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Abstract

We present a hybrid front tracking / conservative finite difference method for computing discontinuous
solutions to systems of hyperbolic conservation laws. In this method, the tracked front is allowed to
move through the finite difference mesh, forming a free boundary at which the Rankine - Hugoniot con-
ditions are applied as boundary conditions. The coupling to the finite difference method is done by per-
forming a finite volume differencing in the irregular cells formed by the intersection of the finite
difference grid wiih the regions on either side of the tracked front, leading to a method which is fully
conservative up to and across the front. The CFL time step limitations which might come about from
cell fractions on either side of the front being arbitrarily small are avoided by algebraically extending
the range of influence of such volumes, with solution increments being redistributed into nearby cells in
a volume-weighted way, Finally, the overall algorithm is designed to make minimum use of the global
geometry of the tracked front; in particular, it can be coupled to a volume-of-fluid description of the
tracked front. Numerical results using this method, with an unsplit second-order Godunov method for
the conservative finite difference method, are presented for the case of gas dynamics in two space
dimensions. The solutions computed are for the problem of self-similar shock reflection from an
oblique surface, with the incident shock and the rigid shock tube wall treated as tracked fronts.



§ 1. Introduction

There are two approaches to the treatment of discontinuities in the numerical calculation
of solutions to hyperbolic consgrvation laws. One is front capturing, where the discontinuities
are represented as steep gradients spread over a small number of finite difference cells. The
discrete divergence form of the difference equations and the addition of suitable dissipation
operators are sufficient to insure that the solution converges to a weak solution of the conserva-
tion laws satisfying appropriate entropy conditions. The other approach is front tracking,
where the discontinuity is treated as an interior free boundary coupled to a finite difference cal-
culation for the smooth part of the solution on both sides of the discontinuity. The boundary
conditions for the calculation on both sides of the discontinuity, as well as the evolution of the
discontinuity itself, are given by the requirement that the solution satisfy the Rankine-Hugoniot

relations across the discontinuity.

Each of the approaches has its advantages and disadvantages. The principal advantage of
front capturing is its relative simplicity and its generality. Although a finite difference algo-
rithm can, in general, be quite complicated, it is the same at all cells, and the finite difference
cells themselves can have a simple logical structure. In spite of this simplicity, properly
designed finite difference algorithms can resolve highly complicated patterns of discontinuities
interacting with one another and with surrounding regions containing smooth solutions [33]. In
contrast, tracking methods must contain mechanisms for predicting the formation and propaga-
tion of discontinuities, and their interaction with one another. Although considerable progress
has been made in providing these mechanisms [3],[27], tracking methods by themselves have
not been used successfully to solve problems of the same complexity as those accessible to

capturing methods.



The advantages of front tracking are best understood by considering the limitations to
front capturing. The accuracy with which strongly nonlinear discontinuities produced by sys-
tems of conservation laws are represented in a capturing algorithm depends on the establish-
ment of a discrete traveling wave that represents the discontinuity, the existence of which in
tumn depends strongly on the regularity of the finite difference mesh. For example, in gas
dynamics, one can easily construct meshes on which strong shocks are captured with unaccept-
ably large errors, while smooth solutions, or even weak shocks, are calculated accurately
[22),[32]. These problems disappear if the strong shock is tracked. Furthermore, there are
problems in which front capturing fails on any mesh which resolves only the length scales
associated with the hyperbolic waves, while front tracking gives acceptable results. An exam-
ple of the latter are reaction fronts in gas dynamics, which can be treated being an infinitely
thin discontinuity relative to the fluid dynamic length scales on either side, but whose jump
relations depend on the details of the diffusive structure across the front. In that case, a cap-
turing calculation on a mesh which resolves only the hydrodynamic length scales fails, since
the numerical viscosity in the truncation errors in the method would vastly exceed the physical
values, leading to incorrect wave speeds. This can also be the case even when the jump rela-
tions are independent of the diffusion coefficients, as long as the latter are sufficiently small, as
is the case with detonation waves [10]. One approach is to use an adaptive grid to resolve the
diffusive length scales by clustering mesh points at the front. However, if one does not need
to resolve the details of the diffusive length scales on the multidimensional finite difference
grid, but only the effects of the jump relations on the hydrodynamic scale flow, a tracking
algorithm will treat these problems in a satisfactory fashion, since the discontinuity will be

treated as a surface across which the appropriate jump relations are imposed explicitly.

In view of the above considerations, it is natural to attempt to combine the two

approaches, tracking and capturing, in a single algorithm, tracking a few distinguished



discontinuities, while capturing the others. Such an idea is not new for compressible flow cal-
culations. Indeed, the earliest numerical methods for gas dynamics were Lagrangian methods
[19],[31], which automatically track contact discontinuities, while capturing shocks. This is a
special case of a class of tracking methods where the tracked discontinuity coincides with some
get of finite difference cell boundaries; such methods have also been used to track gas-dynamic
shocks [17],(28]. The main disadvantage of these methods is that the mesh on either side of
the tracked wave loses smoothness if there are large deformations of the tracked front. This can
lead to a loss of stability and accuracy due to the distortions in the mesh, even for those modes
which are only weakly coupled to the tracked discontinuity. An altemative to the tracking
method described above is to allow the tracked discontinuity to move freely across a regular
finite difference mesh. This type of tracking has been used extensively in calculations where
all the discontinuities are tracked and the coupling of the tracked wave to the interior
difference algorithm does not preserve conservation form ({31,[13),[20],{25),[27])). However,
once the requirement of global conservation is imposed, the difficulty occurs that the tracked
front generally divides cells into two pieces, one of which can be arbitrarily small, leading to
the CFL time step approaching zero. The solution to this difficulty has been to locally rear-
range the mesh geometry in the neighborhood of the front, by merging the small cell fragments
with larger ones, for example, possibly giving up conservation for extremely small cell frag-

ments [15],[21].

In this paper, we will follow the latter approach of allowing the tracked front to move
through the mesh. The main new element in this work is our technique for dealing with the
CFL restrictions arising from conservation at the front. In the previous work cited above, the
CFL restrictions were circumvented by modifying the grid geometry in order to enlarge the
range of influence of small control volumes adjacent to the tracked front. In the present work,

we enlarge the range of influence algcbraically by redistributing increments of the solution, as



given by the flux differences, in places near the front where the time step violates a CFL sta-
bility criterion. This flux difference redistribution is done in such a way so as to obtain a
stable scheme which conserves globally. A major advantage of this method over the prcviouf;
mcthods is that we need very little information about the geometry of the tracked front; in par-
ticular, this method can be used with a volume of fluid type description of the front. Such
representations have proved useful in modeling unstable fronts such as material interfaces
[7).[11),{16).[23] and flame fronts [5], where the volume of fluid description provides a simple
and robust mechanism for representing large distortions and changes in topology of the tracked

front.



§ 2. Front Tracking in One Dimension

We want 1o compute numerically solutions to the systems of conservation laws of the

form
U, ¥ 6 Ugs=U: RXOT]I >R @.1)
at  ox

where the system (2.1) is hyperbolic, i.e. the matrix Vy,F = A(U) has N real eigenvectors
A< -+ <hy with associated linearly independent sets of left and right eigenvectors

{re )i Y, e = 8. We assume that the Riemann initial value problem for (2.1)

= UL x <0
U(x,0)
= Ug x>0

has a unique piecewise smooth solution U(x £) which is a function of the similarity variable -“:—

and satisfies appropriate entropy conditions.

Our discrete approximation to the solution of (2.1) at time * is denoted by
I (+A)x
Ur= e U(xt")dx, j € ZZ. In addition, in the j*Y-th cell, there is a tracked front, i.e., a
G-max
point x"¥ dividing the j*/-th cell into two subintervals with lengths A7, A} to the left and
right of x"/. The point s*Y is the approximate location of a discontinuity associated with the

pth wave family at time step n. The average of U over each of these two subintervals is also

given:




We want to advance this description of the problem in time, calculating x**'Y and the
location of the front at time ¢**! = "+Ar, and Uf,UZ, the average value of the solution on
either side of the front in the cell containing it, as well as the values of U, j#;**'Y. The

combined algorithm should be conservative overall, ie. YU = YUr+(F.—Fg)Ar, for some
J i

F, Fp. Away from the tracked front, the solution is to be completed with an explicit conserva-

tive finite difference algorithm of the form

U;wl =UM+ ( ow—Fjon) .2)

qu.h: F(Uﬁ_,. PRI .Uf"). (2.3)

Our strategy to do this will be to treat the tracked front as a moving interior boundary,
using the solution to the Riemann problem to move the tracked front, and to obtain a flux
boundary condition at the front. The fluxes obtained by this procedure and from the flux for-
mula (2.2) are then differenced to obtain conservative increments to the solution. In the neigh-
borhood of the front, these increments are redistributed to neighboring cells to avoid CFL sta-

bility restrictions on the time step in cases where one of A; x <Ax holds.

In order to calculate the trajectory of the discontinuity of the pth wave family over the

time step, we solve the Riemann problem for (2.1) with left and right states

l A£
UL—ULAx+U-./.,1 ~ax

AR
L el |

We use these averaged values, rather than Up\UZ, because our values for U, Uf, may not be

AR
Ty = Up

very accurate if one of Al y «Ax. The only two pieces of data we require from the Riemann
problem are s, the speed of the pth discontinuity, and F/ = F(U)-s/ U, the flux across that

discontinuity which, according to the Rankine-Hugoniot discontinuity relations, is continuous at



.

the discontinuity. The location of the shock at 1*+Ar is then given by x™*1¥ =x*Y +s/ Ar.

To obtain the values of the solution at the new time for cells not containing x"Y or
x**Y | we use (2.2) - (2.3), except that for fluxes sufficiently close to the tracked front that the
flux formula (2.3) would involve values of U on the other side of the front, we replace those

values with U, for fluxes to the left of the front, Uy for fluxes to the right of the front.

To update the cells containing the tracked front, there are two cases, either the tracked

front crosses into the next cell (j*¥ =j**1Y), or not (j*¥ =j**'Y+1). We consider first the case

ja,f =}'"“J‘
We calculate

My = (AL -APYUL+ M (FPE-F7) (2.4)

My = (AR - AR*)YUR + At(F/ ~ Fioy,)

The significance of these quantities is that they give the conservative update formula for

Uz-bl U/?ﬂ,
AU = A2WUR+8M;  S=LR. 2.5)

obtained from differencing the fluxes at the cell edge and along the tracked front. The

difficulty with this formula is that it is unstable for time steps satisfying the usual CFL condi-

tion mglﬁ-lkg (UD)|<o<1. This is most easily seen from the fact that, to obtain U#*! from
z

(2.5). division by A#*' is required, leading to a time step requirement that

As“l
e U
max
k=1,..N k s

s

AL < This has long been recognized to be a problem with tracking methods

of this type. The two ways which had been used to deal with this difficulty in the case of a
general tracked front were: to give up conservation at the tracked front, or to rearrange the

mesh geometry in the neighborhood of the tracked front so that the resulting AZR are large



enough so as not to impose a catastrophic time step restriction. There is a third approach
which has been used in the special case of a tracked material interface in gas dynamics, which
involves differencing across the tracked front in a fashion which does not mix the two materi-
als {11]. The algorithm which we desc;iﬁe here is in a generalization of the latter approach to

the casc of a general tracked front. In order to calculate ULY, we replace 8Ms by

a4+l

SMsm = in (2.5) to obtain

1
A+l _ 718
US Us+"-—8Ms. (26)

This solves the stability problem, but in order to have global conservation, we must dispose of
(1-ms)8M;, elsewhere on the grid. We do so by distributing these flux differences into nearby
cells into which they can be absorbed without loss of stability. This rf;distﬁbution is done
based on a decomposition of the flux differences in terms of right eigenvectors, so that the
various components of (1-ns)8M;s are distributed to where they are being propagated in the

sense of characteristics, although possibly sooner than expected.

We expand
(1-ng)3M; = ga;rf . i =n(Us) 2.7
and define
M = Tourf,
k>p

aMS- = Zak rk'v
k<
M =a,r?, (2.8)
SM P = M+ SMg+dMQ,

M = BM[+ 5Mg+M.

We then modify the results obtained from (2.2),(2.6) to be



1 ot
;:-tll,/'*) = U;ltll.],ﬂ + _8M+

A_‘m

URY = Up* + lé;aur' 2.9

adl adl ._ aet , 1 oy
Uj;Q-]_x ’UL P Uj;#]_l 'UL + A_‘o’ 8M—

where

AP = AR+ Ax

AP =AM+ Ax,

and we use := to denote assignment in place. It is not difficult to check that (2.6) - (2.9) leads
to an algorithm which globally conserves. The case where j**!Y = j*Y +1 proceeds similarly,
except that we must deal with the complication that the length of the cell fraction to the right

= F (O

of the tracked front contained in cell j*¥ is zero at the new time. If we define F"'j. Lon

then

n l j. 742 =
UR = 5o APUL+OIF oy~ (OF 4+ (A=DF g, 0)

F1)

§ML = --Az”l—j}_ +(Al"'t)(i:j._(+%“

My = AMUS+1(F/ ~F ju g o)+ Qx=AFNU 0y + (B —F] “F g )
n 1
UR+I = UJ“‘”‘J + -E;SMR

—_ 1
Urt! = o — .
b U, oM,

[ 23]
L

s

Then the redistribution algorithm proceeds as before, with (2.7)-(2.9) applied without

modification.

There are a number of remarks to be made about the algorithm described above. The

first is that, if the solution at time ¢* is given by U(xs")=Up, x <x™/, U(x 1*)=U,, x >x*/
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where U ,Up satisfy the Rankine-Hugoniot jump relations for a p-shock, then the solution pro-
duced by this algorithm at the new time is also given by the same two constant states separated
by a jump at x**'Y up to roundoff; in particular, 8M; =M, =0. More generally, if the solution
at time 1" consists of a k-shock separating smooth regions, then M, ,6Mz =0(AxAr). Thus the
algorithm redistributes flux differences representing the effect of the smooth wave interacting
with the tracked discontinuity. by the same argument, it follows that the local error in the
approximation is second order in the mesh spacing for a tracked discontinuity interacting with
a smooth background, at least in the sense of distributions. That is, if U, is the exact solution
to (2.1) with such initial data, then for Ar sufficiently small
U, +¥)ax 5
_J U,(x Aty dx — AU} = O (AxAr) 2.10)
Up—Aas i=i
J1dx , j,Ax—x; . x, as Ax | Ar - 0.

Where the discrete initial data is obtained by taking appropriate averages of the exact initial
data over the discrete mesh. Fomally, this follows from applying the divergence theorem to
the integral of (2.1) over the rectangle [(j;-A)Ax , (j,+A)Ax] X [0, Ar], comparing the exact
and approximate fluxes at the endpoints, and the observation that the effect of the redistribution
algorithm is O(ArAx). Notice that this argument holds independent of whether the discon-
tinuity crosses one of the endpoints. In contrast, there is no analogous estimate known for the
exact and approximate fluxes for any shock capturing method for systems of equations, i.e. one
that says that their averages differ by O (AxAr) in the neighborhood of a captured shock; in
fact, the numerical evidence in [22], [32] for the case of a gas-dynamic shock separating con-
stant states is a counterexample, since the result is independent of Ax, Ar, depending only on

their ratio,
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A second comment is that the redistribution given above is not the only possible onc. In
the case where the tracked front is a linearly degenerate discontinuity, the redistribution algo-
rithm given above reproduces in the discretization the qualitative behavior of the solution to the
differential equation that information carried by the pth characteristic family does not cross the
discontinuity. If the pth wave is genuinely nonlinear, then the increments 8M,°y could, in prin-
ciple, be placed on either side of the discontinuity, since in any case they would eventually be
swept up by discontinuity due to the convergence of the characteristics of that family. This
fact leaves one free to redistribute the fluxes based on other considerations. For example, con-
sider the case of a gas-dynamic shock facing to the right. In that case, N =p =3, and My =0.
However, 8My is, in general, nonzero, due either ‘to smooth 3-wave approaching from the right
or due to errors in the estimate of the shock speed. If the shock is propagating into a uniform
low pressure ambient, then it is desirable to redistribute 8 in back of the shock, since small
perturbations of the preshock state (coming necessarily from errors in the shock speed) could

produce negative pressures. We will discuss this point further in § 4.
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§ 3. Front Tracking in Two Dimensions

We now want to extend the ideas in the previous section to yield algorithms for solving

numerically

oU . oF* oF?
ot ey O G0

Ukyst)=U: RX0T] > RV,

We assume this system to be hyperbolic in the sense that the system (3.1) projected in the 7

direction

L F o G.2)

ot ot
FA(V)=n,F*(V)+n FY (V)

satisfics the conditions given for systems in one space dimension given in the previous section,
for any choice of unit vector 7 =(n, ).

We will use a conservative finite difference algorithm for solving (3.1) away from the

tracked front:
Ar Al
urtt=Up; + T@-ﬂ;”“ﬁa;) + "X;(Fa’.j—‘h —F7 ) 3.3

Here U?; is the discrete approximation to the cell average of U on a uniform rectangular grid

at ttme ¢*°

Uy = [ UGy ™y,

4 ;

A j =[G -A)Ax,( + B)AX IX[(f - ¥)Ay ( +%)Ay ]

Fios,Flj+o approximate the time averaged fluxes at the cell edges, and are assumed to be

explicit functions of U* of the form
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]

:‘JA" F’ (UrJ—] r-in.d-lJ#l H (D’-U)"-'J-' *

(D,-U )‘-fJ-r r"l(Dx-U )l-ﬂ J"" '(D’-U )‘“J")
F? (U":IJ)"‘IUI.?"‘J‘*I > (DI_U )"'"J"' '
v Oy Uiy oy weDi U i g Dy Uiy o)

(3.4)

Fl’Ji'%

where (D;U);; = UNj—Uly . (DyUY; joy = URj—Ulj.y. In other words, we assume that the
dependence of Fi,y ;F7;.s on U™ has the form of a general dependence for the 6 cells nearest
the cell edge where the flux is defined, plus a possible dependence on values of U” farther
away which appears only as one sided differences in U*. Clearly, such a representation is not
unique, since dependences on differences of values at the 6 nearest neighbors can be absorbed
in both the first or second sets of arguments. However, we will also restrict the representations
considered in (3.4) to be of one of two types. We require the algorithm obtained either by set-
ting in (3.4) an arbitrary subset of the D, U,D,U arguments to zero, or by setting all of the
D;U.DyU arguments to zero, to be a stable algorithm which is at least first order accurate.
The class of algorithms which satisfy our requirements is a fairly broad one, including the
two-step Lax-Wendroff algorithm [25], the Flux-Corrected Transport algorithms in [34], and
Godunov's method [14] and its second order extensions [6],[30]. We are restricting our atten-

tion to unsplit algorithms, for reasons we will discuss in § 6.

We assume that our tracked front divides our computational domain into two components
labeled 1 and 2. At time ¢*, we assume that, in each cell, we know the area A/, 1=12,
Al + Al = AxAy of each of the two components along with U}/, the value of the solution for
that component in that cell. If A% is zero, then there is no value assigned to U2 We then
wish to calculate the updated values of the areas A/, and of the solution U~{™. In this sec-
tion, we will assume that A/} is known, and give the algorithm for calculating U, The

reason for this is that what constitutes an acceptable choice of algorithm for updating A’

depends strongly on the type of front being tracked, whereas the extension of the algorithms
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discussed in the previous section is independent of the method of calculating A; ;. In particu-
lar, we will assume that, in each cell, A%/ A" are given, in addition to #;;, a value for the
unit normal to the front, pointing from 2 to 1, as well as 3; ;, an estimate of the velocity of the
front in the direction of #;;, the latter two quantities being specified for mixed cells, i.e., ones
for which both Af; are nonzero for one of the time levels. Given this information, our strategy
for calculating U/}'* will be to reconstruct in each mixed cell a local approximation to the
geometry in space-time of the tracked front; to use this information, along with the difference
algonthm (3.3)-(3.4) to calculate increments to the solution analogous to (2.4) in one dimen-
sion; and to distribute those increments in a way that has a minimum impact on the accuracy
of the solution away from the tracked front, while satisfying the requirements of stability and

global conservation form.

Given AJ/AMY, we can find a plane S, in (P4) space of the form
So= {(@1): @ii—s t+a =0} which represents locally the trajectory of the tracked front through

the finite difference cell A; ;. If we define
Sy ={@s): ¥ hi—-st+a >0)
S, ={(®s): P-A-st+a <0}
then s and a can be chosen so that
Al = area of §; N A, jx([1"}

Al = area of §; N A, jx(1*")

1=12
In the case that A/ A/ are all nonzero S, will be uniquely determined from the A’s and 4.
In the case when one of the A's is zero, then the speed ¥ is required to determine S,.

The only information we will need about S, are s and the areas of the surfaces in space-

time on which fluxes of each of the components arc imposed. We define A, to be the area of
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(S AL X[t 1*+Ar)), ¢=1,...,4 where the L, are the sides of A, ; listed in clockwisc order,

starting from (i — % -%). We also define
Af; = area of Son A; " 4" +A1).

The calculation of A%/ A/ is a straightforward exercise in trigonometry, and will be sketched
in an appendix. However, we do note here the consistency requirements A”!+AP2=AxAr if
p=13. = AyAr if ¢ =2,4. We also mention that A/ is easily calculated from the A?’s and A’s

using the divergence theorem.

We now can define our finite difference fluxes. First, if h; ; is 2 variable defined on the

grid, we denote by

Z h = z hi+rlJ+r1~

exi(i,j) =1%r; 7,81
(n!;,)*(ﬂ.ﬂ)

Using this notation, we define an averaging procedure related to the redistribution algorithm.

We define
Z AIUR,I .
—_ -, A."\ al
1 = ) - J "J...l_\...——
o} 5 [1 ~ Ay]+u,_, o (3.5)
exi (i j)

Then for all edges which are adjacent to cells containing component / at either the old or new
time, we define Fi‘&.’,g‘,-,ﬁ‘,{;‘% to be values obtained from the formulas (3.4) with U?; replaced
by

Ul =ur i AN>O

U,‘ 1 lf A,’ndl= s

it

and D;7U DU replaced by values which depend on the algorithms being used. For algorithms

such as the FCT and the second order Godunov methods, (D;,U); ; is replaced by (D, ,U*"),

if there are values of U™ defined with which to calculate it; otherwise, (D;,U); is replaced
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by zero. With algorithms for which such a choice might lead to stability problems, all the
values of (D.,U) are replaced by zero unless U™ is defined at enough cells 10 replace all
arguments D, U by D, U,

Having calculated these fluxes, we then can calculate the values of 8M/; analogous to

(2.4) in one dimension:

Ml = (WM -ADON] + ALy FEs = AlosiFlou 3.6)
+ A,,]—‘AFAJ-‘A - AIJ"'VIFAJ'("/I P Af F:f./s
Here A, Al ., are given by
1
A."+-4J = (A;+1.,+A“) A;Jw =‘§'( ..;+1 +A¢?}l)' 3.7

and the * is taken to be + if I =1, — if / =2. A/ and F/ are taken to be nonzero only for those
cells which contain nonzero volumes of both regions at either the old or new times. In that

case, F/ is the flux across the tracked front in the cell, given by

Ff; = FA(UL)-s ;UL (3.8)
where U* is the value of the solution to the Riemann problem for the system (3.2) projected in

the #;; direction along the ray -%-:s,' J» with left and right states U; J.U !

The preliminary evolution in time, cormesponding to (2.6) in one dimension, is given by

urtt=urf+ M} (3.9

AxA

for cells where A,-’fj“aeo. As was the case in one dimension, (3.8) does not preserve discrete

conservation form, which would have been the case if (AxAy) had been replaced by A In

!
AIA ]BM‘J onto our grid. We do so by

order to have conservation, we must distribute [1

dccomposing these increments into characteristic variables and distributing them to nearby cclls

in a volume-weighted fashion. If we expand
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- A""J M. = m‘r‘
AxAy ANl
where ry(U), k=1,..N are the linearized right eigenvectors of the system (3.2) projected in the
A;; direction, with r{ = r,(U} ;). then we can define, analogous to (2.8)

SM*" = Za‘ f:
p>k

M4

Z“&"&'
p<k

MY = e, (3.10)
SM©t! = BM* 4 SM*2 4+ MO
EM©2 = M~ +8M 2+ M2
A‘l:’_l,l 2 AR
ex(i j)

Then we define the final values of U”}'/ to be

wot,]

nel D ._ pyasll M

U,'J = UEJ + z A”"’ .
ext (i j)

3.11)
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§ 4. Gas Dynamics in Two Dimensions

The formulation of the conservative tracking algorithm given in the previous two sec-
tions, while quite general, is in two ways less than completely satisfactory. The first way is in
the time step control. If one considers the special case of a tracked front coinciding with one of
the mesh lines, one immediately sees that the flux at the front is given by that for Godunov’s
first order method {14]. In general, this method has a more restrictive time step stability limita-
tion than that for any of the higher order predictor-corrector methods mentioned at the begin-
ning of the the previous section. It is not difficult to construct examples of systems of equa-
tions for which the above algorithm generates oscillations for time steps violating the CFL time
step limit for the first order Godunov method, even though the interior scheme is satisfies a
maximum principle for that choice of time step. The second difficulty is that of a lack of an
obvious choice of redistribution algorithm for the component in the characteristic decomposi-
tion of the flux difference corresponding to the same family of the tracked wave in the case
where the wave is genuinely nonlinear. This is a particular problem in two dimensions, where
there is a component of the flux difference which is purely an artifact of the impossibility of
representing exactly in a numerical calculation the spatial structure of a curved discontinuity.
One needs to identify that component of the flux difference, and decide on which side of the
tracked front to distribute it Rather than attempting to give general solutions to these
difficulties, we will deal with them in the context of a specific problem, tracking a shock for
Euler’s equations for compressible flow, and a specific interior algorithm, the second order
Godunov method discussed in [6]. For the time step problem, we will intertwine the predictor-
corrcclor algorithm with the tracking algorithm in such a way so that, when the tracked front
coincides with one of the mesh lines, the algorithm for the flux is that of a difference method

with the same time-step restriction as the interior algorithm. We will also identify the com-

ponent of the flux difference corresponding to the errors in the representation of a curved front,
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and distribute it to the high pressure, post-shock region for the reasons discussed in § 2.

We wish to solve the equations of gas dynamics in conservation form in Cartesian

geometry, i.e. the system (3.1) with

P pu pv

pu o pu+p | pw 41
U=|o| FO=| o FP=| o, @.n

pE puE +up pvE +vp

Here p is the density, (x,v)=% the x- and y-components of velocity, and E the total energy per
unit mass. The pressure p is given by an equation of state p =p(p.e), where e =E ~ %(uz-wz)

is the internal energy per unit mass. To simplify the exposition, we will assume that the equa-
tion of state is that of a polytropic gas, i.e., p =(y-1)pe, where y is a constant, y>1. The exten-

sion to a general convex equation of state can be carried out using the techniques in [8].

The difference algorithm which we will couple to our front tracking method is a second
order extension of Godunov's method. We review this method briefly here; for further details,
see [6]). This method is formulated as a predictor-corrector method. The conservation correc-
tor step is of the form (3.3) with FZ.,; = FX*(URYE), Fljww = FP(UR%). The values URLE,
U2, are given as solutions to the Riemann problems for (4.1) projected in the x and y coor-
dinate directions, with left and right states (UYL UMY 2), (UL UM ur)-

A repeated construction in these methods, both with and without tracking, is the calcula-
tion of upstream-centered extrapolations from the left and right at cell edges; for example, the
left and right states for the Riemann problem used to obtain the fluxes at the cell edges. In
what follows, we will give the prescription for calculating only such quantities only for the
extrapolation from the left at the cell edge (i+'%.), e.g., U,";ng 1. The extension to the other

three cases are straightforward, and are given in [6] for the algorithm without tracking,
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The left and right states are given by upstream-centered approximations to the solution of
the nonconservative form of (4.1) to obtain time-centered values, which is itself carried out in
two steps. First, we calculated the effect of spatial derivative in the direction normal to the
cell edge, using the primitive variables V)-; puyo)

vVt =V U")

4
. \ At
Viswjr =V + §(Xi4j"li‘,j)z(lilj AV; ) 4.2

where AV, ; is a difference approximation to %E-Ax to which monotonicity constraints have

been applied. AV, ; can be written as a function of (D,;V),,, r=-1,....3. Here A}, 1}, r};
arc the eigenvalues and left and right eigenvectors of V, V-V, F*-V, U, evaluated at U;. The
second step of the predictor step estimates the effect on the extrapolated states at the cell edge

of spatial gradients in the direction parallel to that cell edge. It is given by

U=U®y) 4.3

a+th

. Al A .
toagL = Uisngt — E("?ﬁ%“ﬁ’b-ﬁ)

where F?,y is obtained by solving the Riemann problem for the system (4.1) projected in the

y direction, for left and right states (U; j,y.U; jewsn)-

We now describe the extension of the predictor-corrector algorithm given above to the
case of a tracked gas-dynamic shock. We assume the choice of normal pointing from 2—1
used in the previous section, and that the shock we are tracking, with that choice of normal, is
that associated with the A* characteristic family, so that the component 2 contains the high-
pressure, ‘‘post-shock’’ state. We also assume that the local geometry of the front has becn
calculated as in the previous section. In particular, we know the volumes A*Y A**!Y and the
apertures Al Al i,y, =12 (for the algorithm described here, it tumns out that A/, is not

required). The extension of the conservative corrector step in the absence of a tracked front is
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given by (3.4) where Fil\y;=F*(URN), F2low = FP(UMA) are defined for Aliy; >0,
Aljn > 0. The values URNA U AL are given as solutions to Riemann problems for (4.1) pro-
jected in the xy directions, with left and right states given by (USNSLUMWAL).
(UM URNE « wa). However, F{;, the flux at the tracked boundary, is not given by a solu-

tion to the Riemann problem directly, but by
A:{;‘F{J = F’(Uz“f w0,

where Uj**! is the result of a predictor calculation similar to that given by (4.2),(4.3) with F¥

given by
FPU)= (A% uj—Alu)F*U) + A2 —AZ-w)FP U) + (AL - AN DU @4.4)

By (3.6) the formula for A/;Ff; differs from that given in (3.8) by
SM' + O(AxAyAr) = O (AxAyAt), so that it is formally first order accurate in smooth regions.
Another consequence of (4.4) is that if UM %! = Uy = UALAY, UMS' ., then 8M' = 0. Thus, by
using (4.4) as the flux across the front, we are effectively assigning all of the contributions to
the flux difference due to the numerical errors in representing the shock geometry to the post

shock region.

The left and right states are given by suitable modifications of the predictor step

(4.2).(4.3). We first calculate

" . At -
Viewie = VWL + TO& =MD (A @.5)
where AV} ; = AV(DVX!; ..., DV} ;) is expressed as a function of one-sided differences of

V! in the x direction, with those differences which are not defined due to the absence of the
appropriate component in a cell set to zero. It is possible because of (3.7) for A/, ; to be
positive while A% = A" = 0; in that case, V/, ., is set to be V/,,, », which is defined (oth-

erwise A/, ,,; would be zero).
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In the second half of the predictor step, we estimate the effect of solution gradients paral-
lel to the cell edges and to the tracked front on the time-centered left and right states at those

locations.

- l - —
el gl (A L (FYO L DY-FY (T
UH— Yo, L UH- YJj L 24 Ay( i j+ 56( (UIJ+ Vx) (Ut.])) (46)

- AW (PP W0l 2w)-F T

Here U/, is the solution to the Riemann problem with left and right states (U j» w2 Ui j-z)
for the system projected in the y direction. For the postshock state, there is an additional con-

tribution to the predictor step due to the flux through the tracked wave:

' nx;
Urhity = URNG - 2A.;JAY

(F! P~ F . Ch))
Note that, in this part of the predictor step, we subtract from each flux a flux evaluated at the
cell center. We do this because we only want contributions due to solution gradients, as
opposed to those due to the nonrectangular finite volume differencing near the front; in particu-
lar, if the solution consists of a straight shock separated by two constant states, the predictor
step yields a zero increment. The particular form is motivated by the extension of the second
order Godunov method to general quadrilateral grids discussed in [6], where the predictor step
takes a similar form. The additional term in the postshock predictor given by (4.7) has the
property that if the tracked front coincides with one of the mesh directions then the predictor is
that given by the second order Godunov method in {6], with F/ (U,’J’) acting as the flux
through the boundary, and the flux F/(U??) cancelling the reference flux terms in (4.6). The
analogous term in Ut is identically zero, since F/;(U”;') takes the place of F/(U"P) in

4.7).

We must also calculate a predictor step for the tracked front. Since the flux depends only

on the state in front of the shock, we need only calculate a predictor step for UPf ™!, 1t is



23

given by

. 1
vt = U -y

( - 2L wyF*Ohnp)-F* UM

~ (ALyj(F*(UlLy))-F* )] (4.8)

+ n2AY e wFY (U ) -F (T75))

- (A n P T -FPUN)).
In the case of the tracked wave coinciding with one of the cell edges, this algorithm reduces to
the second part (4.3) of the predictor algorithm for the unsplit method without tracking, and the
combined algorithm is given by the interior algorithm (4.2) - (4.4) with the slopes adjacent to
the front and in the direction of the normal of the front set to zero. Since this corresponds to a
hybridization of two schemes having the same time step restrictions, i.e. that of the interior
scheme, we expect that the overall calculation will be able to run at the same time step as the
interior scheme. Also, the effects of incompatibilities in the representation of the shock
geometry are effectively assigned to M2 In particular, 8M'=0 if the tracked shock is moving

into a constant preshock state.



§ 5. Numerical Results

We use as a test problem the problem of self-similar reflection of a shock by an oblique
surface [12]. The initial data consists of a planar shock moving into a uniform fluid with pres-
sure p,, density po, and with preshock velocity equal to zero, incident on a reflecting surface at
an oblique angle. The surface in back of the incident shock parallel to its direction of propaga-
tion is also a reflecting surface. The solution to this problem for positive times consists of
some reflected wave propagating into the uniform postshock medium, with a combination of
smooth and discontinuous waves contained in region bounded by the incident shock, the

reflected wave, and the solid wall boundaries. Normally, one expects the solution to be self-
similar, i.e., depending on (x,y ) only in the combination {f%} so that the reflected wave

pattens at different times are identical, modulo 2 linear rescaling of the coordinates. In that
case, the reflection patterns obtained are functions of the incident shock Mach number M;, the

ramp angle a, and the equation of state y.

We use the hybrid tracking and capturing algorithm described in the previous section to
calculate solutions to this problem. We track the incident shock, while capturing all the waves
found behind it. In particular, we compute Mach triple points adjacent to the undisturbed
medium in front of the incident shock as kinks forming in the incident shock. This is a partic-
ularly appropriate use of the hybrid algorithm, since the co-mbination of the incident shock and
Mach stem attached to it are the strongest shocks in the problem, with pressure ratios of arbi-
trary magnitude. In contrast, the reflected shocks are typically in the weak shock regime, with
pressure ratios <10. In addition, our interior finite difference grid is oriented so that one of the
grid directions is paralle] to the surface oblique to the shock; consequently, the other r;cﬂccting

surfacce intersects the grid obliquely, and is treated as a tracked impermeable surface, but one

along which the fluid is allowed to slip, using a suitable version of the redistribution algorithm.
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In these calculations, the volumes representing the tracked front are obtained by propagat-
ing a polygonal curve through the mesh. The vertices (x/ , y;) of this curve are located such
that at least one coordinate is located on a grid line: x = (i-4)Ax or y/ = (j-%4)Ay, further-
more, any point on the curve wl;ich intersects a grid line is a vertex. Finally, we assume that
yi-1 <y, an assumption which is reasonable for our shock reflection problem, and simplifies
the logic of the calculation considerably. We use this representation of our tracked shock front
to calculate the partial volumes A/ with the region to the left of the curve taken to be in the
post shock region, the calculation of which, given such a representation, is straightforward.
Thus we must give an algorithm for updating the array (x/,yf), to obtain a representation of the
front at time ¢**!. Once that is done, then the volumes A} can be computed, and the solution

on either side of the front updated. The evolution of the array proceeds in the following four

steps:

1) Delete all points (x7,y» which lie on x coordinate lines, i.e. for which x, is of the form

(i-%)Ax.

2) Move all the remaining points (x,yy=(xf+s:Ary0+s,Ar). Here the shock speed
(5x,8,)=5 A is calculated using the jump relations on either side in the following fashion.
Since we have deleted the points located on x grid lines, and since the y coordinates are
strictly monotone functions of k, the cells (i,j-1) , ({.j) above and below (x.yi) have
nonzero postshock volumes A”2 For each of these cells we compute U"? using (3.5)

from U*? compute values for p and @, and an estimate for the shock speed (s, Sy)

o2 (w1 @po |
(52.8)=s T V5= » a+ 2 po )} . ¢.1n

To obtain a speed for (xfyf), we we take a volume weighted average of the two speeds

above and below:
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a

ey =fij (28 + fij1(8:.8)i i1

a2
iJ=1,i4

A," J‘z_l + A,.J‘z

fiJ-l g =
3) Delete all points (x,,y,) which are contained in the same cell as (x,_;,yz—1).

4)  Create the new set of points (x*!,y*). consisting of the points where the line segments
connecting  successive points of (x,):) intersect the coordinate lines

{((x,y): x=@1~-%Ax or y=(-'%)Ay).

It is assumed that the arrays obtained in the deletion steps 1) and 3) have the same ordering as
the array input to them. If that is the case, and if the time step satisfies the constraints [s,As|,
{((sy)io — (s,)D)Ar | <Ay, then the array of points produced at the end of step 3) has the proper-
ties that y, >y;_;, and that no more than one point (x; ;) is in each cell. From this it follows
that yf*! is a strictly monotone function of k. Having calculated A*/, A»*!Y, we then use the
procedure describing in § 3 and the Appendix to calculate the local geometry of the front in

space-time, using (5.1) to calculate the speed and unit normal.

Our first test case is that of a Ms=10, a=30° y=1.4 (figure 1). This problem was used
in [33] as a test problem to compare a number of methods for gas dynamics. In these plots,
and those that follow, we plot 30 equally spaced contours of the various dependent variables,
with the values of the the dependent variables for points under the ramp and in front of the
tracked shock set equal to the values in the uniform state behind the incident wave. In addition,
we plot the polygonal curve defined by the (zf , yi). In order to compare the tracking method
with the results obtained by shock capturing, we include a fully capturing calculation of the
same problem using the second order Godunov method presented in (6] (figure 2). Overall,
the results look quite similar; the only major difference is that the error generated where the
shock exits the top boundary in the capturing calculation is, of course, absent from the tracking

calculation. Conscquently, the weak contact surface emanating from the second triple point is
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more easily seen in the tracking calculation as a slight kink in the density contours, and a sin-

gle contour in the entropy.

The second test problem is that of Mg=8, a=35° y=12 (figure 3), taken from [1},(9].
This problem tests the ability of the tracking algorithm to represent strongly curved shocks.
Because of the low v, the jet formed in the double Mach configuration is accelerated
sufficiently strongly to push the original Mach stem out in front of it, causing a portion of the
tracked shock to be strongly curved, and another Mach triple point to form at the end of the
curved segment. The combined tracking and capturing algorithm has no difficulty representing
the complicated combination of smooth and discontinuous flow generated by the curved Mach
stem. We call particular attention to the combination of smooth and discontinuous entropy

variation along the Mach stem.

The final test problem is the case Mg =2.05, a=60° y=5/3 (figure 4). These conditions
result in a regular reflection pattern. This is a problem for which there is no particular advan-
tage in tracking the incident shock, since the it interacts with the nonuniform part of thc flow
field at only one point, the reflection point, where the amplitude of the wave interacting with
the tracked shock is large. Nonetheless, this algorithm yields quite acceptable results, with the
exception of a four cell wide eror in the entropy at the wall. This error is analogous to wall
heating in one dimension [22],[32], and comes from capturing the reflected shock. If the
reflected shock were also tracked, as in [3], for example, then this error would not occur; as is,
it is smaller than is observed in fully captured calculations of this problem [12]. Also of
interest in this case is the fact that the reflected shock is detached, leading to nonuniform flow
along the left ramp boundary. The tracking algorithm is able to resolve the tangential flowfield

along that boundary, without evidence of instability, even at the reflected shock.



§ 6. Discussion and Conclusions

We have presented here a hybrid method for computing multidimensional solutions o
hyperbolic conservation laws, in which we track a single distinguished discontinuity, while
capturing all others, even if they intersect the tracked front. The essential new idea here is that
of redistributing the flux differences (2.4),(3.6) in a way that is stable and preserves global
conservation. This technique is quite general: it can be applied to fronts represented as polygo-
nal lines, or by a volume-of-fluid formulation, as long as the method for updating the volumes
is exact for flat fronts. Thus we are free to choose a representation of the geometry of the
front appropriate to the stability properties of the front being calculated. We intend to apply
this technique to a number of multidimensional problems, including the formation of Mach
stems in detonation fronts [24),[26], the interaction of flame fronts and compressibility effects,
and the dynamics of unstable slip surfaces and material interfaces. In all these cases, there is a
distinguished front — a reaction front, contact or slip surface —— whose dynamics would be
incorrectly calculated if captured on a uniform finite difference grid whose mesh spacing
resolves only the smooth hydrodynamic length scales. Of course, it will be necessary to solve
the one dimensional Riemann problem normmal to the front, which is still an open research
question in the case of a general reacting fluid; however, solutions are known in the case of

some simplified models [4],{29].

Even for discontinuities which are adequately represented on uniform grids by capturing
methods, there are situations where tracking is a useful technique. For example, one often
wishes tolcompme shocks on meshes which change discontinuously, such as in local adaptive
mcsh refinement [2]. For gas-dynamic shocks which intersect the mesh discontinuity, one
finds unacceptably large errors generated at the mesh discontinuity if the shock is very strong,

while those errors are quite small for weak shocks. Thus for problems in which there is only
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one strong shock, such as the incident shock in the ramp reflection problem in § 5, or the bow
shock in a supersonic steady flow, it is possible, by tracking that distinguished shock, to apply
adaptive mesh refinement only in the regions where it is required to resolve accurately the
smooth or weakly shocked flow, allowing the tracked wave 10 intersect the mesh discontinuity.
This combination of refinement and tracking has proved useful in investigating the details of

the transition between regular and Mach refiection in [1].

One question which we have not addressed is the use of a conservative tracking method
such as this with an operator split interior method. We believe that this is going to require a
different approach than the one used here. The basis for this assertion is most easily seen in
the following example. Consider a stationary tracked slip line for the equations of gas dynam-
ics (4.1), i.e. a line across which the pressure is constant, and the velocity on either side is
parallel to the front. If one naively applies an operator split method to this problem, i.e. by
incrementing sequentially the solution to the left of the tracked front, due to the fluxes in each
of the coordinate directions, pressure variations of 0(1) amplitude are generated, since the
velocity jump in each of the coordinate directions is compressing or expanding the fluid. Only
by differencing all the fluxes simultaneously does one see that the net compression is zero. Of
course, one could deal with this problem in a variety of ways, such as hybridizing the operator
split method with an unsplit method in the neighborhood of the tracked wave, or not evaluating
the points of the increments of the solution corresponding to a tracked wave separating con-
stants until all of them are available, similar to the modification of the predictor step for the

second order Godunov method (4.6).

Another area where further work is required is that of the numerical analysis of this
method. In more than one dimension, this is likely to be a quite substantial undertaking, since

the mathematical theory for the for the well-posedness of solutions to the initial / boundary
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problem being approximated by this method is quite difficult {18]. In addition, the formal
analysis given by (2.10) does not even yield pointwise error estimates in the neighborhood of
the tracked wave. This latter problem is easily remedied by the following modification 1o the

algorithm. If one replaces (2.6) by
SMS = Ws + As‘ﬂ (Uf - gs)

- 1
!H'l:U —
US S"l’Ax EMS

whcre 8Ms on the right of of the first assignment is given by (2.4), and s is some stable non-
conservative estimate to U*! having a local truncation error of 0 (AxAt), then one obtains a
method which conserves and is first order accurate pointwise, even in the neighborhood of the
tracked wave. This technique can also be used to accelerate convergence to steady state near

the tracked wave, e.g. by setting U = Us.

An open question concerning this technique is its extension to the case where there are
two or more discontinuities to be tracked. Currently, our algorithm applies only to the case
where a single front which separates the computational domain into two components; in gen-
eral, neither component need be of fixed connectivity as a function of time. So our technique
can be applied to the collision of two strong shocks, or to a combustion front with multiple
ignition centers. However, the technique as currently formulated cannot be applied to the cal-
culation of two or more tracked fronts of different characteristic families, such as a tracked
front interacting with a tracked slip surface. One idea which has promise is to derive a
modification of the flux redistribution algorithm which simply redistributes fluxes in a volume-
weighted way inside a cell where the fronts intersect, thus reverting to a redistribution algo-
rithm similar to that used in multifiuid calculations in [7],[11],{33]. The redistribution algo-
rithm could also be used to obtain a conservative coupling for methods where the intersection

points are explicitly tracked, as in [3].
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Appendix

We give here the construction of the apertures A?* discussed in § 3. Since this is a cell-
centered calculation, we omit subscripts (i ,j) and assume without loss of generality that the
lower left comer of our cell is located at the origin of our coordinates. As input data, we are

given A" AN with A™1 4 A2, AL A2 2 Ax Ay, as well as A, the unit normal pointing

from region r into region /. By rotations, reflections, and reversal of the time direction, we
can transform the problem into one for which A**'2 > A*2, and # = (cos,sinB), 0s6<-§-. We
also have at least one of A"2>0 A2« holding.

We will first consider the case where 0<A*2<A™'2<1. In this case, the pan of the cell

containing region 2 is below and to the left of the front, and increases in area as the front
. Ay? . .
moves up and to the right. If we define A, = tane—%-, Ay = Ax Ay - A,, then region 2 occupies
a triangle in the lower left comer if A%(r)<A,, a trapezoid if A; <A%(¢)<A,, and the complement
of a triangle in the upper right corner if A%1)2A, (figure Al). Given this geometric informa-
tion, it is easy to specify x(A), the location of the point where the tracked wave intersects the

x-axis as a function of A, the area of the cell in region 2, to be

x(A) = (2Atan@)* if ASA,
A A .
v —%tane if A;2AZA,

Ax +Aytan8 - (2an®(Ax Ay — A))” if A>A,.

1l

From this we can calculate the shock speed s

5= I_SA"HJ)“ILA"'E)
A cosB !

and the times t4,(, when AX(t)=A Ay

LX)z
- 5c0s0
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x(A)-x(A*?) o

!
2= 5cos6

Finally, we can calculate A'?4%2 10 be

PLES]

Alaz— I (f)dt

(rn-bl ‘u)
el

AP = jA“(z)dz

( u+l

where

A1) = x(A")+(1—t")s cosb if " <t<t,

Ax if t>1,

x (A"
tan®
Ay if t>14

AP2(0) +({t—t*)ssin® if 1" <t <ty

A and A are computed using AP'+AP2 = AyAr for p even, AxAr for p odd; A3 A% are
calculated by a similar procedure, or the algorithm identical to that given above for a suitably
time-reversed and rotated problem.

In the case where A"?=0, or A**'?=1 the construction is modified slightly, since we no
longer have sufficient information to uniquely determine s. We consider only the case A*?=0,
the other case being obtainable from the first by rotation and time reversal. We calculate 5,

the time when the front first enters the cell, to be

adl
i = t""’—min [5-£A3JAI]

so that 15 2¢". Then x(A), s, t,, t5, A??(t), p=12 are defined as before, but replacing ¢* by ;.

Finally we define
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pu+l

L[ woa peia

APz — —
(‘n-o-l_‘ b

AM=AxAI-A'?, AM=AyAr-A%2

Having computed all of the apertures on the cell edges, the aperture at the front is given

by

Al =A12 4 A2 - A32_ A42 4 AR A2

This is most easily seen by applying the divergence theorem to

0= ] (V - 1) dxdydt.

axe® 1" A,
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Figure Captions

Figure 1. Contour plots for M, = 10, a = 30, y= 1.4 ramp reflection problem computed using
the hybrid track and capturing algorithm. Figure 1 (a) - density, figure 1 (b) - pressure, figure
1 (c) - entropy.

Figure 2. Density contour plots for M, = 10, a = 30, Y= 1.4 ramp reflection problem computed
using the second order Godunov method, with all discontinuities captured.

Figure 3. Contour plots for M, = 8, a =35, y= 1.2 ramp reflection problem computed using the
hybrid track and capturing algorithm. Figure 3 (a) - density, figure 3 (b) - pressure, figure 3

(c) - entropy.
Figure 4. Contour plots for M, = 2.05, a = 60, 7=—§- ramp refiection problem computed using

the hybrid track and capturing algorithm. Figure 4 (a) - density, figure 4 (b) - pressure, figure 4

(c) - entropy.

Figure Al. Examples of local configurations of the tracked front in a finite difference cell.
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Figure 2
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