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Abstract

This paper looks at gravitationally stratified atmospheric flows at low Mach and Froude numbers and proposes a new
algorithm to solve the compressible Euler equations, in which the asymptotic limits are recovered numerically and the
boundary conditions for block-structured local refinement methods are well-posed.

The model is non-hydrostatic and the numerical algorithm uses a splitting to separate the fast acoustic dynamics from
the slower anelastic dynamics. The acoustic waves are treated implicitly while the anelastic dynamics is treated semi-implic-
itly and an embedded-boundary method is used to represent orography. We present an example that verifies our asymp-
totic analysis and a set of results that compares very well with the classical gravity wave results presented by Durran.
� 2006 Elsevier Inc. All rights reserved.
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0. Introduction

Gravitationally stratified flows in a compressible medium at low Mach and Froude numbers arise in atmo-
spheric fluid dynamics or in the modeling of stars. Traditionally, such flows have been simulated either by
solving the fully compressible equations or by the use of hydrostatic or anelastic models [4,5,7,10–
13,16,18,20–24,28,31,32]. Each of these formulations is desirable for particular properties in various asymp-
totic limits. Our goal is to obtain these various limits numerically from a discretization of the full compressible
equations, depending on the scales being resolved. In addition, we seek a formulation for which the acoustic
dynamics, the dynamics due to stiff gravity waves, and the advective dynamics, can be separated out and each
treated with a suitable explicit or implicit method. Finally, we are looking for a formulation that admits well-
posed general boundary-value problems. The latter property is essential for the development of block-struc-
tured local refinement methods, but, for example, does not hold for hydrostatic models [27].
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In this paper, we describe a new algorithm for the compressible flow equations in a thin, gravitationally
stratified layer that takes us part of the way in meeting these goals. It is based on an extension of the allspeed
projection algorithm developed by Colella and Pao [9] to the case of an anelastic Hodge decomposition of the
velocity field into solenoidal and potential components, along with a corresponding splitting of the pressure
field. We further modify this splitting to correctly represent the dynamics of gravity waves for thin layers. This
allows us to use an implicit method for treating the acoustic modes, combined with a semi-implicit method for
the anelastic dynamics. We combine this method with appropriate spatial discretizations, including an embed-
ded boundary treatment of orography. The resulting method has as a time step limitation the CFL condition
for the fast gravity waves. Since the compressible flow equations have a well-posed boundary-value formula-
tion, the overall method is well-posed. In addition, the individual PDEs that are solved in the various substeps
have well-posed boundary-value formulations, thus making it a suitable starting point for an extension to
locally refined meshes. Furthermore, since the splitting is of the full equations, there is a natural embedding
of the thin-layer asymptotics into a more complete fundamental system of equations in multiscale calculations,
in which the resolved horizontal scales become locally comparable to the vertical scales.

We test the method on two problems. The first comes from using thin-layer asymptotics and normal-mode
analysis to derive the dynamics of fast gravity waves. We use the fully compressible algorithm described above
to compute the propagation of these waves, and obtain results compatible with the asymptotic analysis. We
also use the method to compute the test problems of Durran [10] for lee waves over a mountain, and obtain
good agreement with the results in the literature. In the conclusions, we discuss possible approaches to elim-
inating the constraint on the time step due to the fast gravity waves.
1. Anelastic allspeed formulation

1.1. Equations

We consider a compressible inviscid fluid, described by the Euler equations
oq
ot
þ divðquÞ ¼ 0 ð1Þ

ou

ot
þ u � gradðuÞ þ 1

q
gradðpÞ þ gk ¼ 0 ð2Þ

op
ot
þ u � gradðpÞ þ qc2 divðuÞ ¼ 0 ð3Þ
or, in perturbational form,
o~q
ot
þ divð~quÞ þ divðq0uÞ ¼ 0 ð4Þ

ou

ot
þ u � gradðuÞ þ 1

q
gradð~pÞ þ ~q

q
gk ¼ 0 ð5Þ

o~p
ot
þ u � gradð~pÞ þ qc2divðuÞ � wq0g ¼ 0 ð6Þ
Here, q0(z) is the hydrostatic density, ~q ¼ q� q0 is the perturbational density, p0(z) is the hydrostatic pressure
defined as
dp0

dz
¼ �q0g ð7Þ
and ~p ¼ p � p0 is the perturbational pressure.
Eqs. (4)–(6) support acoustic waves and an explicit numerical discretization of these will require a time step

dictated by the acoustic dynamics. However, since the acoustic waves have a negligible effect in atmospheric
dynamics, using a small time step dictated by the vertical propagating acoustic waves, about 10 times smaller
than the one dictated by the horizontally propagating gravity waves, is a huge performance loss. Therefore, we
split the dynamics, separating the acoustic waves from the slower anelastic dynamics.
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u ¼ ud þ up þ uh ð8Þ
divðg0udÞ ¼ 0 ð9Þ
divðg0uhÞ ¼ 0 ð10Þ
up ¼ gradðuÞ ð11Þ
uh ¼ gradðtÞ ð12Þ
where u is the total velocity, ud is the anelastic velocity, up is the curl-free velocity and uh is the harmonic veloc-
ity, and g0 = g0(z) is a function to be determined later. The velocities must also satisfy the following relation-
ships on Neumann boundaries:
ud � n ¼ 0 ð13Þ
up � n ¼ 0 ð14Þ
uh � n ¼ u � n ð15Þ
The anelastic and curl-free velocities can also be obtained from the total velocity
ud ¼ P0ðu� uhÞ ð16Þ
up ¼ Q0ðu� uhÞ ð17Þ
by using projection operators defined as follows:
Q0ðwÞ ¼ grad L 1
g0

� ��1

divðg0wÞ ð18Þ

P0ðwÞ ¼ ðI�Q0ÞðwÞ ð19Þ

where L1

b
u ¼ divðbgraduÞ. The boundary conditions will be discussed later. Using the splitting, Eqs. (4)–(6)

can be rewritten
o~q
ot
þ q0w

1

q0

dq0

dz
� 1

g0

dg0

dz

� �
þ divð~quÞ þ q0

g0

divðg0upÞ ¼ 0 ð20Þ

oud

ot
þ Aduþ 1

q
gradðpIÞ þ

1

q
opH

ox
iþ 1

q
gradðwÞ þ P0

1

q
graddþ grad

jup þ uhj2

2

" #
¼ 0 ð21Þ

oup

ot
þQ0

1

q
graddþ grad

jup þ uhj2

2

" #
¼ 0 ð22Þ

od
ot
þ opH

ot
þ opI

ot
þ ow

ot
þ u � gradðpI þ pH þ dþ wÞ þ qc2

g0

divðg0upÞ � w
qc2

g0

dg0

dz
þ q0g

� �
¼ 0 ð23Þ
where the following quantities have been introduced:

� i is the unit vector in the horizontal direction.
� Adu is the advective term defined as
Adu ¼ ðu � gradÞu� grad
jup þ uhj2

2

 !
ð24Þ
� pH and pI are defined as
opH

oz
¼ �~qg ð25Þ

1

q
ðgradpIÞ ¼ �QqðAduÞ ð26Þ
with
Qqw ¼ 1

q
grad L q

g0

� ��1

divg0w ð27Þ
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pH is the perturbational hydrostatic pressure and pI contains some of the effects of the incompressible
motions.
� w is defined as
1

q
gradðwÞ ¼ �Qq

1

q
opH

ox
i

� �
ð28Þ
w contains the vertical motions produced by horizontal gravity waves.
� d is the ‘‘acoustic pressure’’
d ¼ p � p0ðzÞ � p� w ð29Þ

We choose g0 to cancel the buoyancy term q0gw in the pressure equation for the unperturbed reference state.
1

g0

dg0

dz
¼ � q0g

cp0

¼ 1

cp0

dp0

dz
; g0ð0Þ ¼ q0ð0Þ ð30Þ
It is to be noted that g0 comes out to be the isentropic density corresponding to the pressure distribution p0.
With this value of g0, Eqs. (20)–(23) become
o~q
ot
� q0N 2

g
wþ divð~quÞ þ q0

g0

divðg0upÞ ¼ 0 ð31Þ

oud

ot
þ Aduþ 1

q
gradðpIÞ þ

1

q
opH

ox
iþ 1

q
gradðwÞ þ P0

1

q
graddþ grad

jup þ uhj2

2

" #
¼ 0 ð32Þ

oup

ot
þQ0

1

q
graddþ grad

jup þ uhj2

2

" #
¼ 0 ð33Þ

od
ot
þ opH

ot
þ opI

ot
þ ow

ot
þ u � gradðpI þ pH þ dþ wÞ þ qc2

g0

divðg0upÞ þ ðpI þ pH þ dþ wÞ q0gw
p0

¼ 0 ð34Þ
where N is the Brunt–Väisälä frequency defined by
N 2

g
¼ 1

g0

dg0

dz
� 1

q0

dq0

dz
ð35Þ
1.2. Asymptotic analysis

We use asymptotic analysis techniques to demonstrate that the splitting of the dynamics described above
leads to a separation of the acoustic and fast buoyant time scales. Our approach is similar to that used in
[19], but with the goal of putting the equations in a form suitable for applying normal-mode analysis to derive
the dynamics of fast gravity waves.

We start by linearizing Eqs. (31)–(34) around the state ~q ¼ 0 and (u, w) = 0
o~q
ot
� q0

N 2

g
wþ q0

g0

divðg0upÞ ¼ 0 ð36Þ

oud

ot
þ 1

q0

opH

ox
iþ 1

q0

gradðwÞ þ P0

1

q0

gradd

� �
¼ 0 ð37Þ

oup

ot
þQ0

1

q0

gradd

� �
¼ 0 ð38Þ

od
ot
þ opH

ot
þ ow

ot
þ q0c2

0

g0

divðg0upÞ ¼ 0 ð39Þ
If U is the horizontal velocity scale, �c is the average speed of sound, K is the speed of a typical gravity wave, lv
is the vertical length scale, L is the horizontal length scale, N is the average Brunt–Väisälä and g is the gravity
constant, we can introduce the following dimensionless variables:
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x̂ ¼ x
L

ð40Þ

e ¼ lv

L
ð41Þ

ẑ ¼ z
eL

ð42Þ

K ¼
ffiffiffiffiffiffiffi
eLg

p
¼ eLN ð43Þ

t̂ ¼ K
L

t ð44Þ

û ¼ u
U

ð45Þ

ŵ ¼ w
W

ð46Þ

ûd ¼
ud

U d
ð47Þ

ŵd ¼
wd

W d
ð48Þ

ûp ¼
up

U p
ð49Þ

ŵp ¼
wp

W p
ð50Þ

Fr ¼ U
K

ð51Þ

M ¼ U
�c

ð52Þ
where M is the Mach number, e is the aspect ratio and Fr is the Froude number. Our choice of time scale
reflects the fact that the fast gravity waves are of interest in this study.

For mesoscale atmospheric flows, we have the following relationships between the different parameters
defined above:
e� 1 ð53Þ
M �Fr� 1 ð54Þ
W d ¼ eU d ð55Þ
Using Eq. (11), we obtain
W p ¼
U p

e
ð56Þ
These parameters are used to estimate the magnitude of the different contributions to the pressure pH, w and d
(pI depends quadratically on u and is therefore negligible in the present analysis). Using Eqs. (36)–(38) along
with the definitions of pH and w, multiplying by g0 and applying the divergence operator, we obtain
�qKUp

L2

o

ox̂
ĝ0

oûp

ôt

� �
þ 1

e2

o

oẑ
ĝ0

oŵp

ôt

� �� �
þ 1

L2

o

ox̂
ĝ0

q̂0

od
ox̂

� �
þ 1

e2

o

oẑ
ĝ0

q̂0

od
oẑ

� �� �
¼ 0 ð57Þ

o

oẑ
opH

ôt

� �
¼ ��qKU q̂0

bN 2ŵþ �qKUp
q̂0

ĝ0

oĝ0ûp

ox̂
þ 1

e2

oĝ0ŵp

oẑ

� �
ð58Þ

�qKUd

L2

o

ox̂
ĝ0

oûd

ôt

� �
þ o

oẑ
ĝ0

oŵd

ôt

� �� �
þ 1

L2

ĝ0

q̂0

o2pH

ox̂2
þ ĝ0

q̂0

o2w
ox̂2
þ 1

e2

o

oẑ
ĝ0

q̂0

ow
oẑ

� �� �
¼ 0 ð59Þ

1

L2

o

ox̂
ĝ0

q̂0

ow
ox̂

� �
þ 1

e2L2

o

oẑ
ĝ0

q̂0

ow
oẑ

� �
¼ � 1

L2

o

ox̂
ĝ0

q̂0

opH

ox̂

� �
ð60Þ

Uû ¼ Udûd þ Upûp ð61Þ
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This gives us the following estimates of the magnitude for the velocities and the various pressure terms:
U p ¼ Oðe2U dÞ ð62Þ
U d ¼ OðUÞ ð63Þ
pH ¼ Oð�qKUÞ ð64Þ
d;w ¼ Oðe2�qKUÞ ð65Þ
From this it follows that (39) reduces to
1

q0c2
0

opH

ot
þ 1

g0

divðg0upÞ ¼ O e2 U
L

� �
ð66Þ
Each term in the left-hand side is individually O U
L

	 

. Note that we have used assumption (54) in the derivation

of (66).
We note now that the velocities satisfy the following relationships:
ud ¼ OðUÞ ð67Þ
up ¼ Oðe2UÞ ð68Þ
wd ¼ OðeUÞ ð69Þ
wp ¼ OðeUÞ ð70Þ
Therefore, wd and wp are of comparable magnitude and wp must be included in the equations to account for
the complete vertical dynamics. In the pseudo-incompressible approximation [11], the divergence-free
constraint is applied to the total velocity
divðg0uÞ ¼ 0 ð71Þ

which is equivalent to discarding the potential velocity up, which leads to advective dynamics different from the
present approach.

Also, we recover the classical assumption
W ¼ eU ð72Þ

i.e. that the horizontal and vertical advective time scales are comparable.

Eq. (66) is used to derive a system of hyperbolic equations (as shown in the Appendix)
Lz
opH

ot
þ g0

oud

ox
¼ Oðe2Þ ð73Þ

oud

ot
þ 1

q0

opH

ox
¼ Oðe2Þ ð74Þ
where
Lz ¼ �
o

oz
g0g

q0N 2

1

g
o

oz
þ 1

c2
0

� �� �
þ g0

q0c2
0

ð75Þ
The operator Lz can be rewritten in the form
Lz ¼ �
o

oz
g0g

q0N 2

1

g
o

oz
þ 1

c2
0

� �� �
þ g0

q0c2
0

¼ �n
o

oz
f

o

oz
þ v

� �
ð76Þ
with
n ¼ exp �
Z z

0

g
c2

0

dz
� �

ð77Þ

f ¼ g0

q0N 2
exp

Z z

0

g
c2

0

dz
� �

ð78Þ

v ¼ g0

q0c2
0

ðc� 1Þ g2

N 2c2
0

� 1

� �
exp

Z z

0

g
c2

0

dz
� �

ð79Þ
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When v is negative, the operator is positive definite and Eqs. (73) and (74) describe the motion of an infinite
collection of horizontally propagating gravity waves, one for each eigenmode of the second-order self-adjoint
operator Lz. When v is positive, the first few eigenvalues can become negative, as shown in Fig. 1, and this is a
direct consequence of including the potential dynamics into the asymptotic analysis. We observe that this has a
stabilizing effect as the modes with negative eigenvalues do not support gravity waves.

The asymptotic analysis in this section is similar to the normal mode analysis presented by Baer and Tribbia
[2], Tribbia [34], Temperton and Williamson [33,35], but we use the full compressible PDEs instead of the
discretized version of the hydrostatic equations. When the operator is positive definite, the eigenvalues kk

are real and the (normalized) eigenvectors rk form an orthonormal basis in L2. The speeds of the gravity waves
are then given by
ck ¼ 1ffiffiffiffiffi
kk
p ð80Þ
and are shown in Fig. 2 for an example presented in the results section. This figure shows that the gravity waves
for only a few modes travel faster than a typical fluid velocity for large-scale motions of 20 m/s (marked in a
solid line on the graph). If these modes were isolated and treated implicitly, then we could use a CFL condition
based only on the speed of the fluid, which could lead to a considerable gain in computational efficiency.

The results above are compatible with traditional analysis for incompressible or Boussinesq flows [30]
where the following wave equation describes the vertical motion for small-amplitude perturbations:
o2

ot2

o2wd

ox2
þ o2wd

oz2

� �
þ N 2 o2wd

ox2
¼ 0 ð81Þ
which yields the dispersion relationship
x2 ¼ k2N 2

k2 þ m2
ð82Þ
where k is the horizontal wave number and m is the vertical wave number. See for example [12] or [15]. We
apply the same methodology to our set of Euler equations than the one used to derive (81) and we obtain
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Fig. 1. ‘‘Speed’’ of gravity waves for the quarter-wavelength stable and unstable cases shown in the results section.
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Fig. 2. Speed of gravity waves for the perturbational gravity-wave test problem of Section 4.
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o2

ot2

o2wd

ox2
þ o

oz
1

g0

og0wd

oz

� �
� o3

ox2oz
1

q0

opH

ot
¼ R1 ð83Þ
with
R1 ¼ �
o2

otox
o

oz
Pox

1

q0

gradd

� �
� o

ox
Poz

1

q0

gradd

� �� �
ð84Þ

¼ � 1

q2
0

oq0

oz
o

3d
ox2ot

ð85Þ
Using Eq. (73), we obtain
o2

ot2

o2wd

ox2
þ o

oz
1

g0

og0wd

oz

� �
� o2

ox2

o

oz
1

q0

L�1
z

og0wd

oz

� �
¼ R2 ð86Þ
where
R2 ¼ R1 þ
o3

ox2oz
1

q0

L�1
z � o

oz
g0g

q0c2
0N 2

opH

ot
þ g

N 2
divðg0upÞ

� �
þ divðg0upÞ þ

g0

q0c2
0

opH

ot
� og0up

ox

� �
ð87Þ
Now, if we consider the flow to be incompressible, we have
q0 ¼ g0 ð88Þ

Lz ¼ �
o

oz
1

N 2

o

oz

� �
ð89Þ

d ¼ 0 ð90Þ
up ¼ 0 ð91Þ
c0 !1 ð92Þ
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and (86) becomes
o2

ot2

o2wd

ox2
þ o2wd

oz2

� �
þ N 2 o2wd

ox2
¼ 0 ð93Þ
Therefore, we recover (81) from (86) when we use the same incompressibility hypothesis. It can also be noted
that the parameter v is zero when the flow is incompressible and as a result, the operator Lz is always positive
definite, i.e. the eigenvalues are always real and positive.

The two main advantages of the normal mode analysis are that it is global and that it detects the stabilizing
effects of compressibility for the long-wavelength normal modes.
2. Time discretization

In this section, we will introduce the quantities that are solved for and we will present only the time discret-
ization that is used to advance the solution. We made the choice to dissociate time and spatial discretizations
for clarity purposes. The time discretization of Eqs. (31)–(34) gives the blueprint of the numerical algorithm
that should not be overshadowed by the technicalities of spatial discretizations and centerings, which can be
found in the subsequent Section 3.
2.1. Variables and time discretization

Time is discretized using Dt. The variables that we solve for are the total velocity u = (u, w), the anelastic
velocity ud = (ud, wd), the curl-free velocity up = (up, wp), the total pressure p, the acoustic pressure d, the
auxiliary pressures w, pH and pI, the density q, and the perturbational density ~q.

2.2. Time discretization of Eqs. (31)–(34)

The system (31)–(34) is discretized in time using a combination of explicit or implicit schemes. First, a few
quantities are partially advanced, considering only the advective dynamics, so that the auxiliary pressure pI

can be advanced to half time step in order to compute the acoustic pressure. Then, the curl-free velocity is
advanced and the quantities that were partially or temporarily advanced are corrected.

� First, the anelastic velocity is partially advanced in time using only the advection terms in Eq. (32)
u�d ¼ un
d � Dt ðAduÞnþ

1
2

� �
ð94Þ
� Then, we use Eq. (31) to temporarily advance the density variables q and ~q
~q�;nþ1 ¼ ~qn þ Dt
o~q
ot

� �nþ1
2

ð95Þ

q�;nþ1 ¼ ~q�;nþ1 þ q0 ð96Þ

qnþ1
2 ¼ q�;nþ1 þ qn

2
ð97Þ
� Eq. (25) is used to temporarily advance pH
p�;nþ1
H ¼

Z L

z
~q�;nþ1g d�z ðpHðLÞ ¼ 0Þ ð98Þ
Here, L is the vertical upper bound of the domain.
� Using Eq. (26), we solve for p

nþ1
2

I ,
1

qnþ1
2

grad p
nþ1

2
I

� �
¼ �Q

qnþ1
2

Adunþ1
2

� �
ð99Þ
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� Using Eq. (28), we solve for wn+1,
Lq�;nþ1

g0

w�;nþ1
	 


¼ �div
g0

q�;nþ1

op�;nþ1
H

ox
i

� �
ð100Þ
� Combining Eqs. (33) and (34), we implicitly advance the acoustic pressure
Hdnþ1 � I� Dt2 cpn

g0

L
q

nþ1
2

g0

 !
dnþ1

¼ dn � Dt
cpn

g0

div g0un
p

� �
� Dt divg0grad

un
p þ uh

��� ���2
2

0B@
1CA

8><>:
9>=>;þ unþ1

2 � ðgradðdn þ pn þ wnÞÞ

264
�wnþ1

2
qncn2

g0

dg0

dz
þ q0g

� �
� p

nþ1
2

I þ p�;nþ1
H þ w�;nþ1 � p

n�1
2

I � pn
H � wn

� �375 ð101Þ
where
wnþ1
2 ¼ w

nþ1
2

d þ wn
p þ wh ð102Þ
� Then, we advance the curl-free velocity using Eq. (33)
unþ1
p ¼ un

p � DtQ0 grad
un

p þ uh

��� ���2
2

0B@
1CAþ 1

qn
graddnþ1
	 
� �0B@

1CA ð103Þ
� The perturbational density is advanced using Eq. (31)
~qnþ1 ¼ ~qn � Dt
q0N 2

g
wnþ1

2 � Dt
q0

g0

div g0unþ1
p

� �
� Dt divð~quÞnþ

1
2 ð104Þ
� pH is updated
pnþ1
H ¼

Z L

z
~qnþ1g d�z ðpHðLÞ ¼ 0Þ ð105Þ
� w is updated
Lqnþ1

g0

ðwnþ1Þ ¼ �div
g0

qnþ1

opnþ1
H

ox
i

� �
ð106Þ
� We finish advancing the divergence-free velocity � �0 10 10 1

unþ1

d ¼u�d�Dt
1

qnþ1
2

gradp
nþ1

2
I

� �
þ 1

qnþ1
gradwnþ1
	 


þ 1

qnþ1

opnþ1
H

ox
iþP0 1

qn
graddnþ1
	 


þgrad
un

pþuh
�� ��2

2
B@ CAB@ CAB@ CA

ð107Þ
2.3. Boundary conditions

2.3.1. Inflow

At an inflow boundary, the velocity field in an inviscid model must satisfy
u � n ¼ un ð108Þ

Because the splitting satisfies Eqs. (13)–(15), we have
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ud � n ¼ 0 ð109Þ
up � n ¼ 0 ð110Þ
uh � n ¼ un ð111Þ
The density is held constant at inflow
q ¼ q0 ð112Þ
~q ¼ 0 ð113Þ
where q0 is the hydrostatic density distribution.
Now, we look at the more complicated boundary conditions for the projection and Helmholtz operators of

Eqs. (99)–(103). At the boundary, Eq. (99) becomes
1

qnþ1
2

op
nþ1

2
I

on
¼ �n �Q

qnþ1
2

Adunþ1
2

� �
ð114Þ
By definition of the splitting, the anelastic component must be parallel to the boundary near the boundary, as
seen in Eqs. (13)–(15), and we obtain
n � P
qnþ1

2
Adunþ1

2

� �
¼ 0 ð115Þ
and therefore
1

qnþ1
2

op
nþ1

2
I

on
¼ �n � Adunþ1

2

� �
ð116Þ
Similarly, after taking the dot product of Eq. (103) with the normal and using condition (110), we obtain
n � grad
un

p þ uh

��� ���2
2

0B@
1CAþ 1

qn
graddnþ1
	 
� �0B@

1CA ¼ 0 ð117Þ
and the outflow boundary condition for the Helmholtz equation (101) becomes
1

qn

odnþ1

on
¼ grad

un
p þ uh

��� ���2
2

0B@
1CA � n ð118Þ
2.3.2. Outflow

On the outflow boundary, the pressure is imposed
p ¼ p0 ð119Þ

where p0 is the hydrostatic pressure, and this implies
d ¼ 0 ð120Þ
pI ¼ 0 ð121Þ
3. Spatial discretization

3.1. Discretizing Eqs. (31)–(34) on a regular grid

An anisotropic rectangular grid with spacing Dx and Dz is applied to the computational domain as shown
in Fig. 4(a). We seek the solution to the system of Eqs. (31)–(34) either at cell centers (i, j) or at cells faces
ðiþ 1

2
; jÞ or ði; jþ 1

2
Þ, where i = 1. . .N with N the number of cells in the horizontal direction and j = 1. . .M with



Table 1
Spatial and time centering of main variables

Cell-centered Face-centered tn = nDt tnþ1
2 ¼ nþ 1

2

	 

Dt

(u, w)
p p

(ud, wd)
p p

(ud, wd)
p p

(up, wp)
p p

(uh, wh)
p

N/A N/A

p
p p

d
p p

p
p p

pH

p p

pI

p p

q
p p

~q
p p
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M the number of cells in the vertical direction. Table 1 gives the spatial and time centering of the main
variables.

In this section, to simplify the exposition, we only look at the discretization of the different operators on
regular cells, that is cells that are not cut. The discretization on cut cells will be presented in Section 3.2.

3.1.1. Gradient, divergence, Laplacian and projections

Gradient, divergence and Laplacian operators are used throughout the equations. We use different types of
spatial discretizations for computing the gradient and the divergence operators depending on where the initial
variables are centered and how the result must be centered.

Gradient G

The gradient operator G takes variables at cell centers and returns the gradient at cell faces.
ðGuÞx;iþ1
2j ¼

uiþ1j � uij

Dx
ð122Þ
On boundaries where we have a Dirichlet boundary condition u = b, we do a linear interpolation to get
ðGuÞx;iþ1
2j ¼ 2

biþ1
2j � uij

Dx
ð123Þ
When the tangential gradient needs to be computed, we use
ðGuÞz;iþ1
2j ¼

1

4
ðGuÞz;ijþ1

2
þ ðGuÞz;ij�1

2
þ ðGuÞz;iþ1j�1

2
þ ðGuÞz;iþ1j�1

2

� �
ð124Þ
On the boundary, we extrapolate the tangential gradients to second order as shown in Fig. 5.

Cell-centered gradient G0

The cell-centered operator G0 takes variables at cell centers and returns the gradient at cell centers.
G0 ¼ AvF!CG ð125Þ

where AvF!C represents the following arithmetic average:
AvF!CðGuÞ
	 


x;ij
¼
ðGuÞx;i�1

2j þ ðGuÞx;iþ1
2j

2
ð126Þ
Face-centered to cell-centered gradient GF!C

The gradient GF!C takes variables at cell faces and returns the gradient at cell centers.
ðGF!CuÞx;ij ¼
uiþ1

2j � ui�1
2j

Dx
ð127Þ
Divergence D

The divergence D takes a vector variable w = (u, v) at cell faces and returns the divergence at cell centers.



C. Gatti-Bono, P. Colella / Journal of Computational Physics 216 (2006) 589–615 601
Dwij ¼
uiþ1

2j � ui�1
2j

Dx
þ

vijþ1
2
� vij�1

2

Dz
ð128Þ
Cell-centered divergence D0

The cell-centered divergence takes a vector variable at cell centers and returns the gradient at cell centers.
D0 ¼ DAvC!F ð129Þ

where AvC!F represents the following arithmetic average:
AvC!F u
	 


iþ1
2j
¼ uij þ uiþ1j

2
ð130Þ
Operator Lq

The operator Lq is given by
Lq ¼ D
1

q
G ð131Þ
Projections

The discretized projections are given by
Qq ¼
1

q
GL�1

q
g0

Dg0 ð132Þ

Pq ¼ I�Qq ð133Þ

Q0
q ¼

1

q
G0L

�1
q
g0

D0g0 ð134Þ

P0
q ¼ I�Q

0
q ð135Þ
To compute QqðwÞ, for example, we introduce ~w ¼ Dðg0wÞ, and solve for u
LH
q
g0

u ¼ ~w ð136Þ
where LH
1
g0

¼ Dg0G is a Poisson operator with homogeneous boundary conditions and DPROJ is the divergence
D where the boundary conditions are assumed to be homogeneous on Neumann boundaries. Then, we find
QqðwÞ by
Qqw ¼ 1

q
Gu ð137Þ
3.1.2. Advective terms in the anelastic equations (31) and (32)

The operators presented above will now be used to compute the two advective terms in Eqs. (31) and (32).
Adu can be written in the following form:
Adu ¼ divðu	 udÞ þ divðud 	 ðup þ uhÞÞ � ud � divðuÞ � ðup þ uhÞ � divðudÞ ð138Þ

Adu and divð~quÞ and are made exclusively of divergence operators and need to be evaluated at half time steps.
To retain the conservation of mass property, we choose the divergence D for discretizing these two terms and,
therefore, we need to get ud, u and ~q at face centers and at half time step.

Godunov advection procedure

In the Godunov advection procedure, we obtain the values at face centers and half time step by first extrap-
olating separately from the centers of the two adjacent cells using a Taylor series expansion
~q
nþ1

2
ij;
;s ¼ ~qn

ij 

Dxs

2

o~q
oxs

� �n

ij

þ Dt
2

o~q
ot

� �n

ij

ð139Þ

u
nþ1

2
d;ij;
;s ¼ un

d;ij 

Dxs

2

oud

oxs

� �n

ij

þ Dt
2

oud

ot

� �n

ij

ð140Þ
where the notation is illustrated in Fig. 3.
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Fig. 3. Notation.
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By replacing the time derivatives using either Eq. (31) or (32)
~q
nþ1

2
ij;
;s

� �
¼ ~qn

ij 

1

2
min 1� Dt

Dxs
un

ij

� �
; 1

� 

ðDxs ~qÞ

n
ij �

Dt
2Dxs0

wn
ij½~q�

n
xs0 ;ij

� Dt
2

~qn
ijðD0ðunÞÞij �

Dt
2g0;ij

q0;ijðDðg0un
pÞÞij þ

Dt
2

N 2q0;ij

g
wn

ij ð141Þ

ðunþ1
2

d;ij;
;sÞ ¼ un
d;ij 


1

2
min 1� uij

Dt
Dxs

� �
; 1

� 

Dxs udð Þnij �

Dt
2Dxs0

wij½ud �nxs0 ij

� Dt
2
ðun

d;ijÞxs
GF!Cun

pot

� �
xs;ij
� Dt

2qn
ij

opn
H

oxs

� �
ij

ds0 �
Dt

2qn
ij

opn
I

oxs

� �
ij

� Dt
2qn

ij

own

oxs

� �
ij

� Dt
2

P0
0

1

qn
G0ðdnÞ þG0

un
p þ uh

��� ���2
2

0B@
1CA

0B@
1CA

n

xs;ij

ð142Þ
where s 6¼ s
0
, ds0 is a Dirac function
ds0 ¼
1 s ¼ 1

0 s 6¼ 1

�
ð143Þ
and wn
ij is given by
wn
ij ¼ wn

d;ij þ AvF!Cðwn
pÞ

� �
ij

� �
ð144Þ
and the slopes are computed

� in the normal direction using
ðDxuÞnij ¼
un

iþ1j � un
i�1j

2
; ðDx~qÞnij ¼

~qn
iþ1j � ~qn

i�1j

2
ð145Þ
� in the tangential direction using
½u�nij ¼ un
ij � un

ij�1; ½~q�nij ¼ ~qn
ij � ~qn

ij�1 if wij > 0 ð146Þ
½u�nij ¼ un

ijþ1 � un
ij; ½~q�nij ¼ ~qn

ijþ1 � ~qn
ij if wij < 0 ð147Þ
Then, the solution is upwinded to get the final value of the variables on face edges
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u
nþ1

2

d;iþ1
2j

; ~q
nþ1

2

iþ1
2j
¼

u
nþ1

2
d;ij;þ;0; ~q

nþ1
2

ij;þ;0 if uedge

iþ1
2j
> 0

u
nþ1

2
d;iþ1j;�;0; ~q

nþ1
2

iþ1j;�;0 if uedge

iþ1
2j
< 0

1
2

u
nþ1

2
d;ij;þ;0 þ u

nþ1
2

d;iþ1j;�;0

� �
; 1

2
~q

nþ1
2

ij;þ;0 þ ~q
nþ1

2
iþ1j;�;0

� �
if uedge

iþ1
2j
¼ 0

8>>>><>>>>: ð148Þ
Because the new anelastic velocity does not satisfy Eq. (9), we introduce a potential u that verifies
L 1
g0

u ¼ D g0u
nþ1

2
d

� �
ð149Þ
and we correct u
nþ1

2
d ,
u
nþ1

2
d ¼ u

nþ1
2

d �Gu ð150Þ

The total velocity at face centers at half time steps is computed using
unþ1
2 ¼ uh þ u

nþ1
2

d þ un
p ð151Þ
where the transverse components of uh and up are computed by averaging the normal components in the same
manner as the transverse gradient G is computed.

Computing Adu and divð~quÞ
Now, we have all the terms that are needed to compute the advective terms
divð~quÞ½ �nþ
1
2

ij 
 D ~qnþ1
2unþ1

2

� �h i
ij

ð152Þ

Adu½ �nþ
1
2

ij 
 D unþ1
2 	 u

nþ1
2

d

� �h i
ij
þ D u

nþ1
2

d 	 un
p þ uh

� �� �h i
ij

� u
nþ1

2
d;ij Dunþ1

2

� �
ij
� un

p þ uh

� �
ij

Du
nþ1

2
d

� �
ij

ð153Þ
3.2. Discretization of the operators on cut cells

An embedded boundary (EB) formulation is used to model the orography, i.e. the mountain ranges. The
mountain cuts cells as shown in Fig. 4 and some faces are cut while some others are completely covered.
The fact that some faces are not full faces has consequences on how we evaluate the operators presented in
Section 3.1 and this section presents what is done differently on the embedded boundary. This approach fol-
lows Johansen and Colella [17] for elliptic problems. For hyperbolic and parabolic problems, similar ideas
have been used [1,25].

Gradient G

The gradient in the normal direction is unchanged. However, for the tangential gradient, we need the value
of the normal gradient on four faces, some of which might not be available on irregular cells. The missing
gradients are, then, extrapolated to second order as shown in Fig. 5 and formula (124) remains unchanged.

Cell-centered gradient G0

In the average procedure, we need quantities at faces and, on some of the irregular cells, these quantities
might not be available as a face might be covered. When one quantity is missing, we extrapolate to second
order from the non-covered faces in the normal direction and then proceed to the arithmetic averaging as
in (126).

Divergence D

When we had only regular cells, D ensured that we had a conservative discretization of the divergence oper-
ator. However, if we used Eq. (128) when the cell is not regular, we would lose the conservative property.

To find the expression of the conservative divergence on cut cells, we average over the volume of the cell
and then use Stokes’ theorem to transform a volume integral into a surface integral so that we recover a flux
balance
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Fig. 4. Schematics of the embedded boundary with cut cells.
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r � FðuÞ 
 1

V

Z
V
r � FdV ð154Þ


 1

V

I
S

F � ndS ð155Þ


 1

jij

aiþ1
2jF

c
iþ1

2j � ai�1
2jF

c
i�1

2j

Dx
þ

aijþ1
2
F c

ijþ1
2
� aij�1

2
F c

ij�1
2

Dz
þ aEBF EB

" #
ð156Þ
where the superscript c represents quantities taken at the centroid of the faces, which may be different from the
center of the face, and the superscript EB represents the quantities at the embedded boundary. aiþ1

2j is the area
fraction of the face ðiþ 1

2
jÞ, defined as the ratio of the actual face area over the face area of the regular mesh

spacing in this direction, and jij is the volume fraction defined as the ratio of the volume of the cell over the
volume of a regular rectangular cell. Fiþ1

2j is the flux on face ðiþ 1
2
jÞ and is illustrated in Fig. 4(b).

Eq. (156) gives an easy expression to compute the divergence of a flux on a cut-cell. Note that when the cell
is regular, i.e. a = 1, j = 1 and aEB = 0, we recover the classical expression for the divergence of a vector. This
expression is however not sufficient as the volume fraction j has the potential of becoming arbitrarily small,
posing major accuracy and stability problems. When using the divergence operator to solve a Poisson’s equa-
tion for example, multiplying both sides of the equation by j removes the potential singularity. This approach
is not possible for an explicit method.
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Fig. 5. Tangential gradient.
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Redistribution

When computing the advective terms in a complex PDE, we eliminate j in the denominator of (156) by
using a mixed update of the form
r � FðuÞ ¼ jrC � FðuÞ þ ð1� jÞrNC � FðuÞ ð157Þ

where $C Æ F is the conservative divergence as expressed in Eq. (156) and $NC Æ F is the non-conservative diver-
gence that has the same expression as the divergence on regular rectangular cells, where the data is taken at
face centers and extrapolated to covered faces if needed. This update (157) is not conservative, so we compute
the mass dM that was added by using the non-conservative update
dM ¼ j r � FðuÞ � rC � FðuÞ
� �

ð158Þ
¼ jð1� jÞ rNC � FðuÞ � rC � FðuÞ

� �
ð159Þ
and redistribute it to adjacent cells to ensure overall conservation of mass [3,6,29].
The complications arising from the presence of cut-cells are widely compensated by the advantages of

having an underlying rectangular grid on the computational domain: the grid generation is stable and well-
understood, and the coupling to structured AMR is straightforward.

Extrapolating to covered faces

To compute the non-conservative divergence in Eq. (157) that takes data on face centers, we need values on
covered faces if there are any covered faces in the cut-cell. These values are extrapolated from adjacent faces
and cells as pictured in Fig. 6. For example, to extrapolate the quantity W on the covered face shown in Fig. 6,
we compute
W
nþ1

2

i�1
2;j

� �þ
A
¼ W n

iþ1;j þ
1

2
�3� Dt

Dx
un

iþ1;j

� �
ðDxW Þniþ1;j �

Dt
2Dz

wn
iþ1j½W �

n
z;iþ1j �

Dt
2

Rn
iþ1j ð160Þ

W
nþ1

2

i�1
2;j

� �þ
B
¼ W n

i�1;jþ1 þ
1

2
min 1� Dt

Dx
un

i�1;jþ1

� �
; 1

� 

ðDxW Þni�1;jþ1

� ðW n
i�1;jþ2 � W n

i�1;jþ1Þ �
Dt

2Dz
wn

i�1jþ1½W �
n
z;i�1jþ1 �

Dt
2

Rn
i�1jþ1 ð161Þ
where W satisfies an equation of the form
oW
ot
þ u � gradðW Þ þ Rðx; z; tÞ ¼ 0 ð162Þ
The final density on the covered face is taken to be
W
nþ1

2

i�1
2;j

� �

¼ n2

x W
nþ1

2

i�1
2;j

� �

A
þ n2

z W
nþ1

2

i�1
2;j

� �

B

ð163Þ
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Fig. 6. Schematics of the extrapolation scheme to a covered face.

606 C. Gatti-Bono, P. Colella / Journal of Computational Physics 216 (2006) 589–615
where nx and nz are the components of the normal in the horizontal and vertical direction. Another extrapo-
lation technique is presented in [8].

4. Results

4.1. Perturbational gravity-wave test problem

In the asymptotic analysis of Section 1, we showed that we could extract a finite collection of discrete trav-
eling gravity waves from the fully compressible equations in the limit of low Mach and Froude numbers and
small aspect ratio. The details of the derivation can be found in the Appendix.

We set up this example to verify the asymptotics results numerically, using the full compressible equations.
The problem is initialized to be a traveling wave in the fastest mode and, following the asymptotic analysis, we
expect to see the wave propagate and stay in the fastest mode.

4.1.1. Initialization

The pressure pH and the solenoidal velocity are initialized as
ûdðx; z; t ¼ 0Þ ¼ GðxÞr0ðzÞ ð164Þ
p̂H ðx; z; t ¼ 0Þ ¼ c0ûdðx; z; t ¼ 0Þ ð165Þ
or identically for the pressure pH,
pH ðx; z; t ¼ 0Þ ¼ q0c0udðx; z; t ¼ 0Þ ð166Þ

where r0 is the eigenvector associated with the fastest mode and c0 is the speed of the fastest wave. G(x) is a
Gaussian function
GðxÞ ¼ affiffiffiffiffiffi
2p
p

r
exp �ðx� x0Þ2

2r2

 !
ð167Þ
The remainder of the initialization must be done carefully to avoid artificially sending energy in modes that are
not the fastest mode. First, the vertical component of the solenoidal velocity is initialized using the anelastic
constraint (9)
wdðx; z; t ¼ 0Þ ¼ 1

g0

Z z

0

g0

c02

c2
0

� 1

 !
oud

ox
dz ð168Þ
When computing the discrete integral, particular care needs to be taken to ensure that the discrete ud satisfies
the condition
Dg ud ¼ 0 ð169Þ
0
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The potential velocity is then initialized using Eq. (66). We use the fact that up is a gradient
Table
Differe

Doma
Doma
up ¼ gradu ð170Þ

and this yields
L 1
g0
u ¼ � g0

q0c2
0

opH

ot
ð171Þ
The time derivative of the pressure pH is found by using the relationship derived in Appendix
k0 op̂H

ot
þ oûd

ox
¼ 0 ð172Þ
since all the quantities are taken along the first eigenmode. u then verifies
L 1
g0

u ¼ �g0

c02

c2
0

oud

ox
ð173Þ
The rest of the quantities are initialized according to their definitions.

4.1.2. Results

In this example, we use different domain sizes and different grid refinements to verify the asymptotics, as
shown in Table 2.

Figs. 7(a)–(c) show that we obtain a traveling wave solution for aspect ratios of 0.025 and under. Figs. 8
and 9(a) show that the decay in the amplitude of the solution and the amount of energy that gets transfered
into the slow modes decrease as the aspect ratio decreases, as this means that the asymptotic assumptions are
better verified. Fig. 9(b) shows that the convergence is first order.

Fig. 7(d) shows that we are not quite in the asymptotics regime for e = 0.05. The traveling wave gets
deformed at the beginning of the simulation on the left of the propagating front and then this deformed wave
propagates. The decay in amplitude as the wave propagates is much larger than in the cases where we are in
the asymptotic regime, and a much larger part of the motion gets transferred from the fastest mode to the slow
modes.

However, it is to be noted that even when the asymptotic assumptions hold loosely (as is the case with
e = 0.05), the percentage of the solution that gets transferred into the slow modes is under 4% for pH and
under 6% for ud on a 128 · 64 grid. We also notice that the smaller e is, the closer the propagation velocity
is to c0 with a very good match for e = 0.0125 as seen in Fig. 8.

4.2. Mountain Lee waves

Our algorithm is now tested on the classical examples of gravity waves found in [10,12]. In these examples, a
uniform wind with a speed of 20 m/s passes over a 600 m, as pictured in Fig. 10. The mountain has the shape
of a ‘‘witch of Agnesi’’
zMountainðxÞ ¼
ha

ðx� x0Þ2 þ a2
ð174Þ
where a = 10 km is the mountain width, h = 600 m is the mountain height and x0 = 72 km is the position of
the mountain crest.

The numerical domain measures 180 km · 12.8 km and there is a 6.3 km deep sponge layer on top of the
domain and a 30 km deep sponge layer on either side of the domain. The sponge layers damp the reflection of
spurious gravity waves on the top and the sides of the domain.
2
nt cases used for the asymptotic analysis

e = 0.05 e = 0.025 e = 0.0125 e = 0.00625

in length (km) 256 512 1024 2048
in height (km) 12.8 12.8 12.8 12.8
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Fig. 7. pH history on a 128 · 64 grid for different aspect ratios: (a) e = 0.00625, (b) e = 0.0125, (c) e = 0.025, and (d) e = 0.05.
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The atmosphere is a two-layered atmosphere and, in each layer, the Brunt–Väisälä frequency is a constant
that takes one of these two values 0.01 s�1 or 0.02 s�1. The initial background density is given by
q0ðzÞ ¼ q0i exp �N 2
i ðz� ziÞ

g

� � 1� ðc� 1ÞCi exp � N2
i z
g

� �
1� ðc� 1ÞCi exp � N2

i zi

g

� �
0@ 1A

1
c�1ð Þ

ð175Þ
where i 2 {L, U}, zL = 0, zU = H and the constants Ci are given by
CL ¼ �
2q0g2

cp0N2
L

1� ðc� 1Þ 2q0g2

cp0N2
L

ð176Þ

CU ¼ C0 exp �N 2
LH
g

� �
NL

N U

� �2
1

1� ðc� 1ÞCL exp � N2
LH
g

� � ð177Þ
The initial background pressure is then given by the hydrostatic relation (7).
According to linear theory, there are four possible tuned and detuned cases that can occur in a two-layered

atmosphere, yielding gravity waves in some cases, depending on the position (top or bottom) of the layer with
higher stability and on the value of the phase shift between the ground and the interface between the two lay-
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Fig. 8. ud (left) and pH (right), above for different aspect ratios holding the grid size fixed at 128 · 64: 0.05 (red), 0.025 (green), 0.0125
(blue), 0.00625 (pink); and below for different resolutions holding the aspect ratio fixed at 0.0125: 64 · 32 (blue), 128 · 64 (green),
256 · 128 (pink). (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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ers. Table 3 presents a summary of the four possible cases. In Table 3, NL is the Brunt–Väisälä frequency of
the lower layer, NU is the Brunt–Väisälä frequency of the upper layer and H is the height of the interface.

Fig. 11 represents cases (a)–(c) shown in Table 3. Here, the grid spacing is 128 · 64 cells and the time step is
Dt = 15 s. The benchmark results from Durran were run using a small time step of 5 s and a large time step of
10 s. Table 4 shows that the time step that we have chosen satisfies the CFL condition for the fastest gravity
wave whose speed is computed using the analysis shown in Appendix. Note that similar examples were run by
Bonaventura [4] and Rosatti et al. [31] using a time step that seems to be determined by the advective CFL
condition. They use a semi-Lagrangian cut-cell method that treats implicitly both the acoustic and the gravity
waves. In a further study [14], we have used the approach described here to develop a filtering method that
allows time steps larger than those imposed by the fast gravity waves, leading to methods for which the time
step is comparable to the advective CFL condition.

Fig. 11 compares qualitatively well with Fig. 2 from Durran [10]. For case (c), the match is remarkable and
the positions of the crest of the waves are almost identical. For cases (a) and (b), the match is also very good.
The waves have the same wavelength than the one found in Durran, but their amplitudes differ slightly. For
case (b), we also recover the main features of the isentropes: the amplitudes of the gravity waves increase with
height while in the lower layer and decrease with height while in the upper layer, the sag starts at the crest of
the mountain and ends near the foot of the mountain before the gravity waves start to form, and the sag is
replaced by a big jump in the upper layer.
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Fig. 10. Schematic of the parameters.

Table 3
Position of the interface and wave response for different tuned and detuned cases

Case NL (s�1) NU (s�1) H (m) Amplitude of waves

(a) 0.02 0.01 1571 Weak
(b) 0.02 0.01 3142 Strong
(c) 0.01 0.02 3142 Strong
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(c)

(a) (b)

Fig. 11. Isentropes for a two-layered atmosphere flowing over a 600-m high mountain at t = 10,000 s. (a) Interface at 1571 m, one-quarter
wavelength, (b) interface at 3141 m, one-half wavelength and (c) interface at 3141 m, one-quarter wavelength.

Table 4
Speed of fastest gravity wave cgw and maximum time step for the lee-waves examples

NL < NU NU < NL

Quarter wavelength Half wavelength Quarter wavelength

cgw (m/s) 74 80 59
Dt (s) 19.08 17.62 23.49

Fig. 12. Case (b) solved on a 256 · 128 grid.
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Case (b) is also run on a 256 · 128 grid with a time step of Dt = 7.5 s as shown in Fig. 12. The wavelengths
and the nominal position of the isentropes are identical for the finer and coarser resolution. However, for the
finer resolution, the amplitudes of the gravity waves do not decay as fast away from the mountain as they do in
Fig. 11(b).
5. Conclusion

We developed a numerical method for low-Mach/low-Froude number flows in a continuously stratified
atmosphere. The numerical algorithm uses a splitting to separate the fast acoustic dynamics from the slower
anelastic dynamics. In the limit of small Mach number and small aspect ratio, we recover an anelastic system
of equations, with an inhomogeneous constraint given by (66). The acoustic waves are treated implicitly while
the advective transport of the solenoidal velocity field is computed using explicit upwind methods, in an over-
all semi-implicit discretization of the splitting. The resulting formulation, combined with a vertical normal-
mode analysis, provides a clear analytic separation of the acoustic, advective, and fast buoyant time scales
in which the full problem, as well as the resulting sub-problems in the semi-implicit discretization, have
well-posed formulations as boundary-value problems. Based on this approach, we developed a numerical
method using a cut cell discretization of orography, and obtained results that compare very well with the clas-
sical gravity wave results presented in [10]. This splitting has been applied in [14] to obtain a method for which
the time step can exceed by a substantial amount that obtained from the CFL condition imposed by the fastest
gravity waves. Some of the further applications for this method include adaptive mesh refinement since the
boundary-value problem for the component subproblems in the splitting are well-posed, and higher-order pre-
dictor–corrector step methods [26] because the different gravity modes are separated very cleanly.
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Appendix. Determination of the time step and of the fastest gravity wave speed

The splitting allows to isolate and treat implicitly acoustic waves. Therefore, the speed of the fastest gravity
wave cgw is now setting a constraint on the time step
Dt <
Dx
cgw

ð178Þ
The fast gravity waves that are described by the asymptotic assumptions of Section 1 are horizontal traveling
waves whose dynamics is mainly described by the solenoidal part of the flow, that is Eqs. (20) and (21) that can
be rewritten
o~q
ot
þ q0w
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Note, that for other regimes, the gravity waves do propagate in all directions.
We want the right-hand sides of Eqs. (179) and (180) to be small so that we can recover the classical system

of equations for traveling waves. Analyzing the orders of magnitude of the different terms shows that
q0

g0
divðg0upÞ is the dominant term in Eq. (179) and that, from Eq. (23), q0

g0
divðg0upÞ þ 1

c2
0

opH
ot is small. Therefore,

we subtract 1
c2

0

opH
ot to both sides of Eq. (179)
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Using Eqs. (25) and (33) along with the definition of the Brunt Väisälä frequency N ¼ �g 1
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Formal linear analysis shows that the two right hand-side terms R�pH
and Ru are either quadratic in the per-

turbations or small because either the Mach number or the Froude number is small.
The idea is now to obtain a wave equation with variables x and t while averaging continuously the vertical

variable z. First, differentiate Eq. (183) with respect to z,
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where we have added g0

q0c2
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ot to both sides of Eq. (185) and used
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Introduce the following change of variables:
p̂H ¼
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and Eqs. (183) and (184) become
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Let kk and rk, k = 1. . .N, be the eigenvalues and eigenvectors of the discretized operator L̂z. p̂H and û can be
decomposed on the orthonormal basis formed by the eigenvectors rk
p̂H ðx; z; tÞ ¼
XN

k¼1
p̂k

H ðx; tÞrkðzÞ ð199Þ
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ûk

dðx; tÞrkðzÞ ð200Þ
with
p̂k
H ðx; tÞ ¼

Z Ltop

0

p̂H ðx; z; tÞrkðzÞdz ð201Þ

ûk
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System (197), (198) can then be rewritten after projection on the eigenvector rk,
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The system of Eqs. (203) and (204) is hyperbolic with wave speed ck
gw ¼ 1ffiffiffi

kk
p . The wave speed ck

gw is the speed of

the gravity waves on the kth mode and the fastest gravity wave with speed cgw is constraining the time step.
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