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ABSTRACT

We present a numerical algorithm to simulate non-
Newtonian ow in complex microdevice components.
The model consists of continuum viscoelastic incom-
pressible ow in irregular microscale geometries. Our
numerical approach is the projection method of Bell,
Colella and Glaz (BCG) to impose the incompressibil-
ity constraint coupled with the polymeric stress splitting
discretization of Trebotich, Colella and Miller (TCM).
In this approach we exploit the hyperbolic structure of
the equations of motion to achieve higher resolution in
the presence of strong gradients and to gain an order of
magnitude in the timestep. We also extend BCG and
TCM to an embedded boundary method to treat irregu-
lar domain geometries which exist in microdevices. Our
method allows for particle representation in a continuum
uid. We present preliminary results for incompressible

viscous ow with comparison to ow of DNA and sim-
ulants in microchannels and other components used in
chem/bio microdevices. 1
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1 INTRODUCTION

Micro Electro-Mechanical Systems (MEMS) technolo-
gies are at the forefront of engineering practice for the
design of integrated uidic control and (bio)chemical
sensing devices. Microscale uidic processors allow for
portability, networking, low power and minimal reagent
consumption and faster chemical reactions, but design/fab
cycles are lengthy because trial-and-error design is time
consuming. Advanced, high resolution models are needed
to understand the fundamental physical processes of
complex uids in these devices and to predict their be-
havior.

We consider incompressible ow of a viscoelastic uid
at the microscale. Viscoelasticity is an appropriate model
for particle-laden biological uids consisting of macro-
molecules (e.g., DNA, large proteins). The equations of

1This work was performed under the auspices of the U.S. De-
partment of Energy by the University of California, Lawrence Liv-
ermore National Laboratory under contract No. W-7405-Eng-48.

motion are the incompressible Navier-Stokes equations
and the Oldroyd-B polymeric stress equation:

ρut + ρ(u · ∇)u = ∇p + s∆u + ∇ · τ (1)
τ t + (u · ∇)τ = ∇u · τ + τ · ∇uT

1
λ

(τ 2 pD(u)) (2)

where ρ is the uid density, u is the velocity of the
uid, p is the isotropic pressure, τ is the shear stress,

subscripts s and p refer to solvent and polymer, respec-
tively, and λ is the relaxation time for the polymer. We
note that continuum mechanics and applied mathemat-
ics conventions di er for the compact notation used in
equations such as (2) where an upper-convected deriva-
tive exists. Here we use the convention (∇u)ij = ∂ui

∂xj
.

A numerical approach to these equations of motion
requires a formulation which is appropriate for constrained
evolution equations. We choose the projection method,
introduced by Chorin [1], made higher resolution by
Bell, Colella, and Glaz (BCG) [2] and made suitably
stable for highly elastic ows by Trebotich, Colella and
Miller (TCM) [3]. We begin with the latter formula-
tion and formally extend it to BCG by exploiting the
hyperbolic nature of the equations. In doing so we gain
the resolution of higher-order Godunov methods which
are more robust than the Lax-Wendro method used in
TCM; the methods also capture steep gradients while
Lax-Wendro tends to smooth discontinuities as seen in
compressible ow; and higher-order Godunov methods
yield an order of magnitude increase in timestep over
Lax-Wendro .

Microdevices consist of uidic components with com-
plex geometries. We therefore extend the BCG and
TCM methods to an embedded boundary formulation
to treat irregular geometry. The embedded boundary
(EB) method is a volume of uid method which takes
a “cookie cutter” approach to irregular domain bound-
aries on Cartesian grids. Cut cells exist near bound-
aries and are treated with advanced discretization sten-
cils [4][5], while the regular cells in the interior of the
domain are discretized with known accurate and stable
methods.
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2 LINEAR ANALYSIS

In order to extend TCM to the higher-order Godunov
methodology of BCG we must cast the stress equation in
a hyperbolic, 1D homogeneous linear advection form:

∂

∂t
Wα + Aα

∂

∂xα
Wα = 0 (3)

Wα = (u1, u2, u3, α1, α2, α3)T (4)

where the subscript α indicates the direction. In [3] it
was shown that the Oldroyd-B stress equation can be
written in the following hyperbolic-elliptic form:

∂τ
∂t + u · ∇τ (∇u)(τ + a2I) (τ + a2I)(∇u)T =

1
λτ +

[µp

λ a2
] [

(∇u) + (∇u)T
]

(5)

where a2 is a wavespeed de ned to capture both viscous
(λ = 0) and elastic (λ → ∞) limits of the Oldroyd-B
equation (2).

We expand the left-hand side of equation (5) in 1D
term by term and, coupled with the 1D homogeneous
advection form of the Navier-Stokes equation (1), we
obtain the following advection form of the equations of
motion in the α = 1, or x, direction:

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

u1 0 0 1
ρ 0 0

0 u1 0 0 1
ρ 0

0 0 u1 0 0 1
ρ

2β1 0 0 u1 0 0
12 β1 0 0 u1 0
13 0 β1 0 0 u1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

where β1 = 11 + a2. In general, βα = αα + a2. The
eigenvalues and corresponding eigenvectors are given in
[3] with p/λ replaced by a2.

3 VISCOELASTIC ALGORITHM

Our rst goal is to design a high-resolution nite dif-
ference method on regular grids to evolve discrete ve-
locity, pressure and stress in time for incompressible
viscoelastic ow. At the beginning of each timestep,
∆t, we know cell-centered grid representations at cell i

of velocity, pressure and stress: un
i , ∇p

n− 1
2

i , τn
i . The

following is an algorithm to compute these quantities
for discrete timesteps, i.e., to obtain the t = (n + 1)∆t
state, n = 0, 1, 2, ....

We use the predictor-corrector method of BCG in
pressure form to evolve the discrete velocity eld while
enforcing the incompressibility constraint:

u∗ = un + ∆t( [(u · ∇)u]n+ 1
2 + s

ρ
∆u∗

1
ρ
∇pn− 1

2 +
1
ρ
∇ · τn+ 1

2 ) (7)

un+1 = u∗ (I P)(u∗ +
∆t

ρ
∇pn− 1

2 ) (8)

∇pn+ 1
2 =

ρ

∆t
(I P)(u∗ +

∆t

ρ
∇pn− 1

2 ) (9)

where

Q = GL−1D (10)
P = I Q (11)
L = DG (12)

and D and G are the discrete divergence and gradient
operators, respectively. For now we choose the backward
Euler method to dicretize the viscous term in time in
equation (7).

In order to construct the solution, W n+ 1
2 =

(u1, u2, u3, 11, 12, 13)T,n+ 1
2 , for a given direction α =

1, we use characteristic tracing of the variables. We per-
form a Taylor expansion in 1D from the solution W n

i at
cell centers, i, to plus and minus edges of the cell and the
half time, using the PDE (3) to eliminate the temporal
derivative:

Ŵ
n+ 1

2
i,± = Wn

i +
1
2
(±I

∆t

∆x
A1)P±(∆1W

n
i ) +

∆t

2
S1.

(13)
where

P±(W ) =
∑

±Λk>0

(lk · W )rk (14)

is the eigenvalue decomposition, summed over charac-
teristics, and rk and Λk are the right eigenvectors and
corresponding eigenvalues of the matrix Ai, and lk are
the left eigenvectors. Here the source term, S1, has been
added to the right-hand side of equation (3) but does not
include the lagged pressure gradient, ∇pn− 1

2 . As a re-
sult of extrapolation to edges a Riemann problem exists
at each edge with solution

W̃i+ 1
2

= Wi,+ +
∑

Λk<0

[lk · (Wi+1,− Wi,+)rk]. (15)

The time-centered velocities are then corrected to ac-
count for the pressure gradient:

un+ 1
2 = ũ (I Pmac)(ũ) (16)

from which the convective derivative, (u · ∇)un+ 1
2 , can

be computed. A predicted velocity that is not necessar-
ily divergence-free is obtained from (7) and projected
to obtain un+1. The stress is then updated to the new
time:

τn+1 = τn + ∆t( (u · ∇)τ
+∇u · (τ + a2I) + (τ + a2I) · ∇uT )n+ 1

2

∆t

λ
(τn+1 2 pD(un+1)). (17)

The algorithm is subject to the following stability
restriction on the timestep:

max
i

[|u1| + (2(τ 11 + a2)/ρ)
1
2 ]∆t < σ∆x (18)

with σ < 1.
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cell center

embedded boundary

Figure 1: Example of embedded boundary “cutting”
regular cells.

4 IRREGULAR GEOMETRY

The second goal of this paper is to compute ows
in the complex geometries which occur in micro uidic
devices. We do this by extending BCG to embedded
boundaries. The embedded boundary method is an ap-
proach in which regular cells on a Cartesian grid are cut
by physical boundaries and/or interfaces (see Figure 1).
Higher-order stencils are constructed near boundaries
where irregular, or “cut”, cells occur while discretiza-
tions with known accuracy and stability requirements
are employed on the interior regular cells [4], [5]. We
make use of the Chombo software libraries [6], [7] which
provide a framework for data management, numerical
operators and linear solvers needed in an EB formula-
tion. We adapt the Chombo framework to incompress-
ible ow by developing the fundamental numerical oper-
ators with relevant features–namely, viscous (Dirichlet)
boundary conditions.

5 RESULTS

We apply our method to ow of a DNA solution in
2D and 3D contraction microchannels. Experimental
data has been used to obtain the rheological parameters
speci c to this uid and to also validate the computa-
tional model [8]: ρ = 1 g/ml, λ = 1.14 s, s = .2538
g/cm/s and p = .02688 g/cm/s. The experimental ow
rate is 30 l/hr.

Figures 2 and 3 show the experimental channel and
velocity pro le results obtained using Digital Particle
Image Velocimetry (DPIV). We compare the experimen-
tal results with computations of a ow in a similar chan-
nel. Figure 4 shows calculated viscoelastic ow in a 3D

Figure 2: Experimental contraction channel (Shrews-

bury).

Figure 3: Experimental velocity pro les just before and
after contraction in m/sec (Gulati).

contraction duct and demonstrates the same character
in the pro le–a dip, or top-hat. As for the magnitudes
we note a di erence in scaling–experimental data are in
m/s, computations are in cm/s. Also, the experimental
ow rate is based on average velocity through the con-

traction, as if the contraction were the inlet. For compu-
tations, the same average velocity is applied at the inlet
of the large section of the channel. Despite the discrep-
ancy, we nd that the magnitudes are within the error
bars of the experiments. Finally, Figures 5 and 6 depict
viscous ow in irregular geometry, approximating the
experimental device, and demonstrating our embedded
boundary capability. These results are obtained from
2D simulations where the top-hat pro le does not exist
as it is a 3D phenomenon.
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Figure 4: Series of computed velocity pro les for vis-
coelastic ow through 3D contraction microchannel.

Figure 5: Velocity data for viscous ow in a 2D contrac-
tion channel with irregular boundaries.

Figure 6: Pressure for viscous ow in a 2D contraction
channel with irregular boundaries.

6 CONCLUSION

We demonstrate a high resolution computational ca-
pability which models non-Newtonian, viscoelastic ow
in irregular geometries. The numerical model compares
well with experimental results for ow of a DNA solution
in a bioMEMS device. This work provides the founda-
tion for computing uid ows in more complicated mi-
crodevice components as well as biological systems. In
addition to the continuum model we also allow for a
particle representation in the bulk uid.
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