluxRegister object encapsulates these operations:

• LevelFluxRegister::setToZero()

• LevelFluxRegister::incrementCoarse : given a flux in a direction for
one of the patches at the coarse level, increment the flux register for that
direction.

• LevelFluxRegister::incrementFine : given a flux in a direction for one
of the patches at the fine level, increment the flux register with the average of
that flux onto the coarser level for that direction.

• LevelFluxRegister::reflux : given the data for the entire coarse level,
increment the solution with the flux register data for all of the coordinate
directions.



Layer 3: Reusing Control Structures Via Inheritance (AMRTimeDependent,

AMRElliptic ).
AMR has multilevel control structures are largely independent of the details of
the operators and the data.

• Berger-Oliger refinement in time.

• Multigrid iteration on a union of rectangles.

• Multigrid iteration on an AMR hierarchy.

To separate the control structure from the details of the operations that are being
controlled, we use C++ inheritance in the form of interface classes.



Example: AMR / AMRLevel interface for Berger-Oliger timestepping
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We implement this control structure using a pair of classes.

class AMR : manages the Berger-Oliger time-stepping process.

class AMRLevel : collection of virtual functions called by an AMRobject that perform
the operations on the data at a level, e.g.:

• virtual void AMRLevel::advance() = 0 advances the data at a level by one
time step.

• virtual void AMRLevel::postTimeStep() = 0 performs whatever
sychronization operations required after all the finer levels have been updated.



AMRhas as member data a collection of pointers to objects of type AMRLevel , one for each
level of refinement:

Vector<AMRLevel*> m_amrlevels;

AMRcalls the various member functions of AMRLevel as it advances the solution in time:

m_amrlevels[currentLevel]->advance();

The user implements a class derived from AMRLevel that contains all of the functions in
AMRLevel :

class AMRLevelWaveEquation : public AMRLevel

// Defines functions in the interface, as well as data.

...

virtual void AMRLevelWaveEquation::advance()

{

// Advances the solution for one time step.

...

}

To use the AMRclass for this particular application, mamrlevel[k] will point to objects
in the derived class, e.g.,

AMRLevelWaveEquation* amrLevelWavePtr = new AMRLevelWaveEquation(...);

m_amrlevel[k] = static_cast <AMRLevel*> (amrWavePtr);



AMR Utility Layer

• API for HDF5 I/O.

• Interoperability tools. We are developing a framework-neutral representation
for pointers to AMR data, using opaque handles. This will allow us to wrap
Chombo classes with a C interface and call them from other AMR applications.

• Chombo Fortran - a macro package for writing dimension-independent
Fortran and managing the Fortran / C interface.

• Parmparse class from BoxLib for handling input files.

• Visualization and analysis tools (ChomboVis).



I/O Using HDF5

NSCA’s HDF5 mimics the Unix file system.

• Disk file ↔ ”/”.

• Group ↔ subdirectory .

• Attribute, dataset ↔ files. Attribute: small metadata that multiple processes in
a SPMD program may write out redundantly. Dataset: large data, each
processor writes only the data it owns.

Chombo API for HDF5

• Parallel neutral: can change processor layout when re-inputting output data.

• Dataset creation is expensive - one does not want to create one per rectangular
grid. Instead, create one dataset for each BoxLayoutData or LevelData . Each
grid’s data is written into offsets from the origin of that dataset.



Load Balancing
For parallel performance, need to obtain approximately the same work load on
each processor.

• Unequal-sized grids: knapsack algorithm provides good efficiencies provided
the number of grids / processor ≥ 3 (Crutchfield, 1993). Disadvantage: does not
preserve locality.

• Equal-sized grids can provide perfect load balancing if algorithm is reasonably
homogeneous. Disadvantage: many small patches can lead to large amounts of
redundant work.

Both methods obtain good scaling into 100’s of nodes for hyperbolic problems.
Alternative approach: space-filling curves using equal-sized grids, followed by
agglomeration.



Spiral Design Approach to Software Development

Scientific software development is inherently high-risk: multiple experimental
platforms, algorithmic uncertainties, performance requirements at the highest
level. The Spiral Design Approach allows one to manage that risk, by allowing
multiple passes at the software and providing a high degree of schedule visibilty.

Software components are developed in phases.

• Design and implement a basic framework for a given algorithm domain (EB,
particles, etc.), implementing the tools required to develop a given class of
applications.

• Implement one or more prototype applications as benchmarks.

• Use the benchmark codes as a basis for measuring performance and evaluating
design space flexibility and robustness. Modify the framework as appropriate.

• The framework and applications are released, with user documentation,
regression testing, and configuration for multiple platforms.

Components that have been released will be revisited as part of the design spiral
for new capabilities being added, providing additional opportunities to improve
the code.



Software Engineering Plan

• All software is open source:
http://seesar.lbl.gov/anag/software.html .

• Documentation: algorithm, software design documents; Doc++ / Doxygen
manual generation; users’ guides.

• Implementation discipline: CVS source code control, coding standards,
TTPRO bug tracking system.

• Portability and robustness: flexible make-based build system, regression
testing.

• Interoperability: C interfaces, opaque handles, permit interoperability across a
variety of languages (C++, Fortran 77, Python, Fortran 90). Adaptors for large
data items a serious issue, must be custom-designed for each application.



Current Research Areas

• Embedded boundary / cut-cell methods.

• Second-order systems: wave equations, General Relativity.

• Systems with gauge constraints: MHD, GR, solid mechanics written as a
first-order system.

• Multiphase flows: particles, interfaces.

Open Problems

• Climate modeling: develop methods based on well-posed boundary-value
formulation (i.e. non-hydrostatic), that are well-behaved for
near-hydrostatic conditions.

• AMR for on high-order (> 2nd order) methods. Need to distinguish
averages (cell, face), and point values; refinement in time.

• Analysis-based non-iterative domain decomposition methods for elliptic
PDEs (Greengard and Lee, 1996; Balls and Colella, 2002).

• Hybrid methods: adaptive mesh and algorithm refinement (Garcia, Bell,
Crutchfield, Alder, 1999).



Cartesian Grid Representation of Irregular Boundaries
Based on nodal-point representation (Shortley and Weller, 1938) or finite-volume
representation (Noh, 1964).

.

Advantages of underlying rectangular grid:

• Grid generation is tractable (Aftosmis, Berger, and Melton, 1998).

• Good discretization technology, e.g. well-understood consistency theory for
finite differences, geometric multigrid for solvers.

• Straightforward coupling to structured AMR (Chern and Colella, 1987; Young
et. al., 1990; Berger and Leveque, 1991).





Particles and AMR

Algorithmic Issues:

• Transfers of particles across coarse/fine interface boundaries

• Particle → grid and grid → particle transfers in the presence of refinement
boundaries (modified stencils)

• preventing self-induced effects.
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