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A fourth-order accurate finite-volume method is presented for solving time-dependent
hyperbolic systems of conservation laws on mapped grids that are adaptively refined in
space and time. Novel considerations for formulating the semi-discrete system of equa-
tions in computational space combined with detailed mechanisms for accommodating the
adapting grids ensure that conservation is maintained and that the divergence of a con-
stant vector field is always zero (freestream-preservation property). Advancement in time
is achieved with a fourth-order Runge-Kutta method.

I. Introduction

Finite-volume methods have become well established for discretizing partial differential equations, espe-
cially when conservation is paramount. They are suited for problems with discontinuities because the

resulting discretization satisfies a discrete form of the divergence theorem, leading to a local conservation
property for time-dependent problems.

Recently, there has been much interest in increasing the accuracy of the method to fourth-order and
beyond. For smooth flows, the extra computation is more than compensated by the reduction in error. As
well, increasing the computation per unit memory makes better use of modern and upcoming computer
architectures. In this work, we follow the techniques described by McCorquodale and Colella1 for achieving
fourth-order solutions of time-dependent hyperbolic conservation laws on adaptively refined grids. Adaptive
mesh refinement (AMR) allows one to change the resolution of the mesh in response to the characteristics of
the solution. It is especially useful for sufficiently resolving large errors in some regions of a problem while
avoiding the expense of the increased resolution in regions with lower errors. A method of block-structured
AMR is used with grids locally refined in space and time.2

Finite-volume methods employed on Cartesian grids are computationally efficient and additionally benefit
from having well-understood characteristics in terms of solution accuracy. To solve more complex geometries,
one can resort to applying the finite-volume method directly to structured curvilinear meshes or unstructured
meshes, using embedded boundary (cut-cell) techniques, or mapping3 a structured grid in physical space to
a Cartesian grid in computational space. The latter approach effectively recovers Cartesian methods with
the cost of some additional complexity in terms of grid metrics. The mapped grids approach is the focus of
this work and has gained some favor in the aerospace community, no doubt because wings are often easily
meshed by this approach.
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However, the addition of the metric terms can introduce subtle difficulties. A constant solution in physical
space may appear with gradients when mapped to computational space. It is important to design methods
that guarantee freestream preservation, a property that ensures a uniform flow is not affected by the choice
of mapping and discretization. A high-order method has been developed by Colella et al.4 that retains the
freestream preservation property at any order of accuracy on mapped grids.

In this work, we merge the fourth-order AMR work of McCorquodale and Colella1 for Cartesian grids with
the freestream-preserving technology on mapped grids of Colella et al.4 To maintain conserved quantities as
the grid levels appear, disappear, and migrate within the computational domain following solution features,
we adopt the procedure described by Bell et al.5 In that procedure, special adjustments, also described herein,
precede a modification of the grid hierarchy to ensure that the transfer of solution information between grid
levels is conservative. The combination of mapped grids with AMR requires additional treatment to ensure
that the freestream-preservation property is retained.

In the following sections, we first present the high-order finite-volume method designed for mapped grids
followed by the additional accommodations necessary for AMR. In the section on results, we verify that both
freestream preservation and conservation are not violated and demonstrate the technology on an unsteady
problem featuring shock reflections.

II. Fourth-Order Finite-Volume Method on Mapped Grids

Previous related efforts involved finding a method for ensuring freestream preservation on mapped grids4

and designing a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems
of conservation laws on Cartesian grids with multiple levels of refinement.1 Important details from these
previous works are presented in this section. We consider time-dependent solutions to hyperbolic systems of
conservation laws having the general form

∂U
∂t

+ ∇ · ~F(U) = 0 . (1)

The results we show are all solutions of the Euler equations, supplemented with the ideal gas law where a
perfect gas is assumed with a specific heat ratio of γ = 1.4.

II.A. Metrics Terms

We assume that we have a smooth mapping X from some abstract coordinate space into physical space:

X = X(ξ) , X : [0, 1]D → RD.

Given this mapping, the divergence of a vector field in physical space can be written in terms of derivatives
in the mapping space,

∇X · ~f =
1
J
∇ξ · (NT ~f ) , (2)

J ≡ det(∇ξX) , NT
d,s ≡ det

(
(∇ξX)T (d|es)

)
, (3)

where ed is the unit vector in direction d and A(p|v) denotes a modification of matrix A by replacing row
p with vector v. The relationship (2) is a consequence of the chain rule, equality of mixed partials, and
Cramer’s rule.4

II.B. Finite-Volume

The problem domain is discretized using a grid Γ ⊂ ZD that is a bounded subset of the lattice defined
by the points (i0, ..., iD−1) = i ∈ ZD marking the cell centers of the control volumes. For Cartesian grid
finite-volume methods, the control volumes take the form

Vi = [x0 + (i− 1
2
u)h, x0 + (i +

1
2
u)h] , (4)

where x0 ∈ RD is some fixed origin of coordinates, h is the mesh spacing, and u ∈ ZD is the vector whose
components are all equal to one.

2 of 10

American Institute of Aeronautics and Astronautics



In the finite-volume method, the integral form of (1) is applied to the control volumes in physical space,

∂

∂t

∫
X(Vi)

Udx +
∫

X(Vi)

∇ · ~Fdx = 0 . (5)

The switch to computation space is made using the metric terms such that

∂

∂t

∫
Vi

JUdξ +
∫

Vi

∇ ·NT ~Fdξ = 0 . (6)

Application of the divergence theorem of Gauss results in

∂

∂t

∫
Vi

JUdξ +
∫

∂Vi

NT ~F · n̂ dS = 0 . (7)

The integrals can be represented as averages yielding

hD d
dt
〈JU〉i + hD−1

D∑
d=1

(
〈NT

d
~F〉i+ 1

2 ed − 〈NT
d
~F〉i− 1

2 ed

)
= 0 , (8)

d
dt
〈JU〉i +

1
h

D∑
d=1

(
〈NT

d
~F〉i+ 1

2 ed − 〈NT
d
~F〉i− 1

2 ed

)
= 0 . (9)

Assuming a fourth-order estimate of 〈~F〉 is known (see section II.C), our approach to determining fourth-
order accurate averages of 〈NT

d
~F〉 on the faces is to use a product rule of the form

〈uv〉i+ 1
2 ed = 〈u〉i+ 1

2 ed〈v〉i+ 1
2 ed +

h2

12

∑
d′ 6=d

∂u

∂ξd′

∂v

∂ξd′
+ O(h4) , (10)

which is valid on Cartesian grids. For a single solution variable, the averages in equation (9) can be obtained
from

〈NT
d
~F〉i± 1

2 ed =
D∑

s=1

〈NT
d,s〉i± 1

2 ed〈~Fs〉i± 1
2 ed +

h2

12

D∑
s=1

∑
d′ 6=d

∂NT
d,s

∂ξd′

∂~Fs

∂ξd′
+ O(h4) . (11)

Some care is required to obtain freestream preservation, the property that the discrete divergence of a
constant vector field is zero. If the flux, ~F, in (11) is constant, then the second term vanishes and we only
need to derive quadrature formulas for 〈NT 〉 so that the discrete divergence of a constant vector field given
by (11) is zero.

The existence of such quadratures is a consequence of Stokes’ theorem and the Poincaré lemma. The
columns of the matrix NT (or rows of N , in the following denoted by N s) are divergence-free as can be
seen by a direct calculation. Then, by the Poincaré lemma,6 there must exist functions, N s

d,d′ , d 6= d′; in
three dimensions, this is described by the vector identity

∇ · (∇× ~N s︸ ︷︷ ︸
Ns

) = 0 . (12)

Next, Stokes’ theorem, ∫∫
Ad

(∇× ~N s) · ~n dA =
∮

Ed,d′ 6=d

~N s · ~r ′(E) dE , (13)

with ~r ′ being a right-hand unit tangent vector to edge E, is used to evaluate the integral of N s on the
face by instead integrating ~N s over the edges. For a general number of dimensions, we find that the cross
product in (12) can be represented as

NT
d,s =

∑
d′ 6=d

∂N s
d,d′

∂ξd′
with N s

d,d′ = −N s
d′,d . (14)
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By Stokes’ theorem, the integral of (14) over face Ad is given by

hD−1〈NT
d,s〉 =

∫
Ad

NT
d,s dAξ =

∫
Ad

∑
d6=d′

∂N s
d,d′

∂ξd′
dAξ =

∮
Ed,d′ 6=d

N s
d,d′ dEξ , (15)

where Ed′ 6=d = ∂Ad are the (hyper)edges of face Ad. This can be written as

〈NT
d,s〉 =

1
hD−1

∑
±=+,−

∑
d′ 6=d

±
∫

E±
d,d′

N s
d,d′ dEξ , (16)

with fourth-order quadratures replacing the integrals. Equations (15) and (16) are the extension of (13)
to any number of dimensions and applied on a Cartesian grid with spacing h. Because (16) only involves
terms normal to the face (consider the left hand side of (13)), only the normal components of 〈NT 〉 can be
determined using (16). However, this is all that is required for hyperbolic conservation laws. If ever required,
transverse components of 〈NT 〉 can be computed directly or averaged from the normal components of 〈NT 〉
on nearby faces in orthogonal directions.

For each edge, the same integrals of N s over the edge appear for the integral over each face adjacent to
that edge but with opposite signs. Therefore, the integration of 〈NT 〉 over the complete cell volume is zero
as long as the integrals of N s are approximated with the same quadrature formulas wherever they appear.

The family of functions, N s
d,d′ , d

′ 6= d, satisfying (14) is not unique. The form of N s
d,d′ used herein is

given explicitly by

N s
d,d′ =

1
D − 1

det((∇ξX)T (d|es)(d′|X)) . (17)

II.C. Discretization

The method for determining 〈~F〉 and evolving the solution is the same as that described by McCorquodale
and Colella1 for solving time-dependent hyperbolic systems of conservation laws on Cartesian grids with
multiple levels of refinement. A centered spatial interpolation is used to obtain 〈~F〉 to fourth-order accuracy
on the faces. Slope limiting (a variant of the limiter proposed by Colella and Sekora7), slope flattening, and
artificial viscosity are all applied to stabilize the method and minimize oscillations near large gradients. To
evolve the solution in time, a fourth-order Runge-Kutta method is employed.

III. Adaptive Mesh Refinement on Mapped Grids

To implement adaptive mesh refinement, we make use of the Chombo library for parallel AMR8 and
follow the strategies used therein. Adaptive mesh refinement calculations are performed on a hierarchy of

x

y

Figure 1. A three-level grid with nref = 2 and nesting
sufficient for one cell to separate level ` + 1 from level
` − 1. A single layer of invalid ghost cells surrounding
the middle grid level is shown by dashed lines.

nested meshes Ω` ⊂ Γ`, with Ω` ⊃ Cn`
ref

(Ω`+1) where
n`

ref denotes the refinement ratio between levels ` and
` + 1 and C is a coarsening operator. The grid levels are
considered as overlapping rather than embedded. An
example grid hierarchy is shown in Figure 1. At level
`, we label all cells inside Ω` as being valid and all cells
outside Ω` (such as ghost cells) as being invalid. We as-
sume that there are a sufficient number of cells on level
` separating the level `+1 cells from the level `− 1 cells
such that interpolations to fill invalid ghost cells on finer
levels can be independently performed. We will refer to
grid hierarchies that meet this condition as being prop-
erly nested. Typically, Ωl is decomposed into a disjoint
union of rectangles (boxes) in order to perform calcu-
lations in parallel. Any relationships between boxes on
the same level, or between different levels, are known
simply through the vectors describing the corner loca-
tions on the integer lattice. Consequently, there is no
need for tracking connectivity between boxes (although
data-motion patterns are cached when the grids change for better efficiency).
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The typical work-flow for advancing level ` is:

1. Regrid levels finer than ` if required. This involves tagging all cells which should compose the finer
levels, often based on the magnitudes of solution gradients, and constructing a new, properly nested
mesh hierarchy. In regions where new fine cells appear, the solution is interpolated from the coarser
level. Additional considerations for mapped grids are described in the next section.

2. Advance level `. The solution state is first computed using a cell-centered product rule,

〈U〉 =
1
J

(
〈JU〉 − h2

12

D∑
d

∂U
∂ξd

∂J

∂ξd

)
(18)

before using the methods described in Section II.C to find 〈~F〉, compute 〈NT
d
~F〉 using (11), and evolve

the semi-discrete form (9) with a Runge-Kutta time-stepping method.
3. Interpolate to the invalid ghost cells surrounding level ` + 1. A least-squares algorithm is used to

compute the interpolating polynomial in each coarse cell. The interpolation need not be conservative
because the resulting values in the ghost cells are only used to reconstruct the flux on the faces of the
valid cells.

4. Start level `+1 at step 1. Level `+1 is refined in time (sub-cycled) with a time step ∆t`+1 = ∆t`/n`
ref .

5. Average the solution from ` + 1 and correct fluxes at coarse-fine interfaces to ensure conservation.2,9

Even with refined levels, the solution will be freestream-preserving as long as N s is made consistent between
the (hyper)edges that are shared between the two levels, and 〈NT 〉 is computed from that consistent value.

〈NT
d=2〉`

〈NT
d=1〉`

N s,` =
∑
N s,`+1

N s,`+1

N s,`+1

Figure 2. By overwriting N s with a sum of fine-grid values,
we ensure that 〈NT

d=1〉
` = (

P
〈NT

d=1〉
`+1)/(n`

ref )D−1 on the

coarse face (shown in bold) that overlaps the fine faces. Ad-
ditionally, since this single value of N s is used to compute
both 〈NT

d=1〉
` and 〈NT

d=2〉
`, the scheme is still freestream-

preserving.

This concept is shown in Figure 2 where 〈NT
d=1〉` and

〈NT
d=2〉` are computed using the same N s,`. How-

ever, on faces in Ω`
valid, adjacent to and orthogonal

to the exterior of Ω`+1 (e.g., the face where 〈NT
d=2〉`

is indicated in Figure 2), there is a one-order loss
of accuracy due to a lack of error cancellation that
otherwise occurs when the error in the quadratures
approximating N s are smoothly varying functions of
space. The cancellation is lost because N s is over-
written with sums from the finer level on all of the
edges within the interface. For this reason, it is nec-
essary to have N s computed to O(hp+1) accuracy in
order for the 〈NT 〉 to be accurate to O(hp) every-
where.

III.A. Regridding

Periodically, it is necessary to change the grid hier-
archy in response to changes in the solution. Dur-
ing a regrid, we generate a new grid hierarchy,
{Ω`,new}`=`base+1,...,`max leaving the mesh at `base and
all coarser levels unchanged. We also will use the old grid information, which we will denote by the super-
script old. This process is significantly more complicated than in the Cartesian grid case, since the geometry
of the mapped grid cells changes depending on the extent to which they are covered by finer grids. In par-
ticular, the ratio between the volumes of a cell in physical and computational space may change according
to the finest resolution at which the geometry is prescribed (the finer specifications are averaged down to
coarser levels and can change the coarser cells). We organize the regrid process into three steps:

1. Generate the geometric information for the new grid hierarchy.
2. Adjust the values of the solution on the old hierarchy to be consistent with the new grid geometry.

This step is critical for ensuring conservation of the solution.
3. Construct the solution on the new grid hierarchy.

Calculation of the new geometry proceeds from the finest level to `base and begins with the integration of
N s, using (17), on all codimension two (hyper-edge) centerings of Ω`. We assume in this work that a single
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analytic expression of the mapping applies everywhere in the domain, allowing N s to be easily computed at
any resolution. Next, the N s from a finer level, if it exists, are summed to this level. The normal components
of 〈NT 〉 are computed using (16). We note that a fourth-order accurate approximation to the cell volumes
can be determined from our usual divergence formula by instead letting ~F(x) = x/D. In that case,

1
hD

∫
X(Vi)

dx =〈J〉i

=
1

hD

∫
Vi

∇ξ · (NT X̃)dξ (19)

=
1
h

D∑
d=1

〈NT
d X̃〉i+ 1

2 ed − 〈NT
d X̃〉i− 1

2 ed

where X̃(ξ) = X(ξ)/D. Continuing with the geometry calculation, 〈NT
d X̃〉`,new

i+ 1
2 ed , which we label as a

volume flux, is computed using a product rule and replaced by averages from finer levels where there are
overlapping grids. Finally, 〈J〉` is computed using (19). Because N s and 〈NT

d X̃〉 are overwritten from finer
levels, the metrics 〈NT 〉 and 〈J〉 are made consistent between all the levels of the grid. For example, in
Figure 2, 〈NT

1 〉` = (
∑
〈NT

1 〉`+1)/(n`
ref )D−1 on the interface as a result of overwriting N s,` with

∑
N s,`+1

on the edges of that face.
The second step is to modify the cell volumes and the conserved quantities on the old grid hierarchy so

that they are consistent with the geometry of the new grid hierarchy, while still maintaining conservation.
At level `, this is done by computing on the faces of Ω` the changes in the contributions to the volume fluxes
corresponding to the changes in the grid geometry, and fluxing the conserved quantities in response to those
changes in the volumes. These fluxes are labeled snapback fluxes and express changes due to regridding at
finer levels. On Ω`,old, define the snapback volume and solution flux as:

FδJ,i+ 1
2 ed =

〈N
T X̃〉`,new − 〈NT X̃〉`,old on the faces of

Ω`,old ∩ Ω`,new,
0 otherwise.

(20)

F d
δ(JU),i+ 1

2 ed =

−Ui+edF d
δJ,i+ 1

2 ed if F d
δJ,i+ 1

2 ed > 0,

−UiF
d
δJ,i+ 1

2 ed otherwise.
(21)

The snapback solution flux is replaced by averages from finer levels. Now the conserved quantities 〈JU〉`,old
are corrected to the new mesh as follows,

〈JU〉`,old := 〈JU〉`,old − 1
h

D∑
d=1

F d
δ(JU),i+ 1

2 ed − F d
δ(JU),i− 1

2 ed . (22)

Once we have realigned the values on all of the levels to be consistent with the new geometry, we then
can proceed to step 3 and interpolate solution values. For ` = `base, . . . , `

new
max − 1, we use a least-squares

algorithm to interpolate solution values on new overlapping fine cells. We solve a least-squares system for
the coefficients of a polynomial interpolant∑

p

ap〈ξp〉j` = 〈U〉j` , j` ∈ I(i`) ,

where I denotes the stencil around cell cell i`, subject to the constraint∑
i`+1∈C−1{i`}

∑
p

ap〈Jξp〉i`+1 = 〈JU〉i` .

The moments 〈ξp〉 can be computed analytically, and the 〈Jξp〉 are computed using the product formula.
Given this interpolant, we can construct 〈JU〉 on the control volumes at level ` + 1,

〈JU〉i`+1 =
∑

p

ap〈Jξp〉i`+1 , i`+1 ∈ C−1(i`) .

This interpolation step is both freestream-preserving and conservative.
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IV. Results

The results of several numerical experiments on a variety of mappings are presented to demonstrate that
we have indeed retained the properties we desire of our scheme, namely fourth-order accuracy, conservation,
and freestream preservation.

IV.A. Freestream Preservation

Figure 3. Freestream-preservation test.

This test is designed to illustrate the freestream
preservation properties of the scheme. A three-
dimensional mapping,

x = r sinϕ cos θ

y = r sinϕ sin θ (23)
z = r cos ϕ

is used to map spherical coordinates, ξ, to phys-
ical space, X. The ranges of both r and ϕ are
limited to avoid singularities. The solution is
not evolved; instead, a region to be refined, 0.1
units in radius, is analytically tagged and ro-
tated about the axis (1,−1, 0) within the unit
cube in computational space, starting at posi-
tion ( 2

√
2

5
√

5
, 2
√

2
5
√

5
, 2
√

2
5
√

5
). Once the tagged region

has completed one revolution, we verify that the
constant solution is unchanged. Two levels of
refinement are used as shown in Figure 3. In
this figure, gaps can be observed between the
various levels, illustrating how refinement can
affect the volumes of the cells and the necessity
of correcting the solution with the snapback flux
during the regrid process to ensure conservation.

IV.B. Accuracy of Mapped Grids with AMR

To test the accuracy of the scheme, we initialize the density with a Gaussian profile, and advect the solution
on a two-dimensional periodic domain. The density is initialized by

ρ = ρ0 + s(r) ∆ρ e−(100r2) (24)

where

s(r) =

 0 : |2r2| >= 1

cos6(πr2) : |2r2| < 1
, (25)

ρ0 = 1.4, ∆ρ = 0.14, and r specifies the distance of a point from the center of the periodic domain, [0, 1]D.
Smoothing with continuous 5th derivatives is applied with s(r) so that the profile can be forced to zero at
the domain boundaries. The pressure is initialized to a constant of 1 and the velocity is set to (1.0, 0.5).
After advecting for two time units, the profile recovers its original location and we measure the error against
the exact solution.

For this problem, the mesh is deformed according to the mapping

xd = ξd +
D∏

p=1

sin(2πξp) d = 1, 2 . (26)
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Figure 4. Initialized Gaussian profile in computational
space.

Figure 5. Initialized Gaussian profile in physical space.

The initial solution in both computational and physical space is shown in Figures 4 and 5. In both figures,
the level 1 boxes (each containing a number of cells) are shown by gray lines and the level 2 boxes are shown
by black lines. In order to obtain accurate convergence rates, the regions of refinement are analytically
specified to be a distance of 0.35 from the center of the Gaussian for level 1 and 0.225 from the center of the
Gaussian for level 2. Otherwise, fixed-size buffers of cells, associated with a solution-based identification of
refinement regions, tend to shrink with successively finer base grids, thereby reducing the actual area covered
by the finer grids. Solution error was predicted for single-level grids and AMR grids, with the finest level
on an AMR grid matching the resolution of the corresponding single-level grid. The results are shown in
Figure 6.

This example illustrates the objectives and compromises associated with AMR. The objective is to resolve
the large errors in the problem with the same accuracy while reducing the expense of computing in areas

N

S
ol

ut
io

n 
E

rr
or

300 350 400 450 500

10-7

10-6

10-5

Single-Level (L 1 Error)
3-Level AMR (L 1 Error)
Single-Level (L 2 Error)
3-Level AMR (L 2 Error)
Single-Level (L ∞ Error)
3-Level AMR (L ∞ Error)

L∞ curves overlap

β = -4.00

β = -3.99

β = -4.00

Figure 6. Solution accuracy for advection of a Gaussian profile
using both single-level grids and AMR grids

with smaller errors. For this problem, the
largest solution error, indicated by the L∞ er-
ror norm, are near the large gradients in the
density profile, well within the finest level of
refinement. Consequently, the AMR mesh re-
covers nearly the same L∞ error norm as the
single level mesh. The compromise is that ad-
ditional errors are introduced at the interfaces
between the coarse and fine levels. These errors
are a consequence of maintaining conservation
and can be explained by modified equation ar-
guments which suggest that up to one-order of
accuracy can be lost in coarse cells adjacent to
the interfaces (this is the same argument that
requires N s to be computed to an order of ac-
curacy greater than that of the scheme as dis-
cussed in section III). These small errors are
further diminished when squared in the L2 er-
ror norm but are quite apparent in the L1 norm.

With periodic boundaries, this example also
provides a good opportunity to test conserva-
tion. An integration of all conserved quantities
in computational space 〈JU〉 is performed at the start and end of the run. The double precision results from
the 512× 512 AMR case are shown in Table 1.
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Table 1. Initial and final conserved quantities for advection problem

Component Initial Final Difference
Jρ 2.299286119591301e+04 2.299286119591318e+04 0.000000000000017e+04
Jρu 2.299286119591301e+04 2.299286119591317e+04 0.000000000000016e+04
Jρv 1.149643059795651e+04 1.149643059795661e+04 0.000000000000010e+04
JρE 5.533053824744564e+04 5.533053824744603e+04 0.000000000000039e+04

IV.C. Mach Reflection

The final test case illustrates the effectiveness of AMR in resolving large discontinuities. In this case, an
incident shock at Mach 10 reflects off a ramp at 30 ◦ producing double Mach stems.10 A Schwarz-Christoffel
mapping11 is used to generate the ramp and the solution is shown in Figure 7 after 0.25 time units. In
addition to the shocks, Kelvin-Helmholtz instabilities are quick to develop along the the slip line in the
absence of viscosity and the “jet” of fluid behind the first stem forms a mushroom characteristic of a classic
Rayleigh-Taylor instability. These features are shown in greater detail in Figure 8. Some artifacts are also
present, resulting from specifying an infinitely thin shock for initial conditions and at the upper boundary.

Figure 7. Two-dimensional Woodward-Colella Mach-reflection problem. Contours of density are shown along with the
shaded boundaries of boxes belonging to various levels of refinement. Three levels of refinement (above a base grid of
size 96× 24) are used with a four-times increase in resolution at each level.
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Figure 8. Details of fluid instabilities along the slip line in the Woodward-Colella Mach-reflection problem.

V. Conclusion

We have presented a fourth-order finite-volume method for obtaining solutions to hyperbolic conserva-
tion laws on mapped grids with adaptive mesh refinement. A careful implementation ensures that both a
freestream preservation property is retained and that conservation is not violated.
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