
SCALLOP: A Highly Scalable Parallel Poisson Solver in
Three Dimensions

Gregory T. Balls
Department of Computer
Science and Engineering
University of California,

San Diego

Scott B. Baden
Department of Computer
Science and Engineering
University of California,

San Diego

Phillip Colella ' '
Applied Nllmerical Algorithms

Group
Lawrence Berkeley National

Laboratory
Berkeley, CA USA 9500 Gilman Drive 9500 Gilman Drive

La Jolla, CA 92093-0114 USA La Jolla, CA 92093-0114 USA pcolella@lbl.gov
gballs@cs.ucsd.edu baden@cs.ucsd.edu

ABSTRACT
SCALLOP is a highly scalable solver and library for elhp­
tic partial differential equations on regular block-structured
domains. SCALLOP avoids high communication overheads
algorithmically by taking advantage of the locality proper­
ties inherent to solutions to elliptic PDEs. Communication
costs are small, on the order of a few percent of the to­
tal running time on up to 1024 processors of NPACl's and
NERSC's IBM Power-3 SP sytems. SCALLOP trades off
numerical overheads against communication. These numer­
ical overheads are independent of the number of processors
for a wide range of problem sizes. SCALLOP is implicitly
designed for innnite domain (free space) boundary condi­
tions, but the algorithm can be reformulated to accommo­
date other boundary conditions. The SCALLOP library is
built on top of the KeLP programming system and runs on
a variety of platforms.

Keywords
computation-intensive applications, parallel and distributed
algorithms, program optimization and performance pro­
gramming

1. INTRODUCTION
If Terascale computing is to mature in the coming decade,

then it must overcome the steadily increasing costs of in­
terprocessor communication relative to arithmetic compu­
tation. One approach is to mask communication costs by
overlapping communication with computation (17, 18, 4, 3,
2]. An alternative approach is to reduce the amount data
communicated at the expense of additional computation.
The fast multipole method [12], the method of local correc­
tions [1], and the finite element of Bank and Holst [7] all

Pennission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
nOl made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise. to
republish. to post on servers or to redistribute to lists. requires prior specific
pennission andlor a fee.
se '03 Phoenix, Arizona, USA
Copyright 2003 ACM 1·581 13-695- tl03/00 II ... $5.00.

take this second approach. Results presented by Holst
include a rigorous proof that these types of algorithms can
produce accurate results with little communication.

We present SCALLOP, an elliptic partial differential equa­
tion solver in three dimensions that also employs the latter
strategy, trading off the high cost of communication through
algorithmic reformulation. SCALLOP employs a method of
local corrections to mitigate distant numerical coupling in­
herent in elliptic partial differential equations, using a coarse
grid approximation that effectively reduces the amount of
information that must be moved among processon~. The
added computational cost is purely local work! and the cost
remains a constant which is independent of the number of
processors.

SCALLOP solves partial differential equations with infi­
nite domain (free space) boundary conditions. Such bound­
ary conditions are especially useful for calculations of astro­
physics phenomena. SCALLOP can be modified for prob­
lems involving other boundary conditions, but in this paper
we focus exclusively on the infinite domain case~ and, for
simplicity, we only discuss the solution to a particular par­
tial differential equation, the Poisson equation.

Unlike domain decomposition methods such as [16] which
require multiple iterations between the local and nonlocal
descriptions, SCALLOP does not perform repeated itera­
tions between coarse and nne levels or several communi­
cation steps. SCALLOP reaches a solution to the Pois­
son equation in three steps and communicates data only
twice. First, coarse grid data are communicated to gen­
erate a global coarse grid charge field. Second, coarse and
fine boundary condition data are communicated once among
neighboring regions. These communication costs are low in
practice-on the order of a few percent-and come at the ex­
pense of computational (numerical) overhead. We show that
the extra computation involved is reasonable, and signifi­
cantly, that the computational overhead is independent of
the number of processors for a wide range of problem sizes.
As a result, we are able to demonstrate scalability on up
to 1024 processors of an IBM SP system, and we plan fu­
ture computations on thousands of processors. Our goal is
to utilize fully the resources of ever-growing computational
platforms. Therefore, we define scalability as the ability to
run problems scaled appropriately to the number of proces­
sors and available memory in roughly constant time. This

type of scalability is often called scaled speed-up.
SCALLOP is a three dimensional extension of the two­

dimensional algorithm due to Balls and Colella [5, 6J. Our
contribution is in two parts. The first part entails new nu­
merical techniques required in three dimensions and to per­
mit the computation to scale to thousands of processors.
The second part is the theory behind performance tradeoffs
needed to convert a terse description of a numerical algo­
rithm into a highly scalable solver. Significant performance
programming accompanied this latter contribution, and in
the process, we devised a performance model that is shown
to match our results welL

SCALLOP is representative of a class of algorithms that
employ sophisticated numerical techniques to reduce com­
munication costs. The techniques in turn require an ap­
propriate software infrastructure to manage the underlying
details, in particular the bookkeeping. To this end, SCAL­
LOP was built with the KeLP programming system [lOJ, a
framework for implementing scientific applications on dis­
tributed memory parallel computers. KeLP provides geo­
metric and communication abstractions that facilitated the
development of SCALLOP without sacrificing performance.

2. PRELIMINARIES
The equation we solve is the Poisson equation in three

dimensions with a charge distribution p with compact sup­
port, I.e., the charge is only nonzero in a finite region of
space. Specifically, we seek the solution </> to

82
</> 82

</>
~<P + oy2 + OZ2 = p(x, y, z)

which has far-field behavior characterized by

</> = - 4~xl +0 C~I)' IXI -+ 00,

where R is the total

R Lp(x)dx,

and the region n contains the support of the charge p.
For many engineering calculations, methods which are ac­

curate to O(h2) provide a good balance between accuracy
and work required. We seek a solution which is accurate to
O(h2) over the discretized computational domain nil., where
h is the uniform discretization, as illustrated in Figure 1.
This computational domain corresponds to the index set of
the discrete solution </>h, i.e., the indices of the underlying
discrete mesh.

Since our goal is to solve the problem on parallel proces­
sors, we partition nil. into a set of disjoint subdomains n~:

nil. Uni.
k

Our method entails solving local problems on each of the
n~ in parallel,. as well as on a single coarsened global mesh
nH. The spacing of this coarsened mesh is H = Gh, where
G is a specified coarsening factor.

We choose the domain nil. to be a rectangular region, nil.
[~ it], where [and it are the integer vectors corresponding to
the lower and upper corners of the region. The coarsened
domain is then defined as

Figure 1: Discretization. The outer boundary of
the grid shown here corresponds to nil.. The regu­
lar mesh, with spacing h represents the uniform dis­
cretization of nil.. The charge field is non-zero within
the grey region shown, also called the support of the
charge p. The support of p lies completely within nh.

where the operators l·J and r'l represent the floor and
ceiling operators, respectively.

Because our meshes are node-centered, the points of OH
map directly onto corresponding points in nh, as shown in
Figure 2, and no averaging is required to coarsen the mesh
data. Thus, we can coarsen the mesh by sampling the mesh
without having to interpolate. In particular, we coarsen a
fine grid representation using the sample operator SH: for
each point xc, we can find the coarse grid value "pH (xc)
(where 1/JH has grid spacing H) by finding the fine grid point
x at the corresponding position in 1/Jh (with grid spacing
h HjG):

For the discussion that follows, we also need one more bit
of notation. The grow operation extends or shrinks an index
domain by a uniform amount in each direction. If Oh = [~it]
(where f = (Ix! ly, 1z) and i1 (UXl Uti' uz)), we define grow
as

grow(nh,g) {f (g,g,g),u+(g,g,g)].

When 9 < 0, grow returns a shrunken domain.

3. THE METHOD
The domain decomposition method presented here is built

upon a method for solving single-processor infinite domain
Poisson problems, as described in [5]. We will summarize
the single-grid algorithm first, and then describe the domain
decomposition algorithm.

3.1 A Serial Infinite Domain Poisson Solver

..
I'"

• • ..
Figure 2: A sampling mesh for a coarsening factor
of 4. Coarse grid points shown as bold face disks co­
incide with fine grid points, so sampling is sufficient
to transfer data from fine to coarse: no averaging is
necessary.

Following methods described in [14J and [15], we are able
to calculate a solution to the Poisson equation with infinite
domain boundary conditions in three steps, using two grids.
The first grid, referred to here as the inner grid or Oh,g, is
10% larger than the support of the charge in each dimension.
The second grid, called the outer grid or Oh,G, is 20% larger
than the support of the charge in each dimension. Spacing
the grids this way, such that the boundaries are sufficiently
removed from the support of the charge, is necessary for
accurate solutions. The three steps required to calculate
the solution are as follows:

1. Find the solution to the Poisson equation on the inner
grid, 011..9 , using Dirichlet boundary conditions.

2. Calculate a charge along the inner grid boundary equal
to the normal derivative of initial solution at the inner
grid boundary, and integrate this charge numerically
to calculate boundary conditions at each point on the
outer grid.

3. Find the solution to the Poisson equation on the outer
grid, Oh,G, using the boundary conditions calculated
in step 2.

This approach is identical to the approach described in
[5J and [6J except in the way the integration is performed
in step 2. In two dimensions, the integration of the charge
requires O(N2) work, where N is the length of a side of
the grid. In three dimensions, straightforward integration
requires O(N4) work and would soon overwhelm the O(N3)
work required for each Poisson solution. The work required
can be reduced to 0 (N3

) by taking advantage of the smooth­
ness of the solution, however. We do this by integrating the

Figure 3: Extended Local Grids. The local solution
to each of the 16 subdomains shown here is found
on an extended region. One such region is indicated
by the dashed box.

charge from the inner grid onto a coarsened version of the
outer grid, with mesh spacing H = hjO(..IN). The integra­
tion can then be written as:

<p~.G(11)lanH.G = L a:i9

(x)G(x, 11)
k xEanZ. g

where GO is the Green's function:

1
G(x,11) = 411'Ix - iii'

The integration step thus requires O(N3) work, and the
subsequent interpolation required to set the outer fine grid
boundary from the coarse grid data adds only O(N2) work.

3.2 Domain Decomposition
The domain decomposition algorithm in SCALLOP is a

finite-difference analogue of Anderson's method of local cor­
rections [1]. Our algorithm consists of three computational
steps interspersed by two communication steps. We follow
the general design of the two-dimensional algorithm, as de­
scribed in [5] and [6].

1. In the first step we calculate a solution on each local
subdomain, which has been augmented with an overlap
region. As in the serial case, we need an expanded
OZ·G, at least 20% larger than O~ in each dimension, in
order to calculate an accurate infinite domain solution.
In the domain decomposition method, the effect of this
requirement is to cause the individual subdomains to
overlap, as shown in Figure 3.

On each extended subdomain nZ· G we solve the Pois­
son equation

with infinite domain boundary conditions, evaluated as
described for the serial case above. The .6.27 operator
represents the Laplacian calculated with the 27-point
stencil of nearest neighbor points. The 27-point sten­
cil is necessary because of its error characteristics: the
error associated with the 27-point stencil is essential
for maintaining O(h2) accuracy overall by coordinat­
ing the precise interaction between the coarse and fine
grid data.

2. We next couple the local solutions computed in the
previous step by solving another Poisson equation on a
grid covering the entire domain. Owing to well known
locality properties of solutions to Poisson's equation,
a crucial observation is that we may perform the far­
field coupling with a reduced description of the data,
Le., on a coarsened version. We can therefore keep
the cost of global coupling modest, both in terms of
communication and computation. To maintain O(h2)
accuracy, we will need to make local corrections to this
far-field data in the third and final step.

This step contains 4 sub-steps:

(a) Coarsen each local solution computed in step 1,
by applying the sampling operator SH to the local
fine meshes:

4>::.G = SH (4)~.G)

(b) Apply the Laplacian operator, ~27, to 4>:,G, in
order to generate local coarse charge fields:

Rt: {~27¢::·G, on grow (O::,G ,
0, otherwise.

(c) Assemble the local coarse charge fields into a sin­
gle global right hand side. Due to the extension
of the local grids, as shown in Figure 3, the pieces
will overlap in physical space. We accumulate the
overlapping parts into the global right hand side
by summation:

(d) Solve the Poisson equation with infinite domain
boundary conditions on the coarsened right hand
side RH:

~274>H = RH on OH

3. In the third step we compute the global fine grid solu­
tion. At the end of this step, each processor will have
the solution for its assigned subdomain n~.

This step entails a calculation of a local solution on
each patch, O~, with Dirichlet boundary conditions:

.6.74>~ = pZ.
where ~7 is the Laplacian operator using a 7-point
stencil of nearest neighbors along the Manhattan di­
rections l

. Note that these calculations are carried out
on the non-overlapping O~ subdomains.

lWe do not use the more expensive 27-point stencil, since the
accuracy required for this solution is not nearly as stringent
as in the previous steps [5J

Figure 4: The dOll1ain of influence of a fine grid point
x. With the correction distance D 2, the domain
of influence for point X, marked by an x in the figure,
is the five-by-five set of coarse grid points within the
shaded region.

Boundary conditions for this final step are determined
by combining values interpolated from corresponding
coarse patches computed in step 2 with data from
nearby fi ne patches. We must correct the coarse data
to remove local effects before interpolating, since these
local effects will be added through the local fine grid
data. Communication is required among nearest neigh­
bors in order to share the fine grid data near the inter­
faces prior to this final solution pass. The boundary
computation proceeds as follows.

To describe the computations, we introduce the notion
of a domain of influence. The domain of influence of i
is the set of coarsened points within D units of i. The
variable D represents a correction distance required for
accurate interpolation. For our O(h2) accurate algo­
rithm, D 2. If C is the coarsening factor, as before,
we can define the domain of influence as

01J{;l) [ilC - (D, D, D), + (D,D,D)],

as depicted in Figure 4. We use the notation 'D(i) to
signify the set of indices corresponding to subdomains
k' that contain the domain of influence of x:

For each boundary point i on the boundary of n~, we
compute

L 4>Z,{x) + I{4>H,Corrett)

k'EV{:J!)

where I is the interpolation operator used to trans­
fer information from coarse grid to the fine grid, and
1;IH,Correct is the locally corrected coarse grid.

Thus, each boundary point gets a local contribution
from all overlapping fine meshes computed in step 1
plus a. quantity derived from the coarse mesh, provid­
ing the effects of far-field charges.

To locally correct the coarse grid solution at a point X,
we subtract the coarsened values of the fine grids ¢~,
for all grids k' E V(X). Thus we compute ¢H,CorTect as
follows:

¢H,COrffCi(£} ¢H - L SH (¢Z,)(fijC) ,
k'E'D(x)

where ,pH is the global solution computed in step 2,
and SH (¢~,)(x/C) is the coarsened version of the s0-

lution computed in step 1.

4. PERFORMANCE MODEL
As mentioned previously, the principle behind SCALLOP

is to trade off communication against computation. We next
discuss these tradeoffs and show that they are reasonable.
We describe a performance model, and use it to show that
in theory the overheads are reasonable. In the following
two sections we reconcile our predictions with practice. Our
model also motivates future extensions that should enable
SCALLOP to scale to 256K processors, and we discuss these
improvements later on.

In determining the computational overhead in SCALLOP,
we will use the serial infinite domain Poisson solver as a
baseline. We will first show that the cost of our initial fine
grid solutions is similar to the cost of a serial solution, ex­
cept that our initial solutions are calculated using a 27-point
rather than a 7-point stencil. The computational overhead
in SCALLOP, then, can be described as the sum of three
costs: the extra time required for the 27-point stencil, the
cost of the coarse grid solution, and the time required for
the final local solutions on fine grid data. We will discuss
each of these costs, and show that with the proper choice
of a coarsening factor, SCALLOP should be able to scale to
thousands of processors.

4.1 Serial Infinite Domain Poisson Solver
The SCALLOP algorithm is built from many of the same

computational pieces as the serial infinite domain Poisson
solver. We will examine the computational costs involved in
the serial solver first and compare this cost with the cost of
the initial solutions in SCALLOP.

SCALLOP was originally implemented using a multigrid
solver (9] to calculate the solutions to the Dirichlet problems
within our infinite domain solver. Very recently, SCALLOP
was redesigned to use an FFT solver in place of multigrid
since we found that the FFTW [11] library provided signifi­
cantly faster uniprocessor performance. Most of the results
in this pa.per are based on the original multigrid code, how­
ever, so we will base our analysis on that solver and then
discuss the effects of switching to the FFTW solver.

For now, let us consider only cubical domains with edge
length N, and let us define the time to solve a Dirichlet
problem with a. 7-point stencil on a grid of size N as S7(N).

Due to requirements of the infinite domain solver, we must
solve two Dirichlet problems on domains larger than size N,
one with edges of length LIN and another with edges of
length 1.2N. For our three dimensional problem,

S7(LIN) ~ 1.3S7(N}

and

S7(1.2N) ~ 1.7S7 (N)

The boundary condition calculation required for an in­
finite domain Poisson solution is dominated by an O(N3)
problem, as discussed in Section 3.1. By taking advantage of
symmetry in the calculation, we are able to reduce the num­
ber of times we evaluate the distance calculation within the
Green's function by close to a factor of 10. After these op­
timizations, we find experimentally that the boundary cal­
culation takes approximately as long as 1.2S7(N).

The total time required, TSlDl for a serial infinite domain
Poisson solution using the 7-point stencil is then approxi­
mately

TSlD ~ 1.3S7(N) + 1. 7S7(N) + L2S7(N)

~ 4.2S7(N).

Thus the time required for a solution with infinite domain
boundary conditions is significantly greater than the time
required for a Dirichlet problem of similar size.

The initial fine grid solutions performed in SCALLOP are
of the same aggregate size as an equivalent serial calculation.
For a problem divided into q subdomains on a side, or q3
total 8ubdomains, each subdomain for an problem of size
N will have an edge length of N/q. It is easy to see that
the costs of calculating the inner and outer solutions for a
collection of subdomains are the same as those found for the
serial case above.

The only computational overhead introduced by our algo­
rithm during the initial fine grid solutions involves the use
of a 27-point stencil. The 27-point stencil is required for
accuracy reasons. The total work required for S27(N) is ap­
proximately 3.8 times the work required for S7{N) in terms
of floating point operations. Due to effects in the memory
hierarchy of the machines we have used, however, the dif­
ference in the time required for S7(N) and S'l7(N) is not as
great as the operation count would suggest. For our runs on
Blue Horizon and Seaborg'l, we ha.ve found that S27(N) is
very nearly 2.0 times more expensive than S7(N). The cost
of the initial local fine grid calculations, Tlarol, in SCALLOP
can be estimated as

Tzocal ~ 2.0(1.3S7(N) + 1.7S7(N»

+1.2S7(N)

~ 7.2S7 (N)

~ 1.7TslD.

As we will see, this factor of 1.7 represents the majority of
the computational overhead in our current implementation.

The change from our original multigrid solver to our newer
FFTW-based solver alters these estimates somewhat. The
main motivation for using FFTW is the uniprocessor per­
formance it provides. We find that we are able to solve
an equivalent problem with FFTW approximately 8 times
faster than with our multigrid code. As a result, we have a
new benchmark for comparison:

S7-fftw(N) ~ O.I3S7(N).

Another benefit of the FFTW solver is that it does not im­
pose a performance penalty for solving the 27 -point sten­
cil, that is, S:l7-fftw(N) ~ S7-jJtw(N). Compared with the

2Both Blue Horizon and Seaborg are IBM SP systems with
Power3 processors.

FFTW Poisson solver, however, the infinite domain calcu­
lation appears significantly slower, requiring approximately
9.6S7-jJtw(N). In total, these changes result in an estimate
for Tloclll- jJtw of

T!acal-fftw ~ 3.0S1-fftw(N)

+9.6S1-fftw (N)

~ 13S1-fftw TSfD-fftw

In this case, we see that the cost of the initial fine grid solu­
tions in SCALLOP will be the same as for a corresponding
serial solution, but that the cost of calculating the infinite
domain boundary conditions swamps the cost of calculating
the solutions to the simpler Dirichlet boundary condition
problems.

4.2 The Coarse Grid Solution
In comparing the computational cost of SCALLOP to a

serial infinite domain solver, the cost of computing the so­
lution on the global coarse grid is overhead. We want to de­
termine what range of problems can be solved with minimal
computational overhead due to the coarse grid calculation.
Our goal is to keep the cost of the coarse grid solution small
enough that this overhead can be ignored.

As before, let N be the length of a side, thus N 3 is the
total number of points. Let q be the number of subdomains
on a side. Then q3 is the total number of subdomains, or
processors, and

N
q

is the length of a local fine subdomain.
Let C be the coarsening factor, as defined previously, such

that the size of coarse grid, Nc , is N/C. Again, as with the
fine grid solutions, the coarse grid solutions are calculated
on domains larger than this, but since both the fine and
coarse grids are enlarged by the same ratio, we will use these
definitions of Nt and Nc for this analysis.

In order to minimize the overhead due to calculating the
coarse grid solution, we want Nc < N, and therefore

N N
-<-C q

or

q< C.

Since the accuracy of the solution is only weakly dependent
on our choice of C, we prefer to have q :::; C /2. This choice
makes the coarse grid calculation 1/8 as large each fine grid
calculation and therefore nearly an order of magnitude less
expensive. Thus, the cost can safely be ignored.

The ratio N / (qC) represents the number of coarse grid
cells per fine grid subdomain. The case where qC N cor­
responds to the limiting case, representing both the max­
imum amount of parallelism and the maximum coarsening
factor possible. In this limit there is exactly one coarse cell
per fine grid subdomain, or a single coarse point on each
corner of a subdomain. When qC < N we have multiple
coarse grid points per fine domain, including some on the
interior.

Given the amount of memory available per processor, it is
straightforward to calculate the maximum possible problem
size. At the limit of qC = N, we have C = N/q which is the
same as Nj. If we choose q = C /2, as suggested above, then

we can determine the maximum number of subdomains in
terms of the size of the local fine grid:

q
N,
2'

As an example, given a machine with sufficient memory
for 1283 points per processor (NJ 128), the algorithm
would allow scaling up to q = 64 subdomains per side, or
q3 = P = 262,144 processors without introducing excessive
computational overhead due to the coarse grid calculation.
Platforms in this regime will be available soon3

•

4.3 Summary of Computational Overhead
We have discussed the first two sources of computational

overhead in SCALLOP: the extra time required for the 27-
point stencil and the cost of the coarse grid solution. The
only source of overhead not addressed so far is the cost of
the final fine grid solutions. We will briefly discuss the cost
of this final step and then sum up these contributions to
get an estimate of the overall computational overhead of
SCALLOP.

The final fine grid solutions are standard Dirichlet prob­
lems calculated using a 7 -point stencil. These are precisely
the type of problem on which we based the estimates of the
infinite domain solutions. Thus the overhead due to the fi­
nal fine grid solutions is S1(N), or approximately O.24Ts/D,
for the multigrid version of SCALLOP.

At this point we can sum up the various calculation costs.
In the current implementation, the time spent on the initial
fine grid solutions is 1. 7TsID. By chOOSing the coarsening
factor, C, and the number of subdomains per side, q, care­
fully, we can limit the time required for the solution on the
coarse grid to 1/8 the cost of the initial fine grid solutions,
or approximately O.21TsJD. Adding in the cost of the final
fine grid solutions, we arrive at a total cost estimate of

TSCALLOP ~ 1.7TsID + O.21TslD + O.24TsID

~ 2.2Ts/D.

While a factor of 2 in computation time may seem large, we
believe it is a reasonable tradeoff for a. method which scales
to large numbers of processors with very little communica­
tion overhead.

For the FFTW version of SCALLOP we found that the
initial fine grid solution takes only as long as the equivalent
serial solution. In the FFTW version, the coarse grid still
requires 1/8 as much work as the initial local fine grid s0-

lutions. We expect the final fine grid solutions to require
only about 1/13, or 0.08 as much time as TS/D-fftw, how­
ever, since the infinite domain solutions are bound by the
infinite domain boundary condition calculation in this case.
Collecting all these factors, we find

TSCALLOP-fftw ~ TSID-fftw + O.13TsJD-fftw

+O.08TsID-fftw

~ 1 ,,2Ts1D -lJtw .

For the FFTW version of SCALLOP, the computational
overhead introduced is quite small. We note that a large
part of the reason for the low overhead is the inefficiency

3BlueGene/L will have 128K processors with 128 MB of
memory per processor. This amount of memory is sufficient
to store 4 8-byte field variables at each of 1283 points per
processor with room left over for overhead.

of the infinite domain boundary condition calculation. At
this point more effort needs to be focused on optimizing that
piece of the algorithm. Even if we manage to reduce the cost
of TSID-f!tw to nearly S1-fftw, the computational overhead
of SCALLOP will still be only slightly more than a factor
of 2.

4.4 Further Implementation Details
There are a few details of our implementation that af­

fect the performance of SCALLOP and therefore must be
discussed in order to understand the results that follow.

In the current implementation, the global coarse grid prob­
lem is solved red undantly on all the processors. This phase
of the computation could be made more efficient by using
a parallel solver, but we have chosen this approach since
all the processors will need a copy of the result anyway. We
have taken this redundant computation into account implic­
itly in our discussion of the scaling requirements in section
4.2. Since the coarse grid computation will ideally take a
small amount of time, we have not incorporated a parallel
coarse grid solver into SCALLOP.

Also, our implementation currently only creates cubical
subdomains, but it allows for multiple subdomains to be
computed per processor. In our test cases, we attempt to
ke€p the ratio of fine grid points and coarse grid points
nearly constant. \Ve do this by adjusting both the coars­
ening factor and the number of subdomains per processor.
The number of fine grid points is equivalent to N 3

/ l, while
the number of coarse grid points is N 3 /C3

• so for our tests
we keep the ratio between q and C as close to constant as
possible.

Another important detail relates to the size of the initial
fine grid 8ubdomains, In the first step described in Section
3.2, we described the overlap of subdomains due to the re­
quirements of the infinite domain boundary conditions. This
requirement can be specified as

nZ·G
= grow(nt (O.l(len(n~))),

For the third step described in Section 3.2, we need an annu­
lus of D coarse grid points around each subdomain. The val­
ues at these coarse grid points need to represent the same s0-

lution as the initial fine grid solution, sampled onto a coarser
mesh.

In order to generate these coarse grid points, we solve the
initial fine grid problems on domains large enough to allow
us to sample the necessary coarse grid points from the fine
grid in step 2a. This implementation choice leads to an
additional requirement on nh,G:

n~·G = grow(n~, max(O.l(len(n~»,CD»,

where len(ni) represents the length of the longest side of
n~, C represents the coarsening factor, and D represents
the correction distance. For large coarsening factors, the
size of nZ·G is determined by CD.

For O(h7.) accuracy, D 2. OUf implementation therefore
requires an extended domain of at least 2C points in each
direction, or an additional 4C points per side. As a result,
the fine grids may need to be extended beyond the 10%
growth in each direction (20% more points per side) required
for a serial infinite domain calculation. Thus, the numerical
constraints behind the SCALLOP algorithm do not predict
the performance constraints required to achieve scalability.

Specifically,

Nf.G = max{1.2Nj,Nf + 4C}.

To avoid introducing additional overhead for our imple­
mentation, we need 4C < O.2NJ so that fine grid sizes are
not determined by the 4C term in the max above. If we
also have C = 2q as before, to limit the overhead due to the
coarse grid solution, then we require

4C = 8q < 0.2Nf

or

q < O.025Nf·

As a result, the requirements imposed by our implementa­
tion force us to increase computational costs in both the
local fine solutions and the global coarse solutions in or­
der to scale to larger numbers of processors (in the next
section). First, we violate the constraint that q :::; C /2,
mentioned earlier in this section. We set C ~ 1.25q, thus
making the coarse grid solution approximately one-half as
computationally expensive as the fine grid solutions, rather
than one-eighth, as was our original goal. This effect is
implementation-dependent, and we have a strategy for re­
moving this obstacle, which we will discuss below. Second,
we allow the fine grid subdomains to be expanded slightly
more than 0.2Nf in some cases, allowing for larger values of
C, but creating additional computational overhead on the
fine grid solutions.

In order for SCALLOP to be efficient and scalable up to
and beyond the limits of current large scale machines, it is
important to remove this limitation on the relationship be­
tween C and N,. We believe it is possible to generate the
necessary coarse grid points in the overlap region using a
Gre€n's function, in the same way that we calculate the in­
finite domain boundary conditions for the initial fine grid
solutions. The calculation of the coarse grid data for the
overlap regions could then be accomplished with little addi­
tional computation and without enlarging the correspond­
ing fine grids beyond the requirements of the infinite do­
main boundary calculation. We plan on implementing these
changes in the near future.

5. RESULTS
In this section we present computational results which

demonstrate the low communication overhead of SCALLOP.
We also compare our performance results with the estimates
presented earlier. We ran the multigrid implementation of
SCALLOP on up to 1024 processors of an IBM SP system.
While generating these data, we found that SCALLOP ran
out of memory on larger problem sizes toward the end of cal­
culations. Consequently, for runs with more than 128 pro­
cessors, we ran on twice as many nodes as necessary, using
only half the processors on each node in order to have suf­
ficient memory to complete the calculations. We have since
isolated the problem, which was due to allocating memory
in a way which scaled very poorly. By running on twice as
many nodes as should have been necessary, we believe we pe­
nalized communication even more than in the ideal case, but
the inefficient memory allocation routine also causes some
of the later serial stages of the SCALLOP algorithm to run
significantly more slowly than expected. We have corrected
the faulty code in the FFTW version of SCALLOP, and we
show a few of those results later, but we were unable to apply

the corrections and reproduce the results for the muitigrid
version of SCALLOP in time for this paper.

5.1 Hardware
We ran on NPACl's Blue Horizon IBM SP system4

, lo­
cated at the San Diego Supercomputer Center. Blue Hori­
zon contains 144 POWERJ SMP High Nodes (model num­
ber 9076-260) interconnected with a "Colony'" switch. Each
node is an 8-way Symmetric Multiprocessor (SMP) based
on 375 MHz Power-3 processors5

! sharing 4 Gigabytes of
memory, and running AIX 5L. Each processor has 8 MB of
4-way set associative L2 cache, and 64 KB of 12S-way set
associative Ll cache. Both caches have a 128-byte line size.
Each CPU has 1.5 GB/sec bandwidth to memory.

We also ran on NERSC's Seaborg IBM SP system, which
is similar to Blue Horizon, but with 16 processors and 16
Gigabytes of memory per node, and a total of 146 nodes.

On both machines, we used the installed IBM C++ and
Fortran 77 compilers, mpCC and xlf. C++ code was com­
piled with compiler options -02 -qarch=:pwr3 -qtune=pwr3.
Fortran 77 was compiled with compiler option -02.

5.2 Performance Measurement Technique
We used the standard environment variable settings On

Seaborg and Blue Horizon, and we collected timings in batch
mode using loadleveler. The timings reported are based on
wall-clock times, obtained with MPLWtime O.

Each calculation was performed 3 times. Variation among
the runs was less than 10%. The times reported are for the
runs with the shortest total times.

5.3 Communication and Computation Over­
head

The run parameters and timing results for the perfor­
mance tests on Blue Horizon and Seaborg are shown in Ta­
bles 1 and 2.

In order to measure performance, we scaled the work lin­
early with the number of processors. Ideally, computation
time would remain constant. The scaled speed-up tests
shown in Figure 5 demonstrate that SCALLOP scales well
up to 512 processors and that the running times vary by a
reasonable amount from the ideal. Communication overhead
is low in SCALLOP. As shown in Figure 6, communication
overhead is less than 3% on up to 512 processors.

As can be seen in Tables 1 and 2, time spent on the coarse
grid solutions is approximately one half to one quarter the
time spent on fine grid solutions. Ideally, the time required
for coarse grid solutions would be negligible, but these re­
sults match our expectations since we chose C values of ap­
proximately 1.25q and 1.5q. Reducing the fine grid overlap
requirement as described in Section 4.4 will consequently al­
low us to reduce the global coarse grid size, thereby reducing
this part of the computational overhead.

For runs on up to 64 processors, the time required for
the first pass solutions on the fine grid data ranges from 6.3
to 10.45 times the time required for the final pass, which
roughly matches the estimated factor of 7.2 predicted in
Section 4.3. For the same set of runs, the ratio of total time
to the time required for the final solution ranges from 9.4 to
15.0. In Section 4.3, we predicted a ratio between the total

4http://www.npaci.edu/BlueHorizon/
5http://www.rs6000.ibm.com/resource/technology/sppw3-
tec.html

Processors

Figure 5: Computation times per point on Blue
Horizon and Seaborg. Simulations on Blue Hori­
zon have approximately 1003 solution points per pro­
cessor. Simulations on Seaborg have approximately
1603 solution points per processor.

2.5

52.0

~1.5
::::s
E
g1.0
o
~O.5

• Blue Horizon
• Seaborg

O"'--~8-16 32 64 128 256 512
Processors

Figure 6: Communication overhead is small.

Input Parallieters Tillies for Each Stage (seconds)
P q C N Local Reduction Global Boundary Final Total

8 2 3 192" 57.6 0.06 15.3 0.59 6.3 80.1
64 4 6 3843 56.7 0.14 11.0 0.10 8.2 77.1
16 4 4 256" 51.9 0.11 12.1 0.12 6.6 72.3
128 8 8 5123 73.2 0.32 12.6 1.93 23.4 112.0

32 4 5 320;5 75.6 0.11 11.6 0.73 7.3 95.5
256 8 10 6403 109.0 1.28 12.3 2.14 25.3 150.4

Table 1: Input parameters and tilliing breakdowns for runs perforllled on NPACl's Blue Horizon. The Local
and Global solutions elliploy a free space solver using the 6-27 operator, and the Final calculation solves the
Dirichlet probleIn with the 67 operator. Reduction acculliulates the coarsened local solutions into a single
coarse grid for the Global solve. Boundary corrects the result of the Final solution. P is the nUInber of
processors, q is the nUInher of subdoInains on a side, and C is the coarsening factor. The lines are sorted
such that runs with the saIne nUInber of points per processor appear next to each other, but all the runs
have approximately 1003 points per processor. Only the runs for P=8 and P=64 employ just one domain per
processor.

Input Parameters TiInes for Each Stage (seconds)
P q C N I Local Reduction Global Boundary Final Total

16 4 3 384" 234.5 0.54 190.7 2.91 30.7 461.5
128 8 6 7683 229.5 4.29 136.8 5.72 89.8 467.8
32

: I :
512" 237.1 0.80 153.4 2.86 37.8 433.8

256 10243 214.9 2.35 127.3 5.33 90.9 443.9

64 I! I 5
640J 263.7 0.81 136.8 2.86 40.6 445.3

512 8 10 12803 311.37 1.98 108.3 6.04 127.7 558.0

Table 2: Input parameters and timing breakdowns for runs performed on NERSC's Seaborg. As in Table 1,
the lines are sorted such that runs with the S8llle nUlliber of points per processor appear next to each other.
For these runs, each processor is responsible for approximately 1603 points.

150

3100
(l)

E
:..;:::;

"0
c::
~ 50

I_ Seaborgl

0~----~16~--~1~2~8----1~0~2~4----­
Processors

Figure 7: Grind times for the FFTW-based version
of SCALLOP. For these runs, each processor is re­
sponsible for 96 * 1922 fine grid points.

running time and the time of the final solution of 2.15 to
0.24, or approximately 9.0. Our results show some overhead
above the computational overhead inherent in the algorithm,
mostly due to the tradeoffs we discussed in Section 4.4. In
terms of the computation required for a serial solution, our
running times represent 2.2 to 3.6 times TSID, while we
predicted a factor of 2.15.

On more than 64 processors, the final pass takes longer
than expected. reducing the apparent computational over­
head as a result. We have not yet determined the reason for
this anomaly, but it may be related to the memory issues
discussed previously.

5.4 Recent Results with FFTW-based SCAL­
LOP

We have recently implemented the FFTW-based version
of SCALLOP. As discussed earlier, the main benefit of using
FFTW within SCALLOP is improved uniprocessor perfor­
mance: the FFTW solver is approximately 8 times faster
than the implementation of multigrid that it replaced.

[n addition, this new version of SCALLOP has a smaller
memory footprint, which also contributes to its better per­
formance, especially for larger problem sizes.

Results for a limited number of runs of this new version
of the code are shown in Table 3 and Figures 7 and 8.
With this version of SCALLOP we see are able to scale a
problem up from 16 to 1024 processors with only a factor
of 2 increase in running time. The initial local solutions re­
quire significantly more time than we had expected, and we
are currently investigating possible causes. A likely expla­
nation is that the odd size grids created necessary for the
calculation of the infinite domain boundary conditions are
inefficient sizes for FFTW. It is also clear, however, that the
boundary condition calculation itself is now dominating the
total solution time, and we will need to find a more efficient
algorithm for that part of SCALLOP.

Our analysis of the computation costs in Section 4.3 pre­
dicted that the best possible solution time for a serial solu­
tion would be equal to the solution time for the initial local
calculations. By this metric, the FFT\V-based version of
SCALLOP shows an overhead of only 45% to 80%. This re­
sult falls short of the ideal 20% overhead we had predicted,
but it is still quite reasonable.

c: o

15

'~10
o
'c
:J
E
E
8 5

"*

I_ Seaborgl

oL-----~----~~--~1~O~2·4-----

Figure 8: Communication overhead for the FFTW­
based version of SCALLOP. For these runs, each
processor is responsible for 96 * 1922 fine grid points.

5.5 Comparison to Other Options
Implementing a parallel finite-difference infinite domain

solver is difficult, and, to our knowledge, there are no sim­
ilar efforts with which we can compare ourselves. To get
an approximate idea of the cost of communication for a
more conventional method, we examined the scaling prop­
erties of a parallel FFT over a similar range of processors
and problem sizes. We chose this comparison for two rea­
sons. First, our latest implementation of SCALLOP uses
FFT-based subdomain solvers, so an implementation using
a parallel FFT would be the most natural competition. Sec­
ond, vendor-supplied parallel FFT solvers exist and provide
a fairer benchmark than code written by us.

At this point, we only have data at the extremes: on a
single processor and on 512 processors of NERSC's Seaborg
machine. A single real FFT problem of size 1283 ran in ap­
proximately 1.1 seconds on one processor. (A full Poisson
solution with Dirichlet boundary conditions requires both
forward and reverse FFT solutions in addition to a modest
amount of computation on the transformed data.) A 10243

problem on 512 processors (which represents 1283 points per
processor) required 5.5 seconds. This represents an an in­
crease of running time by a factor of 5.0 in scaling from 1
to 512 processors. This estimate of the slowdown also ig­
nores the additional cost of communication that would be
necessary in a parallelized version of the calculation of the
infinite domain boundary condition, which currently dom­
inates the total calculation. The communication required
for the boundary condition calculation itself would be quite
significant, since the calculation requires each processor to
receive O(N2) data from the other processors. [n compar­
ison to a slowdown of at least a factor of 5.0, the factor of
2.2 to 3.6 between the ideal serial cost and the actual cost
of SCALLOP appears quite good.

6. CONCLUSIONS AND FUTURE WORK
We have presented a communication-tolerant approach

for solving certain types of elliptic equations that trades off
communication against computation. Our strategy reflects
current technological constraints in which computation is a
relatively cheap commodity compared with communication.

We described the design of the SCALLOP solver, which

Input Parameters Times for Each Stage (seconds)
P q C N Local Reduction Global Boundary Final Total

16 4 3 384~ 130.1 . 0.53 60.9 2.95 3.70 198.8
128 8 6 7683 187.7 1.89 67.3 6.42 4.42 270.7

1024 16 12 15363 265.4 31.74 141.5 22.72 4.63 474.9

Table 3: Input parameters and timing breakdowns for runs of the FFTW-based version of SCALLOP, per­
formed on NERSC's Seaborg. For these runs, each processor is responsible for 96,* 1922 fine grid points.

realizes our strategy. In practice, the performance of SCAL­
LOP matches the expectations of our performance model
quite well. Communication costs are on the order of a few
percent of the total running time, and total computation
time can be predicted by the time required for the initial
fine grid calculations. The benefit of little communication
comes at the expense of added computation, but this over­
head is reasonable, and more importantly does not grow
much with the number of processors.

Most of the computational overhead in the multigrid ver­
sion of SCALLOP is due to the extra computation required
for the 27-point stencil in our multigrid solver. This large
portion of the overhead is removed when the subdomain so­
lutions are computed using an FFT -based solver, and the
preliminary tests which we have conducted with a soLver
based on FFTW appear promising. In addition to reduc­
ing the overhead involved in using the 27-point stencil, the
use of «'FTW also greatly improves the raw performance of
SCALLOP. Currently the largest portion of computational
effort is devoted to calculating the infinite domain bound­
ary condition. We are investigating ways to optimize this
computation.

One important benefit of SCALLOP over other possible
parallel solutions to the Poisson equation, especially purely
FFT-based methods, is the ability to modify our algorithm
and create an adaptive method [8]. A simple two-level adap­
tive method can be constructed whereby much computation
is avoided in regions of zero charge. The computational
overhead incurred by our method may then quickly become
negligible for problems in which the charge field covers only
a fraction of the computational domain.

As stated earlier, the most important limitation in the
current implementation of SCALLOP is the extra overlap
introduced on the fine grid subdomains. We believe this
limitation can be removed by generating the outlying coarse
grid data without calculating the corresponding find grid
data. This improvement will allow SCALLOP to scale up
to many thousands of processors, filling the largest machines
available today and in the next several years.

7. ACKNOWLEDGMENTS
Greg Balls and Scott Baden were supported by the Na­

tional Partnership for Advanced Computational Infrastruc­
ture (NPACI) under NSF contract AC19619020. Phillip
Colella's research is supported by the Mathematical, Infor­
mation, and Computational Sciences Division of the Office
of Science, U.S. Department of Energy under contract num­
ber DE-AC03-76SFOO098. This research used resources of
the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. De­
partment of Energy under Contract No. DE-AC03-76SF-
00098. Scott Baden dedicates this portion of his work to

Ruben Perlman (1909-2002). Thanks also to Ryan Szy­
powski for his help with data on FFT solvers. SCALLOP is
publicly available at
http://wvv-cse.ucsd.edu/groups/hpcl/scg/scallop/.

8. REFERENCES
[1] C. R. Anderson. A method of local corrections for

computing the velocity field due to a distribution of
vortex blobs. Journal of Computational Physics,
62:111-123, L986.

(2] S. B. Baden and S. J. Fink. Communication overlap in
multi-tier parallel algorithms. In Proc. of SC '98~
Orlando, Florida, November 1998.

[3] S. B. Baden and S. J. Fink. A programming
methodology for dual-tier multicomputers. IEEE
1hms. Software Engineering, 26{3):212-26, March
2000.

[4] S. B. Baden and D. Shalit. Performance tradeoffs in
multi-tier formulation of a finite difference method. In
Proc. 2001 International Conference on
Computational Science, San Francisco, CA, May 2001.

[5] G. T. Balls. A Finite Difference Domain
Decomposition Method Using Local Corrections fOT the
Solution of Poisson's Equation. PhD thesis~ University
of California, Berkeley, 1999.

[6] G. T. Balls and P. Colella. A finite difference domain
decomposition method using local corrections for the
solution of Poisson's equation. Journal of
Computational Physics, 180(1):25-53, July 2002.

[7] R. Bank and M. Holst. A new paradigm for parallel
adaptive meshing algorithms. SIAM Journal on
Scientific Computing, 22{4}:1411-1443, 2000.

[8J M. J. Berger and P. Colella. Local adaptive mesh
refinement for shock hydrodynamics. Journal of
Computational Physics, 82:64-84, 1989.

[9] W. L. Briggs. A Multigrid Tutorial. SIAM, 1987.
[10] S. J. Fink, S. R Kohn, and S. B. Baden. Efficient

run-time support for irregular block-structured
applications. Journal of Parallel and Distributed
Computing, 50(1-2):61-82, April-May 1998.

[11] M. Frigo and S. G. Johnson. FFTW: An adaptive
software architecture for the FFT. In ICASSP
Conference Proceedings, volume 3, pages 1381-1384.
ICASSP, 199B.

[12] L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. The Journal of Computational
Physics, 73:325-348, 1987.

[13] M. Holst. Applications of domain decomposition and
partition of unity methods in physics and geometry. In
L Herrera, D. E. Keyes, O. B. Widlund, and R. Yates,
editors, Proceedings of the Fourteenth International

Conference on Domain Decomposition Methods,
.January 2002.

[14] R. A. James. The solution of Poisson's equation for
isolated source distributions. Journal of
Computational Physics, 25(2):71-93, October 1977.

[15J K. J,ackner. Computation of ideal MHD equilibria.
Computer Physics Communications, 12(1):33-44,
1976.

[16] B. F. Smith and O. B. Widlund. A domain
decomposition algorithm using a heirarchical basis.
SIAM Journal on Scientific and Statistical Computing,
11(6):1212-1220, November 1990.

[17] A. Sohn and R. Biswas. Communication studies of
DMP and SMP machines. Technical Report
NAS-97-004, NAS, 1997.

[18] A. K. Somani and A. M. Sansano. Minimizing
overhead in parallel algorithms through overlapping
communication/computation. Technical Report 97-8,
ICASE, February 1997.

