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Abstract 

This paper describes an adaptive mesh refinement 
algorithm for unsteady gas dynamics. The algorithm is 
based on an unspli~ second-order Godunov integration 
scheme for logically-teetangu]ar moving quadrilateral 
grids. The integration scheme is conservative and pm­
vides a robust. high resolution discretization of the 
equations of gas dynamics for problems with strong 
nonlinearities. The integration scheme is coupled to a 
local adaptive mesh refinement algoritlun that dynami­
cally adjusts the location of refined grid patches to 
preserve the accuracy of the solution, preserving CODS«­

vadon at interfaces between coarse and fine grids while 
adjusting the geometry of the fine grids so that grid 
lines remain smooth under refinemenL Numerical 
results are presented illustraling the perfonnance of the 
algorithm. 

Introduction 

Over the last decade, there has been substantial 
effort in the development of upwind finite difference 
methods for invsicid gas dynamics. Higher-order ver­
sions of Godunov's scheme are among the more suc­
cessful methods of this type for solving unsteady prob­
lems. These methods incorporate the nonlinear wave 
propagation properties of the compressible Euler equa­
tions, in the form of characteristic equations and 
Riemann problems into robust conservative difference 
algorithms. The second- and higher-order versions of 
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these methods resolve discontinuities accurately, while 
providing accurate representation of smooth flows. Par­
ticularly when combined with adaptive methods, they 
have been effective in resolving complex combinations 
of discontinuities and smooth solutions in simple rec­
tangular goometries. 

The goal of the research described in this paper is 
the development of an adaptive mesh refinement algo­
rithm for use with higher-order Godunov methods on 
moving quadrilateral grids. Our algorithm is an exten­
sion of that of of Berger and Colella [1). In their 
approach the grid is locally refined in space and time in 
response to the appearance of large errors or other 
features in the solution. Richardson extrapolation based 
on coarsening the grid is used to identify and tag cells 
where refinement is required based on a specified error 
criterion. The tagged cells are covered by the union of 
a small number of rectangular patches, that are then 
refined. Refined regions may change, appear or disap­
pear as a function of time. Previously. Berger and 
Jameson [2] developed an adaptive mesh refmement 
algorithm of the type discussed here for quadrilateral 
meshes. However, they took advantage of the fact that 
that they were computing steady flows to simplify the 
algorithm. In the present work. our target application is 
genuinely unsteady flows with strong shocks. 

The quadrilateral adaptive mesh refinement algo­
rithm (QAMR) is based on a composite of several 
coarse, logically-rectangular grids. These grids are 
assumed to fit together smoothly with no overlap. Typ­
ically. coarse grids are generated using an elliptic grid 
generation technique modified to ensure smoothness of 
the grid in time and across grid boundaries. The princi­
pal difficulty in the method is the necessity to maintain 
smoothness of the refined grids in order to preserve the 
accuracy of the integrator. Refined grids inherit their 
geometry from the coarse grid; however. a simple sub­
division of the coarse cells is inadequate to maintain 

sufficient smoothness of the refined grids. Instead. we 



use a smooth interpolarion based on Hennite cubic 
splines to define refined grid patches. Thus, the 
refinement of a coarse cell need not fit exactly inside 
the original coarse cell. This necessitates panicuIar 
care in communicating infonnation between coarse and 
fine grids to guarantee local conservation. 

The integration scheme that forms the basis for 
our adaptive mesh refinement algorithm is the second­
order. unsplit Godunov method for logically-rectangular. 
moving quadrilateral grids developed by Trangenstein 
and Colella [3]. This algorithm is based on an 
upstream-cente.red predict.or-corrector fonnalism. with 
the conservative corrector step performed using finite­
volume differencing. The method is second-order accu­
rate for smooth solutions on smooth grids. has a robust 
treatment of discontinuities with minimal dissipation. 
and is Ueestteam-p:eserving. 

EQuations of motion 

The unsteady two-dimensional Euler equations 
can be written in constzVation law form as follows: 

U, + V·F = 0 (2.1) 

U ex. t) = U :Rl x [O.T]-+RM 

F = (PZ .p') e RAt xRM 

with M = 4. and whe.te the dependent variables U and 
the luxes FJl. F1 are 

U ~ r!:] · F1t.(U) = [1~p ]. 
~E puE+up 

F'(U) = [ giv ] pv +p 
pvE+vp 

where p is the density, (u .v) = u are the.x and y com­
ponents of velocity, and E is the total energy per unit 
mass. The pressure is derived from these quantities via 
an equation of state, p=p (P.e). where e is the internal 
energy per unit mass, given by e=E-~(u2+v~. 

For each De R2 we define the projected equations 
along n to be the one-dimensional system of conserva. 
tion laws 

au aFD 

at + ax = 0 ; Fft(U) = n-F(U) (2.2) 

The projected equations for t'lc system (2.1) are 
essentially those of gas dynamics in one dimension. If 
we project the equations in the D direction for D a unit 
vector. we can make a change of variables to obtain the 
following system equivalent to (2.2): 

oW + oG(W) = 0 
at dx (2.3) 

~p~n] G(W) = [p~~:p ] 
put • puout 

pE punE+unp 

w= 

where un = u'n. ' u t = u·gl with the other variables 
defined as before. (Here. (a ,h y. = (b ,-a ).) Since n is a 
unit vector. u2 + ,,2 = (UD)2 + (U')2 so the formula for 
the internal energy e can use either quantity. From 
these equations, it is clear that the eigenvectors and 
eigenvalues of the linearized system,. as well as the 
solution to the Riemann problem, are given by those for 
the one-dimensional gas dynamics equations, with u t 
being treated as a passively advected quantity" Hence. 
we can use the techniques in [4] for calculating solu­
tions to the Riemann problem and for manipulating 
characteristic variables. : 

Integration scheme 

We assume that the computational domain is 
divided into a time..<fependent set of quadrilateral cells 
with the comers located at (xl'~+J,4,. .yl':Wa.j<tJh ). Here 
i j are discrete spatial indices~ and n is a discrete time 
index. Furthermo~ we assume that there is a smooth 
transfonnalioo (x (;.11,' )"y (;,11J» from some coordi~ 
space to physical space and a unifonn rectangular gnd 
(~i<tJh.11j~ in the coordinate space such that ~e co,,?­
putational grid points are mapped to the phYSical ~ 
points at each time n. The equations of gas dynarrucs 
(2.1) transfonned to the (;.11) coordinate space, can be 
expressed as follows. 

dJU + aF~ + aFTI = 0 (3.1) 
at a; ihl 

pf. = nTl'{F-sU) t F11 = nt(F-sU), 

n~ = (YTl'-x11) n" = (-y~.xV s = (x,J't) 

J = det(V~.11(xIY» > 0 . 

We define finite difference approximations to the 
derivatives of the coordinate map as follows. 

ax 
(ll.~X)iJ+'h = Xi+YaJ+1,.;-Xi-'h,j+'h ::: .6l; d~ ~illj+l,J 

ax 
(L\.TlX)i+lh,j = Xi+lJa.i+'h-X'+'h.i-1h :::: All drt (~i+lh1\j) 

Sr+t~~+lh = ( xr+1A.i+'h - xt+1h,j+1JJ )/6.t 

(ji~j = rJ..xt+'l1,j +'h. Xi,,+Ih,J-'h, xt_1h,j_I/21 xt-YaJ+'1J (3.2) 

where l:(a.b.c,d) '!E th(c-a)x(b-d) is the signed area of 
the quadrilateral defined by the four points_ Us~ng 
these finite differences. we can make the connection 
between the mapping derivative appearing in the 



transformed equations and the geomcuy of the finite 
difference grid in physical space: 
at'J :: J (~i .1lj JIl)A~ll is the area of the (i J)IA zone, 
and n~Al;; ::(A~x")f+lh.i' nTt&l1i =-(a'llx")r.i+Yu are per­
pendicular to the cell edges with length equal to the 
length of the edge. 

As in [51 we seek a conservative, finite volume, 
predictor~corrector discretization of (3.1). in which the 
predictor step calculates the flux at the cell edges, and 
the corrector step perfonns the conservative. finite­
volume upate of U. 

The fonn of the corrector is suggested by the fol· 
lowing evolution equation for J. 

J, - (S'D~ht - (S'D"~ = 0 . (3.3) 

The fonn of the Wscretization of (3.2) is suggested by 
the interpretation of J; J ~1l as the volume of the 
(i J)tIt cell: 

11+1 _ II ~_ ~_ 

fSi.j - aiJ - UUi...lhJ + UUi~ 

- OcriJ-'h + &:r;j+'h (3.4) 

whtte 

!:- _ 'rl It II 11+1 11+1 __ \ 
UUi.w..i - ~XJ.wv-'h.;K.i~.wa.xi.waj+v.t.)(i~-w 

~- - I( II II 11+1 11+1. \ 
UUiJ-t* - Xi~+v.t.;K.i~+It'.&.xi-VaJ+v.t.xi~+w 

The difference approximation (3.4) is a discrete CODSeX­

vation law for the volume of the system. This fonnula 
also motivates the conservative corrector step 

(aU);";1 = (aU)IJ + Fi-VaJ - Fi~ 

(3.5) 
where 

Fi~ = ru(6"x"~~rF;":t.; - Ocri~Ur~ 
and 

Fi.j+'h = -41 (A~x"~fJ+v.t·Fij~ - ooiJ+'hUrf::~ 
If VIt=U"+""=U 0 and F'+'I1:5 F(U 0) then U,,+1 = U". 
This is most easily seen by the fact that if F"+'I.a is a 
constant. then the tenns involving F"~ on the right 
hand side of (3.5) sum to zero. Given that. then the 
assenion follows directly from (3.4). Thus. if our pred­
ictor step for computing U,,+'I.a and FIt-t* also preserves 
constants, then the overall algorithm is freestream­
preserving. 

Pred ictor step 

Our overall strategy for computing the quantities 
U,.+'I1 FIl+'h . ~ • requrred lor the fluxes follows closely that 
given in (5]. The principal change involves properly 
accounting for the grid motion in the predictor step so 
as to maintain frcestream preservation, The algorithm 
is only outlined here; for details see [3]. 

We want to extrapolate time-centcrcd values 

U;"+.ttf • urffJf S=L.R 

given the values Ui.~i at cell centers. The values so 
obtained will then be used as left and right states for 
the Riemann problem at the cell edges for the system 
(2.3) projected in the direction of the time..centered nor ... 
mal. 

The construction of Urttf is obtained starting 
from a Taylor series expansion. 

U rr. ,.!JJ )-U" ~ au At au 
\~i+'h.llj"t +-r - iJ+==,f ~ ~at 

,. ~ au At r aJ oFf, OF'll] 
= U;j+ 2 0; - 2J lUa,+ar+aTt 

1 r &1 ] au = UfJ+2l~~(0'll'A-S'n'lll) 0; A; 

Ilt (ao~ a ; OF'll] V ~ 'F+U dt1 (s'o >+iq 
A=VuF 

In the last ha 
aF~ . . 

step. we ve put as., m nOnconservatiOD 

fonn and used (2.5) to eliminate a;' 
As was done in [5], we split the predictor into 

two steps. 

AL 1 rAt] au Ui~=Uij+2l Af:/ (n'll'A-s'o1lJ) ari.\l; 0.6) 

U."t.h..f..:utu. ._ At [dn~ 'F+U-l.(s.n~)1 of'll ] 
&+, ... / '-r-r ... J 2J 0; drt dq 

In the first part of the predictor step, we approximate 

~~ by cennal diffttences to which monotooicily con­

straints have been applied. In addition, the components 

of ~~ corresponding to the waves moving away from 

the cell edge are projected out. and the overall calcula­
tion is performed in terms of primitive variables. In the 

d f th ed
, . of'' 

secon part 0 e pr Ictor step. we approxunate dq 

by a Godunov-type finite-volume differencing similar to 
that used in the corrector step_ The geomeuic terms 
an; a 
~ and dq (s'n~) are differenced so that they exactly 

cancel the difference approximation 10 ~~ if there are 

no gradients of U in the 11 direction. Thus, the predilor 
step is itself freestream-preserving in the sense that 
Ur+t,..y=U 0 if U It =U 0 in all zones sufficiently close to 
the (i J)th zone. 



AMR on quadrilaterals 

QAMR is based on using a hierarchy of nested, 
logically rectangular grids on which the equations (2.1) 
are discretized. The grid hierarchy is defined logicall y 
by D, • I = 1, ... • 1 Jll<DI where each D, is a collection 
of points in Z2. Each D, is represented as the union of 
overlapping rectangles in Z2; however. the results 
obtained from the calculation are independent of the 
particular representation. We identify points at succes­
sive levels I. 1+1 by a map ,: D'+l ~D" CP(i) = i I r. 
where r is an even integer, called the refinement ratio. 
Thus D'+I corresponds to a grid refined by a factor of r 
in each CQ(X'dinate direction over D,. and 

.-l(i) = {ri + p : p = (0.0) •• , .• (r-lJ-l)} 

is the set of cells in D'+l contained in the jlA cell of D,. 
The grids are nested, in the sense that ,(D'+l}cD" 
,-l(CP(D'+l» = D'+1' In addition, we require them to be 
properly nested.. i.e.. that., for I> 1 t a one-cell wide 
buffer separate +<D.+,) from the boundary of D,. except 
for those partS of the boundary coinciding with bolDl­
daries of the physical domain of the problem. 
Refinement is done in time, as well as in space: if Atl 
is the time step at level I t then J1l, = At 1 I r'-I. In par­
ticular, the time steps can be chosen so that our explicit 
finite difference algorithm is stable on the entire grid 
hierarchy. 

We take our basic dependent variables to be U
' 

t 

the conserved quantities, and a't the cell volumes, 
defined for all points in D,. The grid comers x, for D, 
are also computed at each time step for which (U'ta') 
is defined, with X:~Ya) = ~I,\). At the lowest level, 
1=1. the location of the grid comers xl are initially 
detennined and mo~ by some type of mesh genera­
tion algorithm. Possible approaches include some form 
of variational mesh generation scheme or a simple alge­
braic or conformal mapping. Grids points at levels I> 1 
are determined by interpolation of the level /-1 grid 
point locations. To compute the location of the comer 
of grid cells in ,-l(i) for some i we first define approxi­
mation to XI; and x,. at the comers of the if}, cell using a 
centered difference approximation. These derivatives 
are then used to define a Hermite bicubic spline map­
ping the unit square to physical space that maps the 
comers of the square to the comers of the if}, cell. The 
image of an r><r grid on this unit square defines the 
location of the grid point in CP-l(i). This interpolation 
scheme is completely local. using only the cell and its 
four neighbors; however, the spline is sufficiently 
smooth across cell boundaries to ensure that the refined 
grid point locations remain smooth after refinement. A 
similar approach is used to smooth the trajectories of 
the level I> I grid points in time. 

We emphasize that it is not necessarily the case 
that a' is related to Xl by (3.2). In particular. in advanc­
ing the solution in time, we assume that the cell 
volumes d are equal to the volume enclosed by the 
finest grid edges surrounding that celL 

Integration step 
The AMR algorithm for advancing the solution 

on the grid hierarchy described above can be formu­
lated as being recursive in the level of refinement. On 
a given level of refinement I. the algorithm can be bro­
ken up into three steps. 

Step 1. Advance (U'.a') by one time step, applying 
the finite difference scheme (3.5) - (3.6) to the data on 
each of the rectangular grids making up Dl • However, 
we modify the scheme by baving the cell volumes be 
given by a' t rather than by (3.2), at the beginning ,of 
the time step. and by updating them using (3.4). WIth 
that modification. the scheme remains well-defined, and 
is freestream-preserving. Boundary values for the indi­
vidual rectangular grids are obtained from the rest of 
the level I solution. or from user-specified boundary 
conditions if the grid abuts a physical boundaIy. Any 
remaining boundary values are interpOlated in space and 
time from the solution at levels 1'<1 . 

Step 2. Advance (U'+
1.0-'+1) by r time stepS. so that 

the latest values of the level 1+1 solution are known at 
the same time as the level I solution obtained in Step 1. 

Step 3. Modify the solution values obtain~ in S~ .1 
to be consistent with the level 1+1 solution. This IS 

necessary for (i): cells that have been refined, or (ii): 
cells which have not been refined, but s.twe one or 
more edges with refined cells. In case (0, we the value 
at level I is defined to be the conservative average over 
the level 1+1 ceUs contained in it of the level 1+1 solu­
tion. 

(,.-1.,.-1) 

at' = L a;tf, 
p=(o,O) 

(,.-1.,-1) 

(aU).' ::: r, (aU);t1,. 
p=(O,O) 

(4.1) 

In case (ii), we modify the solution value in a coarse 
ceU abutting a fine grid, in order to maintain conserva­
tion across grid refinement boundaries. For example, if 
cell (i + l.j) is refined. then the correction to the values 
in (i .j) has the following form: 

r-lr-l 
I J ~_J ~ ~ ~_I+1.q 

a;,1 := ai,j-OUi"~'.I.J+ ~ ,,( .. /·J'Uri+l/i.Jj+p 
p=Oq::(j 

1'-1,.-1 
I (U)' F' ~ ~Fl+1.q (aU);.j:= a jJ+ i+'hJ-~ ~ ri+'h.rj+p 

p=Oq::(j 

Here. q is a discrete time index on the level 1+1 grid. 
In pcrfonning this correction. we are effeclively using 



the appropriate sum of the fine grid fluxes at (i +Yl.j) to 
pcrfonn the conservative difference step at (i ,j). 

Creatins: the mesh hierarchy 

The logical sttucture of the grid generation is a 
straightforward generalization of the procedure dis­
cussed in [1]. A subset of the cells at level I are 
identified as requiring refinement: these are covered by 
the union of logical rectangles on which the coarse grid 
data must be interpolated in a conservative fashion~ and 
data from the same level copied from the old grids. 
The principal difficulty in QAMR stems from the fact 
that when the location of the refined regions change. the 
cell volumes change at all coarser levels. This requires 
us to modify the COI1SC2'Ved quantities. for example. to 
maintain freestream preservation. Our strategy for deal­
ing with this problem is to initially preprocess the old 
grid data on each level so that it is consistent with cell 
volumes defined by (3.2). We then use the inverse of 
this preprocessing step to obtain values on the new grid 
hierarchy that are consistent with the grid geometry one 
level above. Those values are used to interpolate new 
values as needed at the next level; in addition. values 
are copied from the old grids at the next level which 
overlap the new ones. After the new grids at all the 
levels have been set in this fashion. we recursively 
apply (4.1), starting at the finest level. The overall con­
struction is conservative, freestream-preserving. and 
transfonns the cell volumes so that the volume of a cell 
at any level is equal to the volume of the region 
enclosed by the edges of the finest grids sunounding 
that cell. 

In the preprocessing step. we adjust the conserved 
quantities on each level so that they are consistent with 
cell volumes given by (3.2). This is done recursively in 
level. starting at the finest level. 

(,-1,,-1) 
_L ~ ~1+l,DW 
vl- L..I v,t+p 

P=(O.O) 

<,-1,,-1) 

(aU)/;;;: L (aU);t:lld 

p=(O.O) 

cr ' '- a 1 -&:J"I+l • ~-l.l+l &:r'.1+1 +~_IJ+l i.i·- i,j i+1h,jTOO;_lh,j- i.j+'h OUiJ-'h. 

(crU)/J := (aU)!J-i>U!+'h..j+OU!-Ih.J-i>V/'j+lh+OV!J_Iti 

I =IIJIIU-l, ...• 1 

Here, 00' .
1 + 1 is the signed area between the cell edges 

given by x' and a cell edge given by Xl+l. (See Figure 
1.) On cell edges that are not adjacent to refined cells, 
&T,l+l is set to zero. The oUI·s are computed to be 
the amount of conserved quantity contained in &J1 ,1+1. 

SU - 00l,J+1 Vi i+'h.J - i+'h.,i i+s,j 

It if &sUit) < 0 

s = 10 otherwise 

We emphasize that this procedure was performed on the 
old grid hierarchy. To geneaae values for the new grid 
hierarchy. we begin by performing a partial inverse to 
the preprocessing step described above. 

,..! . ,_ ,..,1 ,,~_.I.I+I.-&J.!J+l .. ~_!.!+1 ~_q+l 
V,.l .- v • ./1'''UU,+Y:a.j 1-"1i .• .r1"'UU,,,,+I~-OU,.J..Ih 

(~{j)f.j :;;;: (GU)L-i>UI+YaJ+ltUI44I.J--W{.i~+i,V!J~ 

Here, &1)+1 and OU are defiaed as in the preprocessing 
step. except that the V'·s COIISistent with the geometric 
definition of cr' are used. and the new grid hierarchy 
replaces the old one. Bodl this step, and the prepro­
cessing step. are manifestly CXJOSerVative. being in flux 

..J -, 
Conn. and are freestteam-pre:saving. The 0- • U 's are 
used to perform a conservative piecewise linear interpo­
lation onto the level 1+1 grid. 

G
' O~:;, ;;;: 0: + 3 ~+l (A~U • A'1U)'(p-lh(r-l/"-l» 

r G,...,. 
p={OtO) ••.. • (r-ll'-l) 

Here, A~U. AT&U are undivided central differences to 
which monotonicity COnsll3in1S have been. applied. 
Finally. the values of V'+l from the old grid hiemrcby 
are copied onto the new leyel 1+1 grids in regions 
where the two overlap. 

The above procedure is applied recursively in It 
beginning at the coarsest level being refined. until all 
the refined grid values have been generated. Then a 
final recursive pass through die grid hierarchy is made, 
so that the new values are consistent with the fine grid 
geometty. 

(a ,V)' --""'" =(fJ,{j >'-
(r-l,-l) 

~l.-w_ ~ ",1+l,IUW 
"II -~U ...... 

p=(O.O) 

(,-1,-1) 

(aU){t1lllW
;;;: L (crU):~ 

po=(OJ» 

I = 1_-1, ...• 1 

Numerical results 

Our first example is the reflection of a shock. 
wave by a ramp. For this case. the ramp angle was 30·. 
The fluid is described by a y.law gas with Y= 1.4. with 
an incident Mach 5.5 shock. This combination of shock 
strength and ramp angle are in the double Mach 
reflection regime. For this computation we began with 
a 5Ox40 level 1 grid. We used two levels of refinement 
with a refinement ratio of 4 for each level; thus, the 
effective resolution of the calculation corresponds to an 
800x640 grid. In Figure 2 we show density contours 
for the composite grid structure. The location of the 
grids is indicated by dashed lines with long dashes for 



the level 2 grids and short dashes for the level 3 grids. 4. 
Note that the level tJuce grids surround the reflected 
shock and the incident shock with very little wasted 
computation. There are also level 3 grids sunounding 
the region around the two triple points and the associ- 5. 
ated slip lines and Mach stems. The net result is an 
accurate depiction of the complete shock structure with 
a minimum of wasted computational effort. To esti-
mate the savings associated with the adaptive mesh 
algorithm we can compare the total number of cells 
advanced in time with the number of cells that would 
have been advanced on a single grid calculation of 
comparable resolution. For this computationt the adap-
tive mesh algorithm advanced a total of 6.8xlO' cells 
compared to 5.7xlQ9 for a single grid computation. 
AdjUSling the ratio of cells advanced by the 10% 
overheard associated with the adaptive mesh algorithm 
yields an reduction in computational effort by a factor 
of 7.5. Additional savings could be obtained by selec­
tively restricting the location of the level 3 grids. For 
example. one could ttun off the 2nd level of refinement 
for the reflected shock away from the two triple points. 

Our second example shows the .diffraction of a 
shock. over a 450 wedge. For this case the incident 
Mach number was 2.85. In Figure 3 a) - c). we show 
density contours for at three times as the flow expands 
around the top of the wedge. Here. there are two level 
1 grids. each 5Ox50, one on the left and the other on 
the right. As. in the first case. we used two levels of 
refinement by a factor of 4. For this example there is a 
strong expansion of the flow at top of the wedge. As 
the flow exands two lDlStable slip surfaces emerge. One 
corresponds to the stretched contact discontinuity from 
first ttiple-point. The second corresponds to the shear 
layer that forms as the flow separates at me top of the 
wedge. Each of these slip lines are Kelvin-Helmholtz 
unstable and are beginning to roll up. As in the previ­
ous example~ the finest grids are clustered around the 
dominant discontinuities. 
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Fig. 1. Area adjustment at coarse-fine interface. 

Fig. 2. Shock reflection by a 30° ramp, Moo = 5.5. 
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Fig. 3a. Shock diffraction by a wedge, 1={J.67, M _ = 2.85. 

TIME = 0.86 

/ 
/' 

/ 
./ 

I 

I I 
, I 

, / 

rig. 3b. Shock diffraction by a wedge, t =OJs6. Moo 2.85. 
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Fig. 3c. Shock: diffraction by a wedge. t=1.16. M _ = 2.85. 


