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Abstract

This paper describes an adaptive mesh refinement
algorithm for unsteady gas dynamics. The algorithm is
based on an unsplit, second-order Godunov integration
scheme for logically-rectangular moving quadrilateral
grids. The integration scheme is conservative and pro-
vides a robust, high resolution discretization of the
equations of gas dynamics for problems with strong
nonlinearities. The integration scheme is coupled to a
local adaptive mesh refinement algorithm that dynami-
cally adjusts the location of refined grid patches to
preserve the accuracy of the solution, preserving conser-
vation at interfaces between coarse and fine grids while
adjusting the geometry of the fine grids so that grid
lines remain smooth under refinement. Numerical
results are presented illustrating the performance of the
algorithm.

In ion

Over the last decade, there has been substantial
effort in the development of upwind finite difference
methods for invsicid gas dynamics. Higher-order ver-
sions of Godunov's scheme are among the more suc-
cessful methods of this type for solving unsteady prob-
lems. These methods incorporate the nonlinear wave
propagation properties of the compressible Euler equa-
tions, in the form of characteristic equations and
Riemann problems into robust conservative difference
algorithms. The second- and higher-order versions of
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these methods resolve discontinuities accurately, while
providing accurate representation of smooth flows, Par-
ticularly when combined with adaptive methods, they
have been effective in resolving complex combinations
of discontinnities and smooth solutions in simple rec-
tanguiar geometries.

The goal of the research described in this paper is
the development of an adaptive mesh refinement algo-
rithm for use with higher-order Godunov methods on
moving quadrilateral grids. Our algorithm is an exten-
sion of that of of Berger and Colella [1]. In their
approach the grid is locally refined in space and time in
response to the appearance of large errors or other
features in the solution, Richardson extrapolation based
on coarsening the grid is used to identify and tag cells
where refinement is required based on a specified error
criterion. The tagged cells are covered by the union of
a small number of rectangular patches, that are then
refined. Refined regions may change, appear or disap-
pear as a function of time. Previously, Berger and
Jameson [2] developed an adaptive mesh refinement
algorithm of the type discussed here for quadrilateral
meshes. However, they took advantage of the fact that
that they were computing steady flows to simplify the
algorithm. In the present work, our target application is
genuinely unsteady flows with strong shocks.

The quadrilateral adaptive mesh refinement algo-
rithm (QAMR) is based on a composite of several
coarse, logically-rectangular grids. These grids are
assumed to fit together smoothly with no overlap. Typ-
ically, coarse grids are gencrated using an elliptic grid
generation technique modificd to ensure smoothness of
the grid in time and across grid bourdaries. The princi-
pal difficulty in the method is the necessity to maintain
smoothness of the refined grids in order to preserve the
accuracy of the intcgrator. Rcfined gnids inherit their
geometry from the coarse grid; however, a simple sub-
division of the coarse cells is inadequate to maintain

sufficicnt smoothness of the refined grids. Instead, we



use a smooth interpolation based on Hemmite cubic
splines to define refined grid patches. Thus, the
refinement of a coarse cell need not fit exactly inside
the original coarse cell. This necessitates particular
care in communicating information between coarse and
fine grids to guarantee local conservation.

The integration scheme that forms the basis for
our adaptive mesh refinement algorithm is the second-
order, unsplit Godunov method for logically-rectangular,
moving quadrilateral grids developed by Trangenstein
and Colella [3]. This algorithm is based on an
upstream-centered predictor-corrector formalism, with
the conservative comrector step performed using finite-
volume differencing. The method is second-order accu-
rate for smooth solutions on smooth grids, has a robust
treatment of discontinuities with minimal dissipation,
and is freestream-preserving.

Equations of motion

The unsteady two-dimensional Euler equations
can be written in conservation law form as follows:

U +VF=0
U(x,t) = U:R*x[0,T]1-RM¥
F=(F*,F’) e RVxR¥

with M = 4, and where the dependent variables U and
the fluxes F*, F? are
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where p is the density, (4,v) = u are the x and y com-
ponents of velocity, and E is the total energy per unit
mass. The pressure is derived from these quantities via
an equation of state, p=p (p,e), where e is the intemal
energy per unit mass, given by e=E -%(u%+v?).

For each ne R? we define the projected equations
along n to be the one-dimensional system of conserva-
tion laws

— e — . n = 1n-
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The projected equations for the system (2.1) are
essentially those of gas dynamics in one dimension. If
we project the equations in the m direction for n a unit

vector, we can make a change of variables to obtain the
following system equivalent (0 (2.2):
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where u™=un, u'=unt with the other variables
defined as before. (Here, (a,b)=(b,~a).) Since nis a
unit vector, u? + vZ = (u")? + (u"? so the formula for
the internal energy e can use either quantity. From
these equations, it is clear that the eigenvectors and
eigenvalues of the linearized system, as well as the
solution to the Riemann problem, are given by those for
the one-dimensional gas dynamics equations, with u'
being treated as a passively advected quantity. Hence,
we can use the techniques in [4] for calculating solu-
tions to the Riemann problem and for manipulating
characteristic variables. ,

In i m

We assume that the computational domain is
divided into a time-dependent set of quadrilateral cells
with the comers located at (X e Y jen). Here
i,j are discrete spatal indices, and n is a discrete time
index. Furthermore, we assume that there is a smooth
transformation (x(§,n.¢).y(€n.t)) from some coordinate
space to physical space and a uniform rectangular grid
E*™m/™) in the coordinate space such that the com-
putational grid points are mapped to the physical grid
points at each time n. The equations of gas dynamics
(2.1) transformed to the (£.1) coordinate space, can be
expressed as follows.

JU | aF5  oF" _
% "€ "o
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J = det(Ve q(x,y)) >0

0 3.1

We define finite difference approximations to the
derivatives of the coordinate map as follows.
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where Z(a,b,c.d) = 1A(c—a)x(b—d) is the signed area of
the quadrilatecral defined by the four points. Using
these finite differences, we can make the connection
between the mapping  derivative appearing  in the



ransformed equations and the geometry of the finite
diffcrcnce grid in physical space:

J(&, ;q,,t )A&_,An is the area of the (i j)* zone,
and n A& (A xn)H"A,]! n AT‘} _..(Aﬂx )l L% are per-
pendicular to the cell edges with length equal to the
length of the edge.

As in [5] we seek a conservative, finite volume,
predictor-corrector discretization of (3.1), in which the
predictor step calculates the flux at the cell edges, and
the comector step performs the conservative, finite-
volume upate of U.

The form of the corrector is suggested by the fol-
lowing evolution equation for J.
J, = (s0%)y — (50 = 0 (3.3)

The form of the discretization of (3.2) is suggested by
the interpretation of J; ;AEAN as the volume of the
(i J)* cell:

0:"}“ =0l - 50'5-%,,' + 80;4m
= 80; ju + 8G; jun (34)
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The difference approximation (3.4) is a discrete conser-

vation law for the volume of the system. This formula
also motivates the conservative corrector step

(OUY' = QU + Fisj — Fiumg
+Fijouw=Fijos (3.5
where
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and
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If Ur=U"=U, and F*** = F(Uy) then U™ = U™,
This is most easily seen by the fact that if F*** is a
constant, then the terms involving F*** on the right
hand side of (3.5) sum to zero. Given that, then the
assertion follows directly from (3.4). Thus, if our pred-
ictor step for computing U*** and F*** also preserves
constants, then the overall algorithm is freestream-
preserving.

Predictor st

Our overall strategy for computing the quantities
U™**, F*** required for the fluxes follows closely that
given in {5]. The principal change involves properly
accounting for the grid motion in the predictor siep so
as to maintain freestream preservation. The algorithm
1S only outlined here; for details see {3].

We want to cxtrapolate ume-centered values
S L URES S=LR

given the values U; at cell centers. The values so
obuained will then be used as left and right states for
the Riemann problem at the cell edges for the system
(2.3) projected in the direction of the time-centered nor-
mal.

The construction of UALY is obtained starting
from a Taylor series expansion.
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In the last step, we have put 9F in nonconservation
form and used (2.5) to eliminate — ETR

As was done in (5], we split the predictor into
two steps.
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In the first part of the predictor step, we approximate

U

3
straints have been applied. In addition, the components

of %—q- corresponding to the waves moving away from

the cell edge are projected out, and the overall calcula-
tion is performed in terms of primitive variables. In the

by central differences to which monotonicity con-

n
second part of the predictor step, we approximate BTI:‘-

by a Godunov-type finite-volume differencing similar to
that used m the corrector step. The geometric terms

ELU 9 _(snb) are differenced so that they exactly

& T an

n
cancel the difference approximation to 91 if there are

no gradicents of U in the 1 direction. Thus, the preditor
step is itself freestream-preserving in the sense that
URES=U, if U"=U, in all zones sufficiently close to
the (i j)* zone.



AMR on quadrilaterals
QAMR is based on using a hierarchy of nested,
logically rectangular grids on which the equations (2.1)
are discretized. The grid hierarchy is defined logically
by Dy, I =1,... 1., where each D, is a collection
of points in Z2 Each D, is represented as the union of
overlapping rectangies in Z? however, the results
obtained from the calculation are independent of the
particular representation. We identify points at succes-
sive levels [, 1+1 by a map ¢:D,,—D,, ¢(@) =i/r,
where r is an even integer, called the refinement ratio.
Thus D,y corresponds to a grid refined by a factor of r

in each coordinate direction over D,, and

oMM =(ri+p:p=@©00),....(r-1s-1)

is the set of cells in D,,; contained in the i* cell of D,.
The grids are nested, in the sense that ¢(D,,,)cD,,
¢_l(¢(D'+1)) = .D,ﬂ. In addition, we require them to be
properly nested, ie., that, for I>1, a one-cell wide
buffer separate ¢(D,,,) from the boundary of D,, except
for those parts of the boundary coinciding with boun-
daries of the physical domain of the problem.
Refinement is done in time, as well as in space: if Az
is the time step at level /, then A, = Aty / r'~L, In par-
ticular, the time steps can be chosen so that our explicit
finite difference algorithm is stable on the entire grid
hierarchy.

We take our basic dependent variables to be U,
the conserved quantities, and o', the cell volumes,
defined for all points in D,. The grid comers x! for D,
are also computed at each time step for which (U',g")
is defined, with X/t vy = X/ qs1). Al the lowest level,
I=1, the location of the grid comers x! are initially
determined and moved by some type of mesh genera-
tion algorithm. Possible approaches include some form
of Yan'ational mesh generation scheme or a simple alge-
braic or conformal mapping. Grids points at levels I>1
are determined by interpolation of the level /-1 grid
point locations. To compute the location of the comer
of grid cells in ¢7'(i) for some i we first define approxi-
mation to Xg and x,, at the corners of the i* cell using a
centered difference approximation. These derivatives
are then used to define a Hermite bicubic spline map-
ping the unit square to physical space that maps the
comers of the square to the comers of the i* cell. The
image of an rxr grid on this unit square defines the
location of the grid point in ¢~!(i). This interpolation
scheme is completely local, using only the cell and its
four ncighbors; however, the spline is sufficiently
smooth across cell boundaries to ensure that the refined
gﬁd point locations remain smooth afier refinement. A
similar approach is used to smooth the trajectories of
the level I>1 grid points in time.

We emphasize that it is not necessarily the case
that ¢ is related to x' by (3.2). In particular, in advanc-
ing the solution in time, we assume that the celi
volumes ¢’ are equal to the volume enclosed by the
finest grid edges surrounding that cell.

Integration step

The AMR algorithm for advancing the solution
on the grid hierarchy described above can be formu-
lated as being recursive in the level of refinement. On
a given level of refinement I, the algorithm can be bro-
ken up into three steps.
Step 1. Advance (U'.') by one time step, applying
the finite difference scheme (3.5) - (3.6) to the data on
each of the rectangular grids making up D;. However,
we modify the scheme by having the cell volumes be
given by o, rather than by (3.2), at the beginning of
the time step, and by updating them using (3.4). With
that modification, the scheme remains well-defined, and
is freestream-preserving. Boundary values for the indi-
vidual rectangular grids are obtained from the rest of
the level ! solution, or from user-specified boundary
conditions if the grid abuts a physical boundary. Any
remaining boundary values are interpolated in space and
tdme from the solution at levels I'<{.
Step 2. Advance (U'*'.c'*!) by r time steps, so that
the latest values of the level /+1 solution are known at
the same time as the level / solution obtained in Step 1.

Step 3. Modify the solution values obtained in Step 1
to be consistent with the level !+1 solution. This is
necessary for (i): cells that have been refined, or (ii):
cells which have not been refined, but share one or
more edges with refined cells. In case (i), we the value
at level [ is defined to be the conservative average over
the level I+1 cells contained in it of the level {+1 solu-
tion.
(r=1,7=1)

oi= Y o/ @.1
p=(0.0)
. (r-1r-1) i+
(U= 3 (Ui
p=(0,0)

In case (ii), we modify the solution value in a coarse
cell abutting a fine grid, in order to maintain conserva-
tion across grid refinement boundaries. For example, if
cell (i+1,f) is refined, then the correction to the values
in (i,f) has the following form:

reir=-1

o o ! 1+
0} = 0;,;-00/.,;+ ¥ 3,86, j0p
p=0g=0
i el NS
(aU);; = (oU )i,j+Fi+'h.j_Z EFﬁ*}{r,‘w
p=0¢=0

Here, ¢ is a discrete time index on the level [+1 grid.
In performing this correction, we arc cffcctively using



the appropriate sumn of the fine grid fluxes at (i+34,j) to
perform the conservative difference step at (i,5).

Creating the mesh hierarchy

The logical structure of the grid gencration is a
straightforward generalization of the procedure dis-
cussed in {1]. A subset of the cells at level ! are
identified as requiring refinement; these are covered by
the union of logical rectangles on which the coarse grid
data must be interpolated in a conservative fashion, and
data from the same level copied from the old grids.
The principal difficulty in QAMR stems from the fact
that when the location of the refined regions change, the
cell volumes change at all coarser levels. This requires
us to modify the conserved quantities, for example, to
maintain freestream preservation. Our strategy for deal-
ing with this problem is to initially preprocess the old
grid data on each level so that it is consistent with cell
volumes defined by (3.2). We then use the inverse of
this preprocessing step to obtain values on the new grid
hierarchy that are consisient with the grid geometry one
level above. Those values are used to interpolate new
values as needed at the next level; in addition, values
are copied from the old grids at the next level which
overlap the new ones. After the new grids at all the
levels have been set in this fashion, we recursively
apply (4.1), starting at the finest level. The overall con-
struction is conservative, freestream-preserving, and
transforms the cell volumes so that the volume of a cell
at any level is equal to the volume of the region
enclosed by the edges of the finest grids surrounding
that cell.

In the preprocessing step, we adjust the conserved
quantities on each level so that they are consistent with
cell volumes given by (3.2). This is done recursively in
level, starting at the finest level.

{r-17-1)

C'['-—’ 2 G:;l?.ald
P=’(°0)
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Here, 8a’*! is the signed area between the cell edges
given by x' and a cell cdge given by x'*'. (See Figure
1.) On cell edges that are not adjacent ¢ refined cells,
8o’!*! is set to zero. The 8U'’s arc computed to be
the amount of conserved quantity contained in 8o’+*!.

BUi ey = 80-::‘;,1[ Utlﬂ J
IR
{1 if 8o/} < 0
5

= 10 otherwise

Wec emphasize that this procedwre was performed on the
old grid hierarchy. To genesate values for the new grid
hierarchy, we begin by performing a partial inverse to
the preprocessing step described above.

ail/ = d’l +50l J1 _so.l.lﬂ +85|Ij:’ —86””
(G'U), o = (GU )‘ J“SU;{-W‘"&] "&],’ ,M-i-su,d,%

Here, 8¢'**! and 8U are defined as in the preprocessing
step, except that the U'’s comsistent with the geometric
definition of ¢’ are used, and the new grid hierarchy
replaces the old one. Both this step, and the prepro-
cessing step, are manifestly conservative, being in flux
form, and are freestream-preserving. The &', U'’s are
used to perform a conservative piecewise linear interpo-
lation onto the level I+1 grid

~

=01 + e m (A% , AW Y (p—tA(r—1,-1))

p=(00),....,(r-1,-1)

Here, AU, AW are undivided central differences to
which monotonicity constraints have been applied.
Finally, the values of U'*' from the old grid hierarchy
are copied onto the new level [+1 grids in regions
where the two overlap.

The above procedure is applied recursively in {,
beginning at the coarsest level being refined, until all
the refined grid values have been generated. Then a
final recursive pass through the grid hierarchy is made,
so that the new values are consistent with the fine grid
geometry.

@Y™ =@, 0) ~
1 ,new (r-ts-1) 1+1 new
6= Y Oyig
p=(0.0)
r—1y-t
(O.U)luw( Z (C.U)H'lm
p=(0.0)

Numerical results

Our first example is the reflection of a shock
wave by a ramp. For this case, the ramp angle was 30",
The fluid is described by a y-law gas with y=1.4. with
an incident Mach 5.5 shock. This combination of shock
strength and ramp angle are in the double Mach
reflection regime. For this computation we began with
a 50x40 level 1 grid. We used two levels of refinement
with a refinement ratio of 4 for each level; thus, the
cffective resolution of the calculation corresponds to an
800x640 grid. In Figure 2 we show density contours
for the composite grid structure. The location of the
grids 1s indicated by dashed lines with long dashes for



the level 2 grids and short dashes for the level 3 grids.
Note that the level three grids surround the reflected
shock and the incident shock with very little wasted
computation. There are also level 3 grids surrounding
the region around the two triple points and the associ-
ated slip lines and Mach stems. The net result is an
accurate depiction of the complete shock structure with
a minimum of wasted computational effort. To esti-
matc the savings associated with the adaptive mesh
algorithm we can compare the total number of cells
advanced in time with the number of cells that would
have been advanced on a single grid calculation of
comparable resolution. For this computation, the adap-
tive mesh algorithm advanced a total of 6.8x107 cells
compared to 5.7x10° for a single grid computation.
Adjusting the ratio of cells advanced by the 10%
overheard associated with the adaptive mesh algorithm
yields an reduction in computational effort by a factor
of 7.5. Additional savings could be obtained by selec-
tively restricting the location of the level 3 grids. For
example, one could turn off the 2™ level of refinement
for the reflected shock away from the two triple points.

Our second example shows the diffraction of a
shock over a 45° wedge. For this case the incident
Mach number was 2.85. In Figure 3 a) - c¢). we show
density contours for at three times as the flow expands
around the top of the wedge. Here, there are two level
1 grids, each 50x50, one on the left and the other on
the right. As in the first case, we used two levels of
refinement by a factor of 4. For this example there is a
strong expansion of the flow at top of the wedge. As
the flow exands two unstable slip surfaces emerge. One
corresponds to the stretched contact discontinuity from
first triple-point. The second comresponds to the shear
layer that forms as the flow separates at the top of the
wedge. Each of these slip lines are Kelvin-Helmholtz
unstable and are beginning to roll up. As in the previ-
ous example, the finest grids are clustered around the
dominant discontinuities.
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Fig. 1. Area adjustment at coarse-fine interface.
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Fig. 2. Shock reflection by a 30° ramp, M, = 5.5.
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Fig. 3a. Shock diffraction by a wedge, 1=0.67, M_ = 2.85.
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Fig. 3b. Shock diffraction by a wedge, 1=(0.86, M,
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Fig. 3c. Shock diffraction by a wedge, ¢



