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ABSTRACT 
SCALLOP is a highly scalable solver and library for elhp­
tic partial differential equations on regular block-structured 
domains. SCALLOP avoids high communication overheads 
algorithmically by taking advantage of the locality proper­
ties inherent to solutions to elliptic PDEs. Communication 
costs are small, on the order of a few percent of the to­
tal running time on up to 1024 processors of NPACl's and 
NERSC's IBM Power-3 SP sytems. SCALLOP trades off 
numerical overheads against communication. These numer­
ical overheads are independent of the number of processors 
for a wide range of problem sizes. SCALLOP is implicitly 
designed for innnite domain (free space) boundary condi­
tions, but the algorithm can be reformulated to accommo­
date other boundary conditions. The SCALLOP library is 
built on top of the KeLP programming system and runs on 
a variety of platforms. 

Keywords 
computation-intensive applications, parallel and distributed 
algorithms, program optimization and performance pro­
gramming 

1. INTRODUCTION 
If Terascale computing is to mature in the coming decade, 

then it must overcome the steadily increasing costs of in­
terprocessor communication relative to arithmetic compu­
tation. One approach is to mask communication costs by 
overlapping communication with computation (17, 18, 4, 3, 
2]. An alternative approach is to reduce the amount data 
communicated at the expense of additional computation. 
The fast multipole method [12], the method of local correc­
tions [1], and the finite element of Bank and Holst [7] all 
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take this second approach. Results presented by Holst 
include a rigorous proof that these types of algorithms can 
produce accurate results with little communication. 

We present SCALLOP, an elliptic partial differential equa­
tion solver in three dimensions that also employs the latter 
strategy, trading off the high cost of communication through 
algorithmic reformulation. SCALLOP employs a method of 
local corrections to mitigate distant numerical coupling in­
herent in elliptic partial differential equations, using a coarse 
grid approximation that effectively reduces the amount of 
information that must be moved among processon~. The 
added computational cost is purely local work! and the cost 
remains a constant which is independent of the number of 
processors. 

SCALLOP solves partial differential equations with infi­
nite domain (free space) boundary conditions. Such bound­
ary conditions are especially useful for calculations of astro­
physics phenomena. SCALLOP can be modified for prob­
lems involving other boundary conditions, but in this paper 
we focus exclusively on the infinite domain case~ and, for 
simplicity, we only discuss the solution to a particular par­
tial differential equation, the Poisson equation. 

Unlike domain decomposition methods such as [16] which 
require multiple iterations between the local and nonlocal 
descriptions, SCALLOP does not perform repeated itera­
tions between coarse and nne levels or several communi­
cation steps. SCALLOP reaches a solution to the Pois­
son equation in three steps and communicates data only 
twice. First, coarse grid data are communicated to gen­
erate a global coarse grid charge field. Second, coarse and 
fine boundary condition data are communicated once among 
neighboring regions. These communication costs are low in 
practice-on the order of a few percent-and come at the ex­
pense of computational (numerical) overhead. We show that 
the extra computation involved is reasonable, and signifi­
cantly, that the computational overhead is independent of 
the number of processors for a wide range of problem sizes. 
As a result, we are able to demonstrate scalability on up 
to 1024 processors of an IBM SP system, and we plan fu­
ture computations on thousands of processors. Our goal is 
to utilize fully the resources of ever-growing computational 
platforms. Therefore, we define scalability as the ability to 
run problems scaled appropriately to the number of proces­
sors and available memory in roughly constant time. This 



type of scalability is often called scaled speed-up. 
SCALLOP is a three dimensional extension of the two­

dimensional algorithm due to Balls and Colella [5, 6J. Our 
contribution is in two parts. The first part entails new nu­
merical techniques required in three dimensions and to per­
mit the computation to scale to thousands of processors. 
The second part is the theory behind performance tradeoffs 
needed to convert a terse description of a numerical algo­
rithm into a highly scalable solver. Significant performance 
programming accompanied this latter contribution, and in 
the process, we devised a performance model that is shown 
to match our results welL 

SCALLOP is representative of a class of algorithms that 
employ sophisticated numerical techniques to reduce com­
munication costs. The techniques in turn require an ap­
propriate software infrastructure to manage the underlying 
details, in particular the bookkeeping. To this end, SCAL­
LOP was built with the KeLP programming system [lOJ, a 
framework for implementing scientific applications on dis­
tributed memory parallel computers. KeLP provides geo­
metric and communication abstractions that facilitated the 
development of SCALLOP without sacrificing performance. 

2. PRELIMINARIES 
The equation we solve is the Poisson equation in three 

dimensions with a charge distribution p with compact sup­
port, I.e., the charge is only nonzero in a finite region of 
space. Specifically, we seek the solution </> to 

82
</> 82

</> 
~<P + oy2 + OZ2 = p(x, y, z) 

which has far-field behavior characterized by 

</> = - 4~xl +0 C~I)' IXI -+ 00, 

where R is the total 

R Lp(x)dx, 

and the region n contains the support of the charge p. 
For many engineering calculations, methods which are ac­

curate to O(h2) provide a good balance between accuracy 
and work required. We seek a solution which is accurate to 
O(h2) over the discretized computational domain nil., where 
h is the uniform discretization, as illustrated in Figure 1. 
This computational domain corresponds to the index set of 
the discrete solution </>h, i.e., the indices of the underlying 
discrete mesh. 

Since our goal is to solve the problem on parallel proces­
sors, we partition nil. into a set of disjoint subdomains n~: 

nil. Uni. 
k 

Our method entails solving local problems on each of the 
n~ in parallel,. as well as on a single coarsened global mesh 
nH. The spacing of this coarsened mesh is H = Gh, where 
G is a specified coarsening factor. 

We choose the domain nil. to be a rectangular region, nil. 
[~ it], where [and it are the integer vectors corresponding to 
the lower and upper corners of the region. The coarsened 
domain is then defined as 

Figure 1: Discretization. The outer boundary of 
the grid shown here corresponds to nil.. The regu­
lar mesh, with spacing h represents the uniform dis­
cretization of nil.. The charge field is non-zero within 
the grey region shown, also called the support of the 
charge p. The support of p lies completely within nh. 

where the operators l·J and r'l represent the floor and 
ceiling operators, respectively. 

Because our meshes are node-centered, the points of OH 
map directly onto corresponding points in nh, as shown in 
Figure 2, and no averaging is required to coarsen the mesh 
data. Thus, we can coarsen the mesh by sampling the mesh 
without having to interpolate. In particular, we coarsen a 
fine grid representation using the sample operator SH: for 
each point xc, we can find the coarse grid value "pH (xc) 
(where 1/JH has grid spacing H) by finding the fine grid point 
x at the corresponding position in 1/Jh (with grid spacing 
h HjG): 

For the discussion that follows, we also need one more bit 
of notation. The grow operation extends or shrinks an index 
domain by a uniform amount in each direction. If Oh = [~it] 
(where f = (Ix! ly, 1z) and i1 (UXl Uti' uz)), we define grow 
as 

grow(nh,g) {f (g,g,g),u+(g,g,g)]. 

When 9 < 0, grow returns a shrunken domain. 

3. THE METHOD 
The domain decomposition method presented here is built 

upon a method for solving single-processor infinite domain 
Poisson problems, as described in [5]. We will summarize 
the single-grid algorithm first, and then describe the domain 
decomposition algorithm. 

3.1 A Serial Infinite Domain Poisson Solver 
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Figure 2: A sampling mesh for a coarsening factor 
of 4. Coarse grid points shown as bold face disks co­
incide with fine grid points, so sampling is sufficient 
to transfer data from fine to coarse: no averaging is 
necessary. 

Following methods described in [14J and [15], we are able 
to calculate a solution to the Poisson equation with infinite 
domain boundary conditions in three steps, using two grids. 
The first grid, referred to here as the inner grid or Oh,g, is 
10% larger than the support of the charge in each dimension. 
The second grid, called the outer grid or Oh,G, is 20% larger 
than the support of the charge in each dimension. Spacing 
the grids this way, such that the boundaries are sufficiently 
removed from the support of the charge, is necessary for 
accurate solutions. The three steps required to calculate 
the solution are as follows: 

1. Find the solution to the Poisson equation on the inner 
grid, 011..9 , using Dirichlet boundary conditions. 

2. Calculate a charge along the inner grid boundary equal 
to the normal derivative of initial solution at the inner 
grid boundary, and integrate this charge numerically 
to calculate boundary conditions at each point on the 
outer grid. 

3. Find the solution to the Poisson equation on the outer 
grid, Oh,G, using the boundary conditions calculated 
in step 2. 

This approach is identical to the approach described in 
[5J and [6J except in the way the integration is performed 
in step 2. In two dimensions, the integration of the charge 
requires O(N2) work, where N is the length of a side of 
the grid. In three dimensions, straightforward integration 
requires O(N4) work and would soon overwhelm the O(N3) 
work required for each Poisson solution. The work required 
can be reduced to 0 (N3

) by taking advantage of the smooth­
ness of the solution, however. We do this by integrating the 

Figure 3: Extended Local Grids. The local solution 
to each of the 16 subdomains shown here is found 
on an extended region. One such region is indicated 
by the dashed box. 

charge from the inner grid onto a coarsened version of the 
outer grid, with mesh spacing H = hjO( ..IN). The integra­
tion can then be written as: 

<p~.G(11)lanH.G = L a:i9 

(x)G(x, 11) 
k xEanZ. g 

where GO is the Green's function: 

1 
G(x,11) = 411'Ix - iii' 

The integration step thus requires O(N3) work, and the 
subsequent interpolation required to set the outer fine grid 
boundary from the coarse grid data adds only O(N2) work. 

3.2 Domain Decomposition 
The domain decomposition algorithm in SCALLOP is a 

finite-difference analogue of Anderson's method of local cor­
rections [1]. Our algorithm consists of three computational 
steps interspersed by two communication steps. We follow 
the general design of the two-dimensional algorithm, as de­
scribed in [5] and [6]. 

1. In the first step we calculate a solution on each local 
subdomain, which has been augmented with an overlap 
region. As in the serial case, we need an expanded 
OZ·G, at least 20% larger than O~ in each dimension, in 
order to calculate an accurate infinite domain solution. 
In the domain decomposition method, the effect of this 
requirement is to cause the individual subdomains to 
overlap, as shown in Figure 3. 

On each extended subdomain nZ· G we solve the Pois­
son equation 



with infinite domain boundary conditions, evaluated as 
described for the serial case above. The .6.27 operator 
represents the Laplacian calculated with the 27-point 
stencil of nearest neighbor points. The 27-point sten­
cil is necessary because of its error characteristics: the 
error associated with the 27-point stencil is essential 
for maintaining O(h2) accuracy overall by coordinat­
ing the precise interaction between the coarse and fine 
grid data. 

2. We next couple the local solutions computed in the 
previous step by solving another Poisson equation on a 
grid covering the entire domain. Owing to well known 
locality properties of solutions to Poisson's equation, 
a crucial observation is that we may perform the far­
field coupling with a reduced description of the data, 
Le., on a coarsened version. We can therefore keep 
the cost of global coupling modest, both in terms of 
communication and computation. To maintain O(h2) 
accuracy, we will need to make local corrections to this 
far-field data in the third and final step. 

This step contains 4 sub-steps: 

(a) Coarsen each local solution computed in step 1, 
by applying the sampling operator SH to the local 
fine meshes: 

4>::.G = SH (4)~.G) 

(b) Apply the Laplacian operator, ~27, to 4>:,G, in 
order to generate local coarse charge fields: 

Rt: {~27¢::·G, on grow (O::,G , 
0, otherwise. 

(c) Assemble the local coarse charge fields into a sin­
gle global right hand side. Due to the extension 
of the local grids, as shown in Figure 3, the pieces 
will overlap in physical space. We accumulate the 
overlapping parts into the global right hand side 
by summation: 

(d) Solve the Poisson equation with infinite domain 
boundary conditions on the coarsened right hand 
side RH: 

~274>H = RH on OH 

3. In the third step we compute the global fine grid solu­
tion. At the end of this step, each processor will have 
the solution for its assigned subdomain n~. 

This step entails a calculation of a local solution on 
each patch, O~, with Dirichlet boundary conditions: 

.6.74>~ = pZ. 
where ~7 is the Laplacian operator using a 7-point 
stencil of nearest neighbors along the Manhattan di­
rections l

. Note that these calculations are carried out 
on the non-overlapping O~ subdomains. 

lWe do not use the more expensive 27-point stencil, since the 
accuracy required for this solution is not nearly as stringent 
as in the previous steps [5J 

Figure 4: The dOll1ain of influence of a fine grid point 
x. With the correction distance D 2, the domain 
of influence for point X, marked by an x in the figure, 
is the five-by-five set of coarse grid points within the 
shaded region. 

Boundary conditions for this final step are determined 
by combining values interpolated from corresponding 
coarse patches computed in step 2 with data from 
nearby fi ne patches. We must correct the coarse data 
to remove local effects before interpolating, since these 
local effects will be added through the local fine grid 
data. Communication is required among nearest neigh­
bors in order to share the fine grid data near the inter­
faces prior to this final solution pass. The boundary 
computation proceeds as follows. 

To describe the computations, we introduce the notion 
of a domain of influence. The domain of influence of i 
is the set of coarsened points within D units of i. The 
variable D represents a correction distance required for 
accurate interpolation. For our O(h2) accurate algo­
rithm, D 2. If C is the coarsening factor, as before, 
we can define the domain of influence as 

01J{;l) [ilC - (D, D, D), + (D,D,D)], 

as depicted in Figure 4. We use the notation 'D(i) to 
signify the set of indices corresponding to subdomains 
k' that contain the domain of influence of x: 

For each boundary point i on the boundary of n~, we 
compute 

L 4>Z,{x) + I{4>H,Corrett) 

k'EV{:J!) 

where I is the interpolation operator used to trans­
fer information from coarse grid to the fine grid, and 
1;IH,Correct is the locally corrected coarse grid. 



Thus, each boundary point gets a local contribution 
from all overlapping fine meshes computed in step 1 
plus a. quantity derived from the coarse mesh, provid­
ing the effects of far-field charges. 

To locally correct the coarse grid solution at a point X, 
we subtract the coarsened values of the fine grids ¢~, 
for all grids k' E V(X). Thus we compute ¢H,CorTect as 
follows: 

¢H,COrffCi(£} ¢H - L SH (¢Z, )(fijC) , 
k'E'D(x) 

where ,pH is the global solution computed in step 2, 
and SH (¢~, )(x/C) is the coarsened version of the s0-

lution computed in step 1. 

4. PERFORMANCE MODEL 
As mentioned previously, the principle behind SCALLOP 

is to trade off communication against computation. We next 
discuss these tradeoffs and show that they are reasonable. 
We describe a performance model, and use it to show that 
in theory the overheads are reasonable. In the following 
two sections we reconcile our predictions with practice. Our 
model also motivates future extensions that should enable 
SCALLOP to scale to 256K processors, and we discuss these 
improvements later on. 

In determining the computational overhead in SCALLOP, 
we will use the serial infinite domain Poisson solver as a 
baseline. We will first show that the cost of our initial fine 
grid solutions is similar to the cost of a serial solution, ex­
cept that our initial solutions are calculated using a 27-point 
rather than a 7-point stencil. The computational overhead 
in SCALLOP, then, can be described as the sum of three 
costs: the extra time required for the 27-point stencil, the 
cost of the coarse grid solution, and the time required for 
the final local solutions on fine grid data. We will discuss 
each of these costs, and show that with the proper choice 
of a coarsening factor, SCALLOP should be able to scale to 
thousands of processors. 

4.1 Serial Infinite Domain Poisson Solver 
The SCALLOP algorithm is built from many of the same 

computational pieces as the serial infinite domain Poisson 
solver. We will examine the computational costs involved in 
the serial solver first and compare this cost with the cost of 
the initial solutions in SCALLOP. 

SCALLOP was originally implemented using a multigrid 
solver (9] to calculate the solutions to the Dirichlet problems 
within our infinite domain solver. Very recently, SCALLOP 
was redesigned to use an FFT solver in place of multigrid 
since we found that the FFTW [11] library provided signifi­
cantly faster uniprocessor performance. Most of the results 
in this pa.per are based on the original multigrid code, how­
ever, so we will base our analysis on that solver and then 
discuss the effects of switching to the FFTW solver. 

For now, let us consider only cubical domains with edge 
length N, and let us define the time to solve a Dirichlet 
problem with a. 7-point stencil on a grid of size N as S7(N). 

Due to requirements of the infinite domain solver, we must 
solve two Dirichlet problems on domains larger than size N, 
one with edges of length LIN and another with edges of 
length 1.2N. For our three dimensional problem, 

S7(LIN) ~ 1.3S7(N} 

and 

S7(1.2N) ~ 1.7S7 (N) 

The boundary condition calculation required for an in­
finite domain Poisson solution is dominated by an O(N3) 
problem, as discussed in Section 3.1. By taking advantage of 
symmetry in the calculation, we are able to reduce the num­
ber of times we evaluate the distance calculation within the 
Green's function by close to a factor of 10. After these op­
timizations, we find experimentally that the boundary cal­
culation takes approximately as long as 1.2S7(N). 

The total time required, TSlDl for a serial infinite domain 
Poisson solution using the 7-point stencil is then approxi­
mately 

TSlD ~ 1.3S7(N) + 1. 7S7(N) + L2S7(N) 

~ 4.2S7(N). 

Thus the time required for a solution with infinite domain 
boundary conditions is significantly greater than the time 
required for a Dirichlet problem of similar size. 

The initial fine grid solutions performed in SCALLOP are 
of the same aggregate size as an equivalent serial calculation. 
For a problem divided into q subdomains on a side, or q3 
total 8ubdomains, each subdomain for an problem of size 
N will have an edge length of N/q. It is easy to see that 
the costs of calculating the inner and outer solutions for a 
collection of subdomains are the same as those found for the 
serial case above. 

The only computational overhead introduced by our algo­
rithm during the initial fine grid solutions involves the use 
of a 27-point stencil. The 27-point stencil is required for 
accuracy reasons. The total work required for S27(N) is ap­
proximately 3.8 times the work required for S7{N) in terms 
of floating point operations. Due to effects in the memory 
hierarchy of the machines we have used, however, the dif­
ference in the time required for S7(N) and S'l7(N) is not as 
great as the operation count would suggest. For our runs on 
Blue Horizon and Seaborg'l, we ha.ve found that S27(N) is 
very nearly 2.0 times more expensive than S7(N). The cost 
of the initial local fine grid calculations, Tlarol, in SCALLOP 
can be estimated as 

Tzocal ~ 2.0(1.3S7(N) + 1.7S7(N» 

+1.2S7(N) 

~ 7.2S7 (N) 

~ 1.7TslD. 

As we will see, this factor of 1.7 represents the majority of 
the computational overhead in our current implementation. 

The change from our original multigrid solver to our newer 
FFTW-based solver alters these estimates somewhat. The 
main motivation for using FFTW is the uniprocessor per­
formance it provides. We find that we are able to solve 
an equivalent problem with FFTW approximately 8 times 
faster than with our multigrid code. As a result, we have a 
new benchmark for comparison: 

S7-fftw(N) ~ O.I3S7(N). 

Another benefit of the FFTW solver is that it does not im­
pose a performance penalty for solving the 27 -point sten­
cil, that is, S:l7-fftw(N) ~ S7-jJtw(N). Compared with the 

2Both Blue Horizon and Seaborg are IBM SP systems with 
Power3 processors. 



FFTW Poisson solver, however, the infinite domain calcu­
lation appears significantly slower, requiring approximately 
9.6S7-jJtw(N). In total, these changes result in an estimate 
for Tloclll- jJtw of 

T!acal-fftw ~ 3.0S1-fftw(N) 

+9.6S1-fftw (N) 

~ 13S1-fftw TSfD-fftw 

In this case, we see that the cost of the initial fine grid solu­
tions in SCALLOP will be the same as for a corresponding 
serial solution, but that the cost of calculating the infinite 
domain boundary conditions swamps the cost of calculating 
the solutions to the simpler Dirichlet boundary condition 
problems. 

4.2 The Coarse Grid Solution 
In comparing the computational cost of SCALLOP to a 

serial infinite domain solver, the cost of computing the so­
lution on the global coarse grid is overhead. We want to de­
termine what range of problems can be solved with minimal 
computational overhead due to the coarse grid calculation. 
Our goal is to keep the cost of the coarse grid solution small 
enough that this overhead can be ignored. 

As before, let N be the length of a side, thus N 3 is the 
total number of points. Let q be the number of subdomains 
on a side. Then q3 is the total number of subdomains, or 
processors, and 

N 
q 

is the length of a local fine subdomain. 
Let C be the coarsening factor, as defined previously, such 

that the size of coarse grid, Nc , is N/C. Again, as with the 
fine grid solutions, the coarse grid solutions are calculated 
on domains larger than this, but since both the fine and 
coarse grids are enlarged by the same ratio, we will use these 
definitions of Nt and Nc for this analysis. 

In order to minimize the overhead due to calculating the 
coarse grid solution, we want Nc < N, and therefore 

N N 
-<-C q 

or 

q< C. 

Since the accuracy of the solution is only weakly dependent 
on our choice of C, we prefer to have q :::; C /2. This choice 
makes the coarse grid calculation 1/8 as large each fine grid 
calculation and therefore nearly an order of magnitude less 
expensive. Thus, the cost can safely be ignored. 

The ratio N / (qC) represents the number of coarse grid 
cells per fine grid subdomain. The case where qC N cor­
responds to the limiting case, representing both the max­
imum amount of parallelism and the maximum coarsening 
factor possible. In this limit there is exactly one coarse cell 
per fine grid subdomain, or a single coarse point on each 
corner of a subdomain. When qC < N we have multiple 
coarse grid points per fine domain, including some on the 
interior. 

Given the amount of memory available per processor, it is 
straightforward to calculate the maximum possible problem 
size. At the limit of qC = N, we have C = N/q which is the 
same as Nj. If we choose q = C /2, as suggested above, then 

we can determine the maximum number of subdomains in 
terms of the size of the local fine grid: 

q 
N, 
2' 

As an example, given a machine with sufficient memory 
for 1283 points per processor (NJ 128), the algorithm 
would allow scaling up to q = 64 subdomains per side, or 
q3 = P = 262,144 processors without introducing excessive 
computational overhead due to the coarse grid calculation. 
Platforms in this regime will be available soon3

• 

4.3 Summary of Computational Overhead 
We have discussed the first two sources of computational 

overhead in SCALLOP: the extra time required for the 27-
point stencil and the cost of the coarse grid solution. The 
only source of overhead not addressed so far is the cost of 
the final fine grid solutions. We will briefly discuss the cost 
of this final step and then sum up these contributions to 
get an estimate of the overall computational overhead of 
SCALLOP. 

The final fine grid solutions are standard Dirichlet prob­
lems calculated using a 7 -point stencil. These are precisely 
the type of problem on which we based the estimates of the 
infinite domain solutions. Thus the overhead due to the fi­
nal fine grid solutions is S1(N), or approximately O.24Ts/D, 
for the multigrid version of SCALLOP. 

At this point we can sum up the various calculation costs. 
In the current implementation, the time spent on the initial 
fine grid solutions is 1. 7TsID. By chOOSing the coarsening 
factor, C, and the number of subdomains per side, q, care­
fully, we can limit the time required for the solution on the 
coarse grid to 1/8 the cost of the initial fine grid solutions, 
or approximately O.21TsJD. Adding in the cost of the final 
fine grid solutions, we arrive at a total cost estimate of 

TSCALLOP ~ 1.7TsID + O.21TslD + O.24TsID 

~ 2.2Ts/D. 

While a factor of 2 in computation time may seem large, we 
believe it is a reasonable tradeoff for a. method which scales 
to large numbers of processors with very little communica­
tion overhead. 

For the FFTW version of SCALLOP we found that the 
initial fine grid solution takes only as long as the equivalent 
serial solution. In the FFTW version, the coarse grid still 
requires 1/8 as much work as the initial local fine grid s0-

lutions. We expect the final fine grid solutions to require 
only about 1/13, or 0.08 as much time as TS/D-fftw, how­
ever, since the infinite domain solutions are bound by the 
infinite domain boundary condition calculation in this case. 
Collecting all these factors, we find 

TSCALLOP-fftw ~ TSID-fftw + O.13TsJD-fftw 

+O.08TsID-fftw 

~ 1 ,,2Ts1D -lJtw . 

For the FFTW version of SCALLOP, the computational 
overhead introduced is quite small. We note that a large 
part of the reason for the low overhead is the inefficiency 

3BlueGene/L will have 128K processors with 128 MB of 
memory per processor. This amount of memory is sufficient 
to store 4 8-byte field variables at each of 1283 points per 
processor with room left over for overhead. 



of the infinite domain boundary condition calculation. At 
this point more effort needs to be focused on optimizing that 
piece of the algorithm. Even if we manage to reduce the cost 
of TSID-f!tw to nearly S1-fftw, the computational overhead 
of SCALLOP will still be only slightly more than a factor 
of 2. 

4.4 Further Implementation Details 
There are a few details of our implementation that af­

fect the performance of SCALLOP and therefore must be 
discussed in order to understand the results that follow. 

In the current implementation, the global coarse grid prob­
lem is solved red undantly on all the processors. This phase 
of the computation could be made more efficient by using 
a parallel solver, but we have chosen this approach since 
all the processors will need a copy of the result anyway. We 
have taken this redundant computation into account implic­
itly in our discussion of the scaling requirements in section 
4.2. Since the coarse grid computation will ideally take a 
small amount of time, we have not incorporated a parallel 
coarse grid solver into SCALLOP. 

Also, our implementation currently only creates cubical 
subdomains, but it allows for multiple subdomains to be 
computed per processor. In our test cases, we attempt to 
ke€p the ratio of fine grid points and coarse grid points 
nearly constant. \Ve do this by adjusting both the coars­
ening factor and the number of subdomains per processor. 
The number of fine grid points is equivalent to N 3 

/ l, while 
the number of coarse grid points is N 3 /C3

• so for our tests 
we keep the ratio between q and C as close to constant as 
possible. 

Another important detail relates to the size of the initial 
fine grid 8ubdomains, In the first step described in Section 
3.2, we described the overlap of subdomains due to the re­
quirements of the infinite domain boundary conditions. This 
requirement can be specified as 

nZ·G 
= grow(nt (O.l(len(n~))), 

For the third step described in Section 3.2, we need an annu­
lus of D coarse grid points around each subdomain. The val­
ues at these coarse grid points need to represent the same s0-

lution as the initial fine grid solution, sampled onto a coarser 
mesh. 

In order to generate these coarse grid points, we solve the 
initial fine grid problems on domains large enough to allow 
us to sample the necessary coarse grid points from the fine 
grid in step 2a. This implementation choice leads to an 
additional requirement on nh,G: 

n~·G = grow(n~, max(O.l(len(n~»,CD», 

where len(ni) represents the length of the longest side of 
n~, C represents the coarsening factor, and D represents 
the correction distance. For large coarsening factors, the 
size of nZ·G is determined by CD. 

For O(h7.) accuracy, D 2. OUf implementation therefore 
requires an extended domain of at least 2C points in each 
direction, or an additional 4C points per side. As a result, 
the fine grids may need to be extended beyond the 10% 
growth in each direction (20% more points per side) required 
for a serial infinite domain calculation. Thus, the numerical 
constraints behind the SCALLOP algorithm do not predict 
the performance constraints required to achieve scalability. 

Specifically, 

Nf.G = max{1.2Nj,Nf + 4C}. 

To avoid introducing additional overhead for our imple­
mentation, we need 4C < O.2NJ so that fine grid sizes are 
not determined by the 4C term in the max above. If we 
also have C = 2q as before, to limit the overhead due to the 
coarse grid solution, then we require 

4C = 8q < 0.2Nf 

or 

q < O.025Nf· 

As a result, the requirements imposed by our implementa­
tion force us to increase computational costs in both the 
local fine solutions and the global coarse solutions in or­
der to scale to larger numbers of processors (in the next 
section). First, we violate the constraint that q :::; C /2, 
mentioned earlier in this section. We set C ~ 1.25q, thus 
making the coarse grid solution approximately one-half as 
computationally expensive as the fine grid solutions, rather 
than one-eighth, as was our original goal. This effect is 
implementation-dependent, and we have a strategy for re­
moving this obstacle, which we will discuss below. Second, 
we allow the fine grid subdomains to be expanded slightly 
more than 0.2Nf in some cases, allowing for larger values of 
C, but creating additional computational overhead on the 
fine grid solutions. 

In order for SCALLOP to be efficient and scalable up to 
and beyond the limits of current large scale machines, it is 
important to remove this limitation on the relationship be­
tween C and N,. We believe it is possible to generate the 
necessary coarse grid points in the overlap region using a 
Gre€n's function, in the same way that we calculate the in­
finite domain boundary conditions for the initial fine grid 
solutions. The calculation of the coarse grid data for the 
overlap regions could then be accomplished with little addi­
tional computation and without enlarging the correspond­
ing fine grids beyond the requirements of the infinite do­
main boundary calculation. We plan on implementing these 
changes in the near future. 

5. RESULTS 
In this section we present computational results which 

demonstrate the low communication overhead of SCALLOP. 
We also compare our performance results with the estimates 
presented earlier. We ran the multigrid implementation of 
SCALLOP on up to 1024 processors of an IBM SP system. 
While generating these data, we found that SCALLOP ran 
out of memory on larger problem sizes toward the end of cal­
culations. Consequently, for runs with more than 128 pro­
cessors, we ran on twice as many nodes as necessary, using 
only half the processors on each node in order to have suf­
ficient memory to complete the calculations. We have since 
isolated the problem, which was due to allocating memory 
in a way which scaled very poorly. By running on twice as 
many nodes as should have been necessary, we believe we pe­
nalized communication even more than in the ideal case, but 
the inefficient memory allocation routine also causes some 
of the later serial stages of the SCALLOP algorithm to run 
significantly more slowly than expected. We have corrected 
the faulty code in the FFTW version of SCALLOP, and we 
show a few of those results later, but we were unable to apply 



the corrections and reproduce the results for the muitigrid 
version of SCALLOP in time for this paper. 

5.1 Hardware 
We ran on NPACl's Blue Horizon IBM SP system4

, lo­
cated at the San Diego Supercomputer Center. Blue Hori­
zon contains 144 POWERJ SMP High Nodes (model num­
ber 9076-260) interconnected with a "Colony'" switch. Each 
node is an 8-way Symmetric Multiprocessor (SMP) based 
on 375 MHz Power-3 processors5

! sharing 4 Gigabytes of 
memory, and running AIX 5L. Each processor has 8 MB of 
4-way set associative L2 cache, and 64 KB of 12S-way set 
associative Ll cache. Both caches have a 128-byte line size. 
Each CPU has 1.5 GB/sec bandwidth to memory. 

We also ran on NERSC's Seaborg IBM SP system, which 
is similar to Blue Horizon, but with 16 processors and 16 
Gigabytes of memory per node, and a total of 146 nodes. 

On both machines, we used the installed IBM C++ and 
Fortran 77 compilers, mpCC and xlf. C++ code was com­
piled with compiler options -02 -qarch=:pwr3 -qtune=pwr3. 
Fortran 77 was compiled with compiler option -02. 

5.2 Performance Measurement Technique 
We used the standard environment variable settings On 

Seaborg and Blue Horizon, and we collected timings in batch 
mode using loadleveler. The timings reported are based on 
wall-clock times, obtained with MPLWtime O. 

Each calculation was performed 3 times. Variation among 
the runs was less than 10%. The times reported are for the 
runs with the shortest total times. 

5.3 Communication and Computation Over­
head 

The run parameters and timing results for the perfor­
mance tests on Blue Horizon and Seaborg are shown in Ta­
bles 1 and 2. 

In order to measure performance, we scaled the work lin­
early with the number of processors. Ideally, computation 
time would remain constant. The scaled speed-up tests 
shown in Figure 5 demonstrate that SCALLOP scales well 
up to 512 processors and that the running times vary by a 
reasonable amount from the ideal. Communication overhead 
is low in SCALLOP. As shown in Figure 6, communication 
overhead is less than 3% on up to 512 processors. 

As can be seen in Tables 1 and 2, time spent on the coarse 
grid solutions is approximately one half to one quarter the 
time spent on fine grid solutions. Ideally, the time required 
for coarse grid solutions would be negligible, but these re­
sults match our expectations since we chose C values of ap­
proximately 1.25q and 1.5q. Reducing the fine grid overlap 
requirement as described in Section 4.4 will consequently al­
low us to reduce the global coarse grid size, thereby reducing 
this part of the computational overhead. 

For runs on up to 64 processors, the time required for 
the first pass solutions on the fine grid data ranges from 6.3 
to 10.45 times the time required for the final pass, which 
roughly matches the estimated factor of 7.2 predicted in 
Section 4.3. For the same set of runs, the ratio of total time 
to the time required for the final solution ranges from 9.4 to 
15.0. In Section 4.3, we predicted a ratio between the total 

4http://www.npaci.edu/BlueHorizon/ 
5http://www.rs6000.ibm.com/resource/technology/sppw3-
tec.html 

Processors 

Figure 5: Computation times per point on Blue 
Horizon and Seaborg. Simulations on Blue Hori­
zon have approximately 1003 solution points per pro­
cessor. Simulations on Seaborg have approximately 
1603 solution points per processor. 
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Figure 6: Communication overhead is small. 



Input Parallieters Tillies for Each Stage (seconds) 
P q C N Local Reduction Global Boundary Final Total 

8 2 3 192" 57.6 0.06 15.3 0.59 6.3 80.1 
64 4 6 3843 56.7 0.14 11.0 0.10 8.2 77.1 
16 4 4 256" 51.9 0.11 12.1 0.12 6.6 72.3 
128 8 8 5123 73.2 0.32 12.6 1.93 23.4 112.0 

32 4 5 320;5 75.6 0.11 11.6 0.73 7.3 95.5 
256 8 10 6403 109.0 1.28 12.3 2.14 25.3 150.4 

Table 1: Input parameters and tilliing breakdowns for runs perforllled on NPACl's Blue Horizon. The Local 
and Global solutions elliploy a free space solver using the 6-27 operator, and the Final calculation solves the 
Dirichlet probleIn with the 67 operator. Reduction acculliulates the coarsened local solutions into a single 
coarse grid for the Global solve. Boundary corrects the result of the Final solution. P is the nUInber of 
processors, q is the nUInher of subdoInains on a side, and C is the coarsening factor. The lines are sorted 
such that runs with the saIne nUInber of points per processor appear next to each other, but all the runs 
have approximately 1003 points per processor. Only the runs for P=8 and P=64 employ just one domain per 
processor. 

Input Parameters TiInes for Each Stage (seconds) 
P q C N I Local Reduction Global Boundary Final Total 

16 4 3 384" 234.5 0.54 190.7 2.91 30.7 461.5 
128 8 6 7683 229.5 4.29 136.8 5.72 89.8 467.8 
32 

: I : 
512" 237.1 0.80 153.4 2.86 37.8 433.8 

256 10243 214.9 2.35 127.3 5.33 90.9 443.9 

64 I! I 5 
640J 263.7 0.81 136.8 2.86 40.6 445.3 

512 8 10 12803 311.37 1.98 108.3 6.04 127.7 558.0 

Table 2: Input parameters and timing breakdowns for runs performed on NERSC's Seaborg. As in Table 1, 
the lines are sorted such that runs with the S8llle nUlliber of points per processor appear next to each other. 
For these runs, each processor is responsible for approximately 1603 points. 
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Figure 7: Grind times for the FFTW-based version 
of SCALLOP. For these runs, each processor is re­
sponsible for 96 * 1922 fine grid points. 

running time and the time of the final solution of 2.15 to 
0.24, or approximately 9.0. Our results show some overhead 
above the computational overhead inherent in the algorithm, 
mostly due to the tradeoffs we discussed in Section 4.4. In 
terms of the computation required for a serial solution, our 
running times represent 2.2 to 3.6 times TSID, while we 
predicted a factor of 2.15. 

On more than 64 processors, the final pass takes longer 
than expected. reducing the apparent computational over­
head as a result. We have not yet determined the reason for 
this anomaly, but it may be related to the memory issues 
discussed previously. 

5.4 Recent Results with FFTW-based SCAL­
LOP 

We have recently implemented the FFTW-based version 
of SCALLOP. As discussed earlier, the main benefit of using 
FFTW within SCALLOP is improved uniprocessor perfor­
mance: the FFTW solver is approximately 8 times faster 
than the implementation of multigrid that it replaced. 

[n addition, this new version of SCALLOP has a smaller 
memory footprint, which also contributes to its better per­
formance, especially for larger problem sizes. 

Results for a limited number of runs of this new version 
of the code are shown in Table 3 and Figures 7 and 8. 
With this version of SCALLOP we see are able to scale a 
problem up from 16 to 1024 processors with only a factor 
of 2 increase in running time. The initial local solutions re­
quire significantly more time than we had expected, and we 
are currently investigating possible causes. A likely expla­
nation is that the odd size grids created necessary for the 
calculation of the infinite domain boundary conditions are 
inefficient sizes for FFTW. It is also clear, however, that the 
boundary condition calculation itself is now dominating the 
total solution time, and we will need to find a more efficient 
algorithm for that part of SCALLOP. 

Our analysis of the computation costs in Section 4.3 pre­
dicted that the best possible solution time for a serial solu­
tion would be equal to the solution time for the initial local 
calculations. By this metric, the FFT\V-based version of 
SCALLOP shows an overhead of only 45% to 80%. This re­
sult falls short of the ideal 20% overhead we had predicted, 
but it is still quite reasonable. 
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Figure 8: Communication overhead for the FFTW­
based version of SCALLOP. For these runs, each 
processor is responsible for 96 * 1922 fine grid points. 

5.5 Comparison to Other Options 
Implementing a parallel finite-difference infinite domain 

solver is difficult, and, to our knowledge, there are no sim­
ilar efforts with which we can compare ourselves. To get 
an approximate idea of the cost of communication for a 
more conventional method, we examined the scaling prop­
erties of a parallel FFT over a similar range of processors 
and problem sizes. We chose this comparison for two rea­
sons. First, our latest implementation of SCALLOP uses 
FFT-based subdomain solvers, so an implementation using 
a parallel FFT would be the most natural competition. Sec­
ond, vendor-supplied parallel FFT solvers exist and provide 
a fairer benchmark than code written by us. 

At this point, we only have data at the extremes: on a 
single processor and on 512 processors of NERSC's Seaborg 
machine. A single real FFT problem of size 1283 ran in ap­
proximately 1.1 seconds on one processor. (A full Poisson 
solution with Dirichlet boundary conditions requires both 
forward and reverse FFT solutions in addition to a modest 
amount of computation on the transformed data.) A 10243 

problem on 512 processors (which represents 1283 points per 
processor) required 5.5 seconds. This represents an an in­
crease of running time by a factor of 5.0 in scaling from 1 
to 512 processors. This estimate of the slowdown also ig­
nores the additional cost of communication that would be 
necessary in a parallelized version of the calculation of the 
infinite domain boundary condition, which currently dom­
inates the total calculation. The communication required 
for the boundary condition calculation itself would be quite 
significant, since the calculation requires each processor to 
receive O(N2) data from the other processors. [n compar­
ison to a slowdown of at least a factor of 5.0, the factor of 
2.2 to 3.6 between the ideal serial cost and the actual cost 
of SCALLOP appears quite good. 

6. CONCLUSIONS AND FUTURE WORK 
We have presented a communication-tolerant approach 

for solving certain types of elliptic equations that trades off 
communication against computation. Our strategy reflects 
current technological constraints in which computation is a 
relatively cheap commodity compared with communication. 

We described the design of the SCALLOP solver, which 



Input Parameters Times for Each Stage (seconds) 
P q C N Local Reduction Global Boundary Final Total 

16 4 3 384~ 130.1 . 0.53 60.9 2.95 3.70 198.8 
128 8 6 7683 187.7 1.89 67.3 6.42 4.42 270.7 

1024 16 12 15363 265.4 31.74 141.5 22.72 4.63 474.9 

Table 3: Input parameters and timing breakdowns for runs of the FFTW-based version of SCALLOP, per­
formed on NERSC's Seaborg. For these runs, each processor is responsible for 96,* 1922 fine grid points. 

realizes our strategy. In practice, the performance of SCAL­
LOP matches the expectations of our performance model 
quite well. Communication costs are on the order of a few 
percent of the total running time, and total computation 
time can be predicted by the time required for the initial 
fine grid calculations. The benefit of little communication 
comes at the expense of added computation, but this over­
head is reasonable, and more importantly does not grow 
much with the number of processors. 

Most of the computational overhead in the multigrid ver­
sion of SCALLOP is due to the extra computation required 
for the 27-point stencil in our multigrid solver. This large 
portion of the overhead is removed when the subdomain so­
lutions are computed using an FFT -based solver, and the 
preliminary tests which we have conducted with a soLver 
based on FFTW appear promising. In addition to reduc­
ing the overhead involved in using the 27-point stencil, the 
use of «'FTW also greatly improves the raw performance of 
SCALLOP. Currently the largest portion of computational 
effort is devoted to calculating the infinite domain bound­
ary condition. We are investigating ways to optimize this 
computation. 

One important benefit of SCALLOP over other possible 
parallel solutions to the Poisson equation, especially purely 
FFT-based methods, is the ability to modify our algorithm 
and create an adaptive method [8]. A simple two-level adap­
tive method can be constructed whereby much computation 
is avoided in regions of zero charge. The computational 
overhead incurred by our method may then quickly become 
negligible for problems in which the charge field covers only 
a fraction of the computational domain. 

As stated earlier, the most important limitation in the 
current implementation of SCALLOP is the extra overlap 
introduced on the fine grid subdomains. We believe this 
limitation can be removed by generating the outlying coarse 
grid data without calculating the corresponding find grid 
data. This improvement will allow SCALLOP to scale up 
to many thousands of processors, filling the largest machines 
available today and in the next several years. 
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