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Abstract

This paper describes the numerical simulation
of a shock wave refracting at a gas interface. In this
work we duplicate shock tube experiments per-
formed by Abd-el-Fattah and Henderson using a
muliifluid, adaptive mesh refinement algorithm. We
report on the results of four of these calculations
and compare them to the shock tube experiments.
The goal of this paper is to validate the numerical
method by demonstrating that the numerical results
are in excellent agreement with the shock tube
experiments. Future work will be concemed with
using our numerical method to explore the
phenomenon of shock wave refraction and with exa-
mining the discrepancy between existing theory and
experiment.

The Problem

In this work we consider a planar shock wave
striking a planar gas interface at angle of incidence
0° < @; <90°. This is a predominantly two dimen-
sional, inviscid phenomenon which we model using
the two dimensional Euler equations with the
incident shock wave and gas interface being
represented by straight lines.
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A diagram of the experimental setup is shown
in figure 1. The shock wave travels from right to
left in the incident gas striking the interface from
the right. This causes a shock wave o be transmit-
ted into the transmission gas and a reflected wave to
travel back into the incident gas. This reflected
wave can either be a shock, an expansion, or a band
of compression waves. Depending on the strength
of the incident shock, the angle of incidence, and
the density and sound speeds of the two gases these
three waves may appear in any one of several dis-
tinct configurations. In the simplest case the
reflected wave is a shock and all three shocks meet
at a single point on the interface and travel at the
same speed along the interface. This is known as
regular refraction.

When the sound speed of the incident gas is
less than that of the transmission gas the refraction
is called slow-fast. In this case the transmitted
shock can break away from the point of intersection
and move ahead of the other two waves, forming
what is known as a precursor shock. The incident
shock can also form a Mach stem, similar to the
well know phenomenon of Mach reflection at a
ramp. When the sound speed of the incident gas is
greater than that of the transmission gas the refrac-
tion is called fast-slow. In this case the transmitted
shock will lean back toward the interface. Under
these circumstances one can observe roll up of the
gas interface and acoustic waves transmitted back
into the incident gas.

For the purposes of modeling this
phenomenon on a computer we assume the two
gases are ideal and that each gas satisfies a y law
equation of state,

p=Ap.

Here p is the pressure, p the density, ¥ the ratio of
specific heats, and A a constant which depends on
the entropy but is independent of p and p. Note



that vy is a constant for each fluid but different fluids
will have different ¥.

Given the assumptions stated above the prob-
lem may be shown to depend on the following four
parameters: the angle of incidence ®;, the ratio of
molecular weights for the two gases y; /p,, the
ratio of the y for the two gases y;/v,, and the
incident shock strength E; =p;/p, where pg
(respectively p,) is the pressure on the upstream
(respectively downstream) side of the shock.
Theories have been developed based on these
assumptions which are generally in good agreement
with experiment. For example, early work on the
theory of regular refraction was done by Taub! and
Polachek & Seeger.2 Later, Henderson® extended
this work to irregular refractions. More recently,
Henderson4 5 has generalized the definition of shock
wave impedance given by Polachek & Seeger for
the refraction of normal shocks.

Experiments with shock waves refracting in
gases have been done by JahnS Abd-el-Fattah,
Henderson & Lozzi,” and Abd-cl-Faiah & Hender-
sond.9 Our work is based on the experiments
reported on in these last two papers. More recently,
Reichenbach!® has done experiments with shocks
refracting at thermal layers and Haas & Sturtevant!!
have studied refraction by gaseous cylindrical and
spherical  inhomogeneities.  Earlier, Dewey!?
reported on precursor shocks from large scale explo-
sions in the atmosphere. Some multiphase experi-
ments have also been done: Sommerfeld!? has stu-
died shocks refracting from pure air into air contain-
ing dust particles while Gvozdeava et al.!4 have
experimented with shocks passing from air into a
variety of foam plastics.

Some recent numerical work on shock wave
refractions include Picone ef al.!5 who studied stu-
died the Haas & Sturtevant experiments at Air/He
and Air/Freon cylindrical and spherical interfaces.
Fry & Book!6 have considered refraction at heated
layers and Glowacki et al.}7 have studied refraction
at high speed sound layers. Sugimura, Tokita &
Fujiwara!8 have examined refraction in a liquid-
bubble system.

Description of the Shock Tube Experiments

In this paper we duplicate four of the shock
tube experiments from Abd-el-Fattah and Hender-
son.8.9 Two of the experiments are in the slow-fast
regime (COyCH,) and the other two are fast-slow
(Air/SF¢). The experiments were performed in a
conventional shock tube with air as a driver. The
layout of the apparatus for the case when the
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incident gas is CO, and the transmission gas is CH,
is shown in figure 2. The separation between the
two gases was maintained by a thin polymer mem-
branc (labeled ‘m’ in figure 2). The thickness of
this membrane was measured to be between 5.5 and
6.5<10%cm. This is on the order of only 10
molecules thick. Much effort was made toward
making the membrane as thin as possible in order to
minimize the effects of the mass of the membrane
on the refracting shock wave system. However the
thiness of the membrane resulted in some mixing of
the two gases at the interface. The amount of leak-
age was measured using a gas analyzer (labeled
‘GA’ in figure 2). Both the effects of the membrane
inertia and the gas mixing have been carefully stu-
died and reporied on by Abd-el-Fauah, Henderson
& Lozzi.? For further details of the experimental
apparatus and experimental results the reader is
referred to Abd-el-Fattah, Henderson, & Lozzi’ and
Abd-el-Fattah and Henderson.$.%

In the numerical results described below the
two gases were assumed to be uncontaminated and
separated by a massless membrane. We also per-
formed calculations in which we included a mem-
brane with the same mass as that used in the labora-
tory and took into account the measured amount of
contamination of the gases during our computation
of the equation of state. The results of these latter
experiments differed litle from those described
below. The greatest change appeared to be in the
angle that the transmitted shock made with the
interface (in the slow-fast case) but this angle is
difficult to measure accurately, We will not discuss
the effects of the membrane or gas contamination
further and simply assume idealized conditions for
our numerical experiments.

The Numerical Method

We solve the Euler equations for two dimen-
sional, compressible fluid flow in conservation form

U, +V-FU) = 0. 1)

Here
U=, pu.pv. pEY

where (4,v) is the velocity, E the total energy per
unit mass, and F = (F,G )T with

F =(pu,pu?+p,puv,pu E+up),
G =(v,puv,pv+p, pvE +vp).

We ‘solve these equations on a rectangular mesh
with grid spacing Ax and Ay. We use absorbing



boundary conditions on the right hand wall of the
computational domain and reflecting boundary con-
ditions on the other three walls,

The following four features of our numerical
method are important in the accurate computation of
the shock refraction problem,

1) A second order Godunov method for solving
the fluid flow equations

2) An local, adaptive gridding strategy

3) A volume of fluid strategy for tracking the
fluid interface based on tracking partial volumes
of fluid components on a subgrid scale

4) An algorithm for accurately modeling the
disparate thermodynamic properties of the two
gases on a subgrid scale.

Currently we use an operator split version of
the numerical method. In other words, we solve a
succession of one dimensional problems at each
time step, alternating the x and y sweeps at every
other time step. Effective unsplit techniques are
available for solving equations (1) but operator split-
ting is necessitated by the interface tracking algo-
rithn we use. We are currently developing an
improved interface algorithm that will remove this
restriction and we will report on it in a future work.

The Solution of the Eyler equations

We use a second order Godunov method to
solve the two dimensional compressible Euler equa-
tions. Since these methods have been widely dis-
cussed in the literature we refrain from going into
detail here. Instead we refer the interested reader to
van Leer,!? Colella & Woodward,20 and Colella &
Glaz.2! It should be remarked that in this work we
use a piecewise linear approximation to the quanti-
tics in each grid cell rather than a piecewise para-
bolic approximation as discussed in Colella &
Woodward.20

Adaptive Mesh Refinement

In order to concentrate most of the computa-
tional work in regions of physical interest we
employ a local adaptive gridding strategy called
Adaptive Mesh Refinement (AMR).2.23.24,25,26
The basic idea behind AMR is to estimate the local
truncation error at each cell center and tag those
cells at which the error is unacceptably large. One
then finds & collection of rectangles, all of which are
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contained in the original grid, in such a way that
each of the tagged cells is contained in one of these
rectangles and such that a minimum number of
untagged cells are also included. The optimum set
of rectangles is also chosen with regard to minimiz-
ing a cost function. So, for example, one large rec-
tangle may be chosen instead of two smaller, rectan-
gles with fewer untagged grid points because it
leads to more optimal vector lengths on the Cray.
This cost function also takes into account the over-
head associated with setting up the boundary condi-
tions for each fine grid.

Each of these new rectangles is then subdi-
vided into smaller cells 17k th the size of the original
coarse cell (generally & =2 or 4) and the values of
the state variables are assigned to each of the new
cells in such a8 way as to conserve all of the
appropriate quantities. The equations of motion are
then solved on the finer mesh with boundary values
obtained from adjacent grids of the same level of
refinement or interpolated from the coarser mesh.
Note that in order for the CFL condition to be
satisfied one must take k£ times as many time steps
on the finer grid, each l/kth the size of the coarse
grid time step. The value of the state variables in a
coarse grid cell which contains fine grid cells is set
to the average of the values in the fine grid cells.
In order to guarantee conservation at grid boun-
daries care is taken so that if the boundary of a fine
grid abuts a coarse grid (and not another fine grid),
then the flux across each coarse cell wall is equal to
the sum of the fluxes out of each fine cell wall
which abuts the coarse cell. We then recursively
extend this procedure to obtain multiple levels of
refinement.

Figure 3 contains the contour plot of logp
with the fine grid boundaries overlaid on top. This
plot is from the computation described in figure 8
and was run with one level of refinement and a
refinement factor of 4. Note that fine grids are
allowed to overlap since this may lead to better vec-
tor lengths and hence better performance. For
further details regarding our implementation of the
AMR algorithm the reader is referred to Berger &
Colella.26

Tracking th Interf

We employ a partial volumes based approach
to the problem of tracking the gas interface. Figure
4 depicts a portion of the interface and its intersec-
tion with several grid cells. At the start of the com-
putation we calculate for each cell the ratio f; of
volume occupied by the dark fluid to the total
volume of the cell. So 0 < f,; <1 for all cells with
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fij =0 if the cell containsalllightﬂuidmdfu=l
if the cell contains all dark fluid. At each time step
the interface is advanced in time as follows:

1) Given the partial volumes f;; we create an
approximation to the interface in each multifluid
cell (0 <f;; <1), such that this approximate
interface divides the cell into the comect ratio
of fluid volumes. ’

2) For the x-sweep we divide the cell by a vent-
ical line into two rectangles with areas
lulatay and (ax—lular)ay. We then move
that portion of the dark fluid which lies inside
the rectangle on the right (if z > 0 and on the
left if ¥ <0) into the adjacent cell (right if
u >0 and left if u <0). A cartoon depicting
an example of this procedure when u >0 is
shown in figure 4. An identical procedure is
performed for the y-sweep with u replaced by
v, Ay replaced by Ax, etc.

It remains for us to specify how one recreates
the interface given the partial volumes f;;. Here we
employ the SLIC (Simple Line Interface Calcula-
tion) algorithm created by Noh and Woodward.Z” In
determining the interface in the i jth cell for an x-
sweep SLIC considers only the ratio f;; in that cell
and the presence or absence of light and dark fluids
in the two adjoining (in the x-direction) cells. Fig-
ure 5 depicts how the interface is drawn in three of
the five possible cases. Reversing the roles of light
and dark fluid yields the other two cases. (Case 5b)
remains the same when the dark and light fluids are
reversed.) Figure 6 contains an example of how the
SLIC algorithm would reconstruct the interface in
figure 4. The interface is reconstructed in an analo-
gous manner for a sweep in the y-direction.

It should be emphasized that the only feature
of the flow which we are tracking is the actual gas
interface. All of the shocks and other discontinuities
in the flow are captured by the underlying solution
of the equations of gas dynamics.

id Modeling of the Multiflui mponen

We employ a new innovation for modeling
the thermodynamic properties of distinct fluid com-
ponents which occupy the same grid cell. The prin-
ciple goal of this algorithm is to ensure that fluid
components of different densities will undergo the
correct relative compressions or expansions when
the cell they occupy is subjected to pressure forces.
This algorithm is based on the assumption that the
various fluid components in each cell are in pressure
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equilibrium with one another and that each cell has
a single velocity. From a physical point of view the
assumption of pressure equilibrium is not unreason-
able since pressure is continuous across & contact
discontinuity. The requirement that the cell have a
single velocity is not appropriate in more than one
dimension since slip will be generated at a fluid
interface. Thus we track the jump in thermodynamic
variables across the interface, while capturing the
jump in tangential velocity using the underlying
conservative finite difference method. This algo-
rithm is applicable to any number of fluid com-
ponents. We refer the reader 1o Colella, Glaz & Fer-
guson2® for a detailed description of this algorithm,

Results

We report on the results of four calculations,
two slow-fast and two fast-slow. Each of figures 7-
10 contain a schlieren photo of a shock tube experi-
ment and two contour plots from the corresponding
computation. We show the contours for a variety of
different quantities in order to give the reader an
idea of how different quantities reproduce the
phenomena being studied. In all of the photos and
contour plots there is a line running diagonally from
upper left to lower right. This line represents the
initial gas interface before being struck by the
shock. In the schlieren photos this line is part of a
wire frame which holds the membrane in place. In
the contour plots it is simply a line drawn for easy
reference and is not a contour of the quantity being
plotted.

Slow-Fast

Figures 7 and 8 contain the results of the two
slow-fast experiments. In both experiments the gas
interface is COYCHy and the initial shock strength
is & = 1.89. The only difference between the two
experiments is that the angle of incidence ®; has
been changed from 50.5° to 62°. Both refractions
are irregular with a precursor shock in the CH,.
There is a shock wave refracting back from this pre-
cursor into the incident gas which meets and dis-
turbs the incident shock close to the interface. In
both cases there is also a reflected shock or band of
compression waves which meets the incident shock
at the bottom of its undisturbed portion and points
back into the incident gas.

In the first refraction the disturbed portion of
the incident shock consists of one short segment or
‘stem’ which runs directly from the undisturbed por-
tion to the interface. All four shocks and a slip line
meet at the base of the undisturbed part of the
incident shock, with the slip line running parallel to



the disturbed interface. In the second refraction
however the disturbed portion of the incident shock
has two distinct sections. The intersection of these
two sections and the intersection of the upper sec-
tion with the undisturbed incident shock are triple
points at which three shocks and a slip line meet
Abd-el-Fattah & Henderson? refer 10 > this
configuration as a ‘“Twin von Neumann refraction’.

Most of these features appear clearly in the
contour plots accompanying the photographs. All of
the shocks appear as dark lines where many con-
tours have been drawn one on top of the other. The
reflected waves appear as a sharp jump in both pres-
sure and density followed by bands of contours. The
contour plot of the pressure (sec also figure 3)
allows one to easily examine the pressure field,
something which is very difficult to achieve with
experimental apparatus. By marking the contours
with their values or plotting the contours in color
onc can easily distinguish between compressions
and expansions.

The most difficult features to resolve with
contour plots are the slip lines. It should be
emphasized that this is not a difficulty with the
computation of the flow field but rather a difficulty
with flow visualization via the contour plots. (Of
course one does not expect slip lines to appear in
the pressure contours.) The slip lines are somewhat
apparent in a bending of the density contours in
figures 7b) and 8b). These slip lines will appear
quite clearly in a contour plot of the vorticity, but
because the vorticity is obtained by differencing the
values of the velocity at grid points there are large
numerical errors near some of the shocks. We have
found that the best visualization of the slip line
discontinuities is obtained with color contours.

Fast-Slow

In figures 9 and 10 we have reproduced
schliecren photographs of two fast-slow refractions
and contour plots from the corresponding computa-
tions. In both cases the refraction is from Air into
SFs. The incident shock in figure 9 is very weak
with & = 1.1 while in figure 10 we have a strong
incident shock with §; = 4. The angle of incidence
is similar in both cases: ®; =79 in figure 9 and
®; = 73.5 in figure 10.

A remark should be made here regarding con-
tour plots. Each plot has thirty contours which
represent thirty values of the variable in question,
taken in equal increments between its minimum and
maximum values. Thus, if most of the variation in
a given quantity occurs in one region, say at a very
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large jump, then all of the contour lines will be
absorbed by this jump and little will be revealed of
the remaining (often more interesting) variation of
that quantity. Color contour plots will reveal this
latter variation as slightly different shades of the
same color and hence are often more satisfying than
the contour line plots. This problem is especially
pervasive in the Air/SFg stdies where the jump
across the gas interface in a given quantity is often
more than ten times the size of the variation found
in the other wave patterns. Thus, in order to focus
on these patterns we sometimes found it necessary
ignore the variation across the disturbed interface.
For example, figure 9b) is a contour plot only of the
density variation in the incident gas. Similarly, in
figure 10c) the contours only represent the variation
in the upper 20% of values for the total energy.
(The pair of vertical lines in the middle of this plot
are due to spurious numerical ‘start up’ error. This
is a sort of ghost signal from the initial incident
shock. With a little effort this signal could be
damped. However this would be a primarily
cosmetic effort since the emror is mostly unsightly
and not terribly damaging. For a more detailed dis-
cussion of this type of numerical error se¢ Noh.29 )
In the fast-slow refractions it is immediately
apparent that the transmitted shock trails behind the
incident shock. This is because of the lower sound
speed in SFe. In both cases the transmitted shock
reflects off the bottom plate, bounces back, and
strikes the interface. In fact, in figure 9 this happens
at least twice. Another important feature of the
refraction in figure 9 is an expansion wave which
begins where the incident shock meets the interface
and reflects back into the incident gas. This wave is
barely visible in the photograph whereas the contour
plots reveal the structure of this wave quite nicely.

The photograph in figure 10a) exhibits several
interesting features. There are very pronounced
acoustic waves radiating out from the region where
the transmitted wave has reflected back and struck
the interface. Also note the entropy wave which
starts from the point where the outermost acoustic
wave touches the incident shock and runs at an
angle back toward the source of the acoustic signal,
There is also the slightest hint of an expansion
which begins at the intersection of the incident
shock with the interface. These features appesr
fairly clearly in the contour plat of total energy
shown in figure 10c).

Another interesting feature of this refraction is
the roll up of the fluid interface. This is virtually
invisible in the schlieren photographs yet readily
apparent in the contour plot of density. On the



basis of our work here we conjecture that the acous-
tic signals observed in figures 10a) and 10c) are
caused by the interaction of a vorex with the
reflection of the transmitted shock which has
bounced off the bottom plate and struck the dis-
turbed interface as it is rolling up.

Conclusions

It is apparent that the numerical results agree
quite well with the large scale features observed in
the shock tube experiments. The only noticeable
discrepancy between the computations and shock
tube experiments is the movement of the disturbed
gas interface at the bottom wall. However this is as
it should be since our numerical method is solving
the (inviscid) Euler equations and hence, not
accounting for viscous effects near the wall. All
inviscid phenomenon, in particular all of the shock
wave interactions with each other and with the gas
interface, have been reproduced with quite satisfying
accuracy.

We have also made several sequences of runs
in which the two gases and the incident shock
strength were fixed and the angle of incidence ®;
was varied. We measured the angles which various
waves make with each other and noted the angles at
which the shock wave system transitions from one
configuration to another. Our preliminary results
indicate that these measurements also agree quite
well with experiment. We plan to publish this data
in a future paper.
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Figure 3. The boundaries of the fine grids have been superimposed over the
contour plot of the log of the pressure. The case shown has one level of
refinement and corresponds to figure 8.
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Figure 4. The fraction of dark fluid to the right of the dotted line is advected
into the neighboring cell on the right. In this example u is positive.
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a)
black white
only only
b)
black black
& &
white white
c)
white white
only only

Figure 5. Given the states in the adjacent cells this is how SLIC will
draw the interface for a pass in the x-direction. There are two other
cases obtalned by interchanging black and white in a) and c).

SLIC

Figure 6. This is how SLIC would recreate the interface
In figure 4 for a sweep in the x-direction.
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Figure 7. Free precursor irregular refraction at a C02/CH  (slow-fast) interface with
Incident shock strength &, = 1.89 and angle of incidence , = 50.5°.
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(b) log of density (c) Enthalphy |

Figure 8. Twin von Neumann irregular refraction at a CO,/CH , (slow-fast) interface

4
with incident shock strength gl = 1.89 and angle of incidence ®, = 62°.
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{b) Denslity of incident gas

(c) log of pressure

Figure 9. Irregular refraction at a Air/SF‘ (fast-slow) interface with incident shock

strength § = 1.1 and angle of incidence o, = 79°.
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(a)

| (c) Total energy

(b) Density

Figure 10. Irregular refraction at a Air/SF‘ (fast-slow) interface with incident shock
strength & = 4.0 and angle of incidence o, = 73.5°.
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