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Abstract 

A numerical scheme for simulation of unsteady, 
viscous, compressible Hows is considered. The scheme 
employs an explicit discretization of the inviscid terms 
of the Navier-Stokes equations and an implicit discretiza
tion of the viscous terms. The discretization is second 
order accurate in both space and time. Under appro
priate assumptions, the implicit system of equations 
can be decoupled into two linear systems of reduced 
rank. These are solved efficiently using a Gauss-Seidel 
method with multigrid convergence acceleration. When 
coupled with a solution-adaptive mesh refinement tech
nique, the hybrid explicit-implicit scheme provides an 
effective methodology for accurate simulations of un
steady viscous flows. The methodology is demonstrated 
for both body-fitted structured grids and for rectangu
lar (Cartesian) grids. 

Introduction 

For simulation of unsteady inviscid compressible 
flows, techniques based on explicit discretizations of 
the governing equations of fluid mechanics have proven 
quite useful. For viscous Hows however ~ purely explicit 
schemes are useful only for a very limited class of low 
Reynolds number flows. The reason for this is well 
known, namely, the severe restriction on the allowable 
time step size due to small cell Reynolds numbers in 
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boundary layer regions of high Reynolds number flows. 
For instance, for the explicit MacCormack schemel the 
allowable time step for stability is given by the following 
empirical formula2,3 

8..t 1 -- < ---,---
8..tinu 1 + 2/ Ref:,. 

where 8..tinu is the limiting time step for inviscid flow 
and Ret:. is the minimum cell-Reynolds number. In 
boundary layers of high Reynolds number flows the 
Ref:,. can be several orders of magnitude less than one l 

due to small grid spacing needed to resolve the bound
ary layer and due to the small velocity normal to the 
wall, exactly where the grid spacing is smallest. This 
small cell Reynolds number leads to a time step orders 
of magnitude smaller than 8..tinv and a corresponding 
increase in cost of computations. 

To overcome the difficulty associated with small 
cell Reynolds numbers, we have in a recent paper4 pro
posed a methodology for accurate simulations of un
steady, viscous and inviscid compressible flows. The 
methodology employs a second order accurate discretiza
tion of the Navier-Stokes equations that is explicit for 
the inviscid terms but implicit for the viscous terms. 
The methodology also employs solution adaptive mesh 
refinement based on the AMR algorithm of Berger and 
Colella5 to enhance both accuracy and efficiency of the 
scheme. The focus of our first paper was on the use of 
the AMR algorithm in structured grids. In this paper, 
which can be considered a continuation of the first, the 
focus will be on the implicit discretization of the vis
cous terms and on the use of the AMR algorithm in 
simulations of viscous Hows. Note, the discretization 
that we propose can be used with or without adap
tive mesh refinement, as required by the problem to 
be analyzed. However, with adaptive refinement, it 
becomes possible to analyze efficiently and accurately 



fluid flow problems that involve vastly different length 
scales, such as shock-boundary layer interactions. This 
is demonstrated in this paper. 

The remainder of this paper is organized as fol
lows: Following this introduction, the discretization 
used for the governing equations will be reproduced for 
completeness of the paper. Afterwards, the algorithm 
used to solve the systems of equations will be described 
and discussed. Then some special considerations re
lated to the integration of the numerical scheme into a 
code employing AMR will be discussed. Finally, results 
will be shown for selected steady and unsteady viscous 
flows. 

Governing Equations and Discretization 

The governing equations employed are the com
pressible N avier-Stokes equations (see e.g., Ref. 6). 
The fluid is taken to be a calorically and thermally 
perfect gas. Transformed to general curvilinear coor
dinates (e, TJ) and cast in conservation law form, the 
governing equations can be written as 

(1) 

where U = (p pu pv pelT is the vector of conserved 
variables: density, momentum per unit volume in the 
x- and y-coordinate directions, and total energy per 
unit volume, respectively, and J is the transformation 
Jacobian. Fe and FYJ represent the inviscid fluxes in 
the e and 7J directions, respectively, whereas Fj and F:J 
represent the viscous fluxes. Temperature is related to 
the remaining variables through 

(2) 

For details of the fluxes see e.g., Ref. 3. 

The governing equations are discretized using a 
semi-implicit, cell-centered, finite volume discretization 
that is second order accurate in both space and time. 
In this discretization the convection terms are treated 
explicitly, whereas the viscous terms are integrated im
plicitly using the trapezoidal rule. The discretized equa
tions for cell (i, j) are written as follows: 

U!1:+1 - U!'-. 
(I' - 7.] t.] + LC: _(un) 

'lJ llt t.J 

(3) 

where (Iij is the area of cell (i, j), Lfj represents the dis
cretized convection terms in Eq. (1) and Lij represents 
the discretized viscolls terms. 
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The operator Lfj is derived using a straightfor
ward extension to viscous flows of the multi-dimensional 
upwind method of Colella7. In this method, Lij is writ
ten as follows: 

Lc (Ufl) - II . F fl+ I / 2 II F n +1/ 2 
ij - ai+l/2,i i+ 1/2,j - ai-I/'l,j i-1/2,j 

Fn+1fi A Ffl+l~ + tlai,j+l/2 i,j+I/2 Uai,j-l/2 i,j-l/2 (4) 

where llai+l/2,j is the area of cell face (i + 1/2,j) (be
tween cells (i, j) and (i + 1, j)), llai,i+l/2, is the area of 
cell face (i,i + 1/2) (between cells (i,j) and (i,j + 1)), 

d F n+l/2 d F n +1/ 2 h . I fl an i+l/2,j an i,j+l/2 are t e numenca uxes nor-
mal to those faces. To illustrate how the fluxes are eval
uated. consider cell face (i + 1/2, j). The flux Fi:~~~~j 
is evaluated using an approximate Riemann solver and 
can be written as: 

(5) 

where subscripts "L" and "R" indicate "left" and "right" 
state for the Riemann solver, ni±1/2,j is the unit normal 
to the cell face at (i ± 1/2,j) and 

Using Eq. (1), we can write 

n+l/2 _ n ll~ au 
U;±1/2,j,S - Uij ± 2 8~ (6) 

llt (OFf. aFYJ of! OF:J) -- -+-----
2Jij oe OT} ae aT} 

In the above, the subscript S stands for "L" when state 
at face (i - 1/2,j) is evaluated and "R" when state at 
face (i + 1/2,j) is evaluated. The complete formula for 

U~%~j.s is then obtained by appropriately discretizing 

the derivative terms in Eq. (6). For the viscous terms, 
Lf;(Un ) (described below) is used unchanged, whereas 
the convection terms are treated exactly as shown in 
Ref. 8. 

The operator Lij can be written as 

(7) 

where Lij(V), Lf;(T) and Lfj(V) represent the vis
cous terms of the momentum equations, the conduc
tion terms of the total energy equation and the viscous 



dissipation term of the total energy equa.tion, respec
tively. V = (u, v) is the velocity vector. Lf] ~ Lfj and 
Lf; are approximated in conservative fashion using cen
tral differencing on a standard nine point stencil. In the 
interest of brevity, these are not detailed here. Note, 
for constant viscosity and conductivity, the operators 
Li] and Lfj are linear. 

Solution Algorithm for the System of Equations 

When the computed solution is advanced in time 
using semi-implicit discretization, a system of equations 
needs to be solved in every time step. To facilitate 
advancing the solution in time and solving the system 
of equations, Eq. (3) is expressed as a two step scheme 
as follows: 

(8a) 

U~+l _ b.t L'!.(Un +1 ) = U:'". (8b) 
\] 20" i.j 'J 1] 

The first step, namely the evaluation of Utj, is a purely 
explicit computation. The second step, involving the 
implicit part of the viscous operator, requires resolution 
of a system of equations. This step can be broken up 
into smaller equation sets as follows: Since the viscous 
terms do not contribute to the continuity equatioll, Eq. 
(8b) can immediately be cast as 

P~~l p'" 
I) = ij (9a) 

V~:+l _ b..t L~(vn+l) = (pV);j ;:: V~. (9b) 
t) 2pn+l.. '1 '11+1 '] 

ij crt] Pij 

(pe)ij+l - 2~t. (L7j(T1?+1) + Lfj(vn +1 ») ;:: (pe);j 
t) 

(9c) 
If viscosity is constant, or if it can be lagged in time 
behind the conserved variables, Eq. (9b) effectively de
couples from Eq. (9c). It can thus be inverted first. 
Once Eq. (9b) has been inverted and Vij+l is known, 
Eq. (2) can be used to recast Eq. (9c) as 

T~+l _ ("V _ 1) ~t L~.(Tn+l) = T.· . ." 
".1 I 2 n+l lJ t.} 

Pij O"ij 
(10) 

where 

T~.* ~ (1' - 1) (pe);; - !.V?:+l . V~:+l + L~.(vn+l») 
1} n+ 1 2 lJ 'J 'J 

Pij 
(11) 

Both Eq. (9b) and Eq. (10) are linear systems 
of equations. They can be inverted using a variety of 
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methods. Here, a Gauss-Seidel relaxation scheme is 
used with red-black ordering of the unknowns. This 
has proven to be an effective relaxation scheme for 
high Reynolds number flows, and converges in only a 
few iterations. For low Reynolds number flows, with 
stronger coupling between unknowns~ such a local re
laxation scheme may not be sufficiently efficient and 
may require a multigrid convergence acceleration. 

Note, it is not always necessary to solve Eq. (9b) 
and (10) exactly. All that is needed is to relax until 
the error is small enough to ensure the stability of the 
overall scheme. However, it is necessary to ensure con
servation at every time step, especially for flows involv
ing strong shocks. Thus, the a.lgorithm used to advance 
the solution by one time step is as follows: 

(1) Compute Utj using Eq. (Sa). This gives the final 

al f d ., n+1 ... 
V ue 0 enslty, t. e., Pij = Pij 

(2) Compute intermediate values of velocity, Vij+l, 
by relaxing Eq. (9b) until sufficient convergence is 
achieved. 

(3) Compute UtI' as 

This gives final value of velocity, i. e., Vij+l = Vi] 

(4) Compute intermediate values of temperature, TZj+l , 
by relaxing Eq. (10) until sufficient convergence is 
achieved (note, here T·· can be compu ted directly from 
U"·, using Eq. (2»). 

(5) Compute final value of total energy as 

( )'11+1 ().. b..t Lk (Tn+l) 
pe ij = pe ij + 2crij ij (13) 

This completes the computation of Ut;+l. 

Adaptive Mesh Refinement 

In this work, solution adaptive mesh refinement 
(AMR) is used to enhance both accuracy of the com
puted solution and the efficiency of the algorithm. The 
use of solution adaptive mesh refinement enhances ac
curacy by ensuring sufficient resolution of sma.ll scale 
features in the flow field, including shocks and bound
ary layers, even when it is not known beforehand where 
such features may occur and when they are moving or 



changing in time. Simultaneously, the efficiency of the 
solution algorithm is enhanced as the flow solver is en
abled to focus its efforts in regions where it is most 
needed, using appropriately coarser grids in other re
gions. 

The mesh refinement algorithm used here is based 
on the AMR algorithm of Berger a~d Colella.5 In this 
algorithm, the solution exists on several levels of finer 
and finer meshes. Each mesh level~ excluding the coars
est which covers the entire domain, is embedded within 
the next coarser level (see e.g., Fig. 1) and typically 
covers only a. small fraction of the domain. The finer 
levels are created by refining cells on the coarser levels 
by an integer refinement ratio, r, where high resolution 
is required. On every mesh level, the cells are organized 
into a small number of topologically rectangular blocks, 
each containing a few thousand points. The advantage 
of this organization is that simple and efficient array 
data structures can be used for storage of the data in 
each grid block. The relatively small number of these 
data structures leads to small overhead in manipulation 
of data during computations. In addition, the regular 
arrays lend themselves to a high level of optimization 
on vector computers (e.g., Cray computers). 

For unsteady problems, refinement is done in time 
as well as in space. Thus-to synchronize in time the 
solutions on different levels-whenever the solution on 
one mesh level is advanced in time by !l.t, the solu
tion on the next finer level is advanced T times by a 
time step 6.t/r. This leads to a recursive time step
ping scheme for the mesh hierarchy. At interfaces be
tween coarse and fine grids, boundary conditions are 
needed for the fine grid. These boundary conditions 
are simply obtained by interpolation in space and time 
on the coarser grids. This interpolation produces no 
loss in accuracy provided care is taken in the creation 
of the mesh hierarchy to ensure that such interpolation 
takes place where the flow field is sufficiently resolved 
by the coarse grid. To achieve this in a general case, 
the boundary of the coarse mesh level must lie a certain 
distance (measured in number of cells) from the bound
ary of the embedded fine mesh level, except where the 
boundaries of both levels coincide with the boundary 
of the physical domain. This is called proper nesting 
of the mesh levels and is required so that sufficiently 
accurate boundary conditions can be supplied to the 
fine grid (see e.g., Ref 5, 7). In addition to proper nest· 
ing, the fine mesh level itself is made to extend slightly 
beyond the region where high resolution is needed so 
that small scale feature in the flow field do not lie im
mediately adjacent to coarse-fine grid interfaces where 
the interpolation takes place. This is done by refin-
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ing a layer of coarse grid cells surrounding the region 
to be refined and including with the fine mesh level. 
This is called buffering. Finally, to ensure conservation 
of mass~ momentum and total energy on the mesh hi
erarchy~ a special reftuxing operation is needed at the 
coarse-fine interfaces after the completion of the r time 
steps on the fine grid, and before the next time step 
on the coarse grid. This refiuxing operation imposes 
on the underlying coarse grid cells the aggregate of the 
fluxes "seen" by the adjacent fine grid cells and ensures 
convergence of the solution to a weak solution of the 
governing equations as the mesh is refined.8 At the end 
of the r time steps on the fine grid, the solution on the 
fine grid must be restricted to the next coarser grid to 
ensure accuracy of the coarse grid solution. 

In the AMR algorithm, the generation and main
tenance of the hierarchy of mesh levels takes place es
sentially as follows: Assume there exist a hierarchy of 
mesh levels and solutions on those levels (in the begin
ning. the hierarchy can simply be the starting coars
est grid with the initial conditions as the starting solu
tion). Every few time steps, the error in each cell on 
a given level is estimated using some suitable measure 
(see e.g. Ref. 5, 9). Cells where the error exceeds a spec
ified limit are tagged for refinement and buffer cells are 
added. Errors on all finer levels are also checked and 
cells tagged for refinement. Next, tags on the finer lev
els are propagated "down" to the subsequently coarser 
and coarser levels (i.e., if a cell is tagged for refine
ment. the corresponding cells on the coarser levels are 
also tagged), until the level where the error estimation 
started is reached. During this process, additional cells 
are tagged on the coarser levels to ensure that any finer 
levels will be properly nested. Once the tagging of cells 
is completed, a special algorithm (see Ref. 5) fits a 
small number of topolgically rectangular blocks around 
the tagged cells on each level. The mesh within these 
blocks is then refined to create new fine mesh levels. 
The solution in the old mesh levels is then copied onto 
the new mesh levels of same resolution where the two 
overlap. In regions where new fine grid cells have been 
created, the fine solution is obtained by interpolation 
on the next coarser grid. Note, by this procedure, fine 
grid cells can be removed as well as created. Note also 
that the mesh level where the error estimation started 
does not change. In this work, error is estimated us
ing a procedure based on Richardson extrapolation (see 
Ref. 5). 

Refinement of Curvilinear Grids 

Special care must be taken when the adaptive 
mesh refinement is applied to body-fitted, curvilinear 



grid systems. In this case, the refined grids must be 
generated from an existing coarser curvilinear grid. This 
grid refinement must ensure sufficiently smooth grids 011 

all levels of refinement. In this work, grid refinement 
for curvilinear grids is done by combining parametric 
cubic spline interpolation and simplified Hermite inter
polation. The cubic splines, here natural cubic splines, 
arc used to ·'reconstrucC grid lines from the discrete 
grid points. The interpolation is done grid line by grid 
line and produces cubic polynomials that bridge be
tween any two neighboring grid points on a grid line. 
The parameters used in constructing the splines are 
simply the coordinates of the computational domain. 
This choice automatically captures any nonuniformity 
of the grid spacing (e.g., grid stretching) in the original 
grid. Thus, when new grid points are needed on the grid 
lines of the original grid, uniform spacing in the param
eter produces a smooth grid. When new grid points are 
needed that lie in the interior of a coarse grid cell, the 
simplified Hermite interpolation is used to bridge be
tween the four cubic polynomials that define the edges 
of the coarse grid cell. Full Hermite interpolation al
lows the enforcement of both the shape of the edges 
and also direction of grid lines transverse to the edges 
(transverse derivatives). In this usage, however, it is 
not necessary to enforce transverse derivatives. Hence 
the simplified version is used. As in the construction of 
the cubic splines, the parameters used in the Hermite 
interpolation are the computational coordinates of the 
coarse grid system. Uniform spacing in these parame
ters produces a smooth refined grid in the interior of the 
cell. Note, since the polynomials describing the shape 
of the edges of the cell were constructed using cubic 
splines, the overall refined grid system, obtained by re
fining the coarse grid cell by cell, will be smooth and 
at least Cl continuous. For further details of the AMR 
algorithm used here for curvilinear structured grids, see 
Ref. 4. For other work on adaptive mesh refinement in 
structured grids see e.g. Ref. 10-13. 

Implementation-Ob iect·Oriented 
Mixed Language Programming 

The methodology described in this paper has heen 
implemented in two computer codes, one designed for 
structured body-fitted grid systems, the other for uni
form Cartesian grids. Both codes are designed to com
pute two-dimensional flows. The codes were written 
using mixed language programming, i. f., a driver mod
ule for the semi-implicit adaptive algorithm was writ
ten in the C++ programming language while all rou
tines performing floating point intensive parts of the 
algorithm (e.g., the approximate Riemann solver) were 
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written in FORTRAN. This implementation is possi
ble due to the modularity of the AMR algorithm and 
allows one to take advantage of the strengths of the 
different programming languages. Here, the strengths 
of C++, including object-oriented capability, flexible 
data structures and dynamic memory allocation, make 
that language very effective for the implementation of 
a driver for the AMR algorithm while the extensive op
timization by FORTRAN compilers of floating point 
operations on array data structures makes FORTRAN 
the language of choice for most of the compute-intensive 
parts. Both codes make extensive use of the AMR li
brary developed by Crutchfield and Welcome. 14 The 
AMR library is written in C++ and is a collection 
of space-dimension independent classes specially de
signed to aid in implementation of schemes employing 
the AMR algorithm. 

Results 

Results obtained using the semi-implicit discretiza
tion of the Navier-Stokes equations and AMR are pre
sented for two test problems. The first problem is a 
super sonic flow over a 26.560 wedge with a blunt lea.d
ing edge. The second problem is a shock reflection of 
an inclined surface. 

Supersonic flow over a blunt body at M = 5-
unadapted mesh 

To demonstrate the applicability of the algorithm 
in computing viscous flows on traditional unadapted, 
body-fitted structured grids with dense clustering of 
grid points in the boundary layer, the flow over an 
impulsively started wedge with a blunt leading edge 
was computed. The flow conditions assumed here are a 
free-stream of M=5 and a Reynolds number Re=62500 
(based on free stream flow speed and a length scale 
equal to twice the radius of curvature of the leading 
edge of the wedge). 

Figure 2 shows the grid system used for the com
putation. The grid has 64 cells from the wedge to the 
free-stream boundary and 48 cells from the symmetry 
line to the exit boundary. Grid points are clustered 
towards the wedge to resolve the boundary layer. 

Figures 3-5 show the computed solution for this 
problem. Figure 3 shows contours of Mach number 
around the wedge shortly after the start of the sim
ulation and before the solution reaches a steady state. 
This figure shows the formation of the bow shock in 
front of the impulsively started wedge and illustrates 
the unsteady nature of the simulation. Figure 4 shows 
the steady state solution for this problem on the un
adapted grid system. Figure 4a shows contours of Mach 



number around the wedge. Figure 4b shows a close up 
view of pressure a.t the leading edge. Finally, Fig. 4c 
shows a plot of pressure along the stagnation stream 
line. As Fig. 4c shows, the detached bow shock is cap
tured mainly within two cells and stands between 0.058 
and 0.062 from the leading edge. This corresponds to 
a ratio of stand-off distance to two times the radius of 
curvature at the leading edge of 0.232 to 0.25. This 
corresponds well to experimental value of 0.24 shown 
in Ref. 15 for a flow M=5 over a cylinder at M = 5. 

Figure 5 shows the flow in the boundary layer on 
the wedge. The boundary layer is well captured by the 
current grid system. Note, for the location shown in 
Fig. 5b, the cell Reynolds number for the cell next to 
the wall is about 10-3 • Thus, if the same flow were 
computed using a pure explicit discretization like the 
MacCormac scheme, a 2000 fold increase in the num
ber of time steps would be required over that used by 
the current semi-implicit scheme to reach steady state. 
For the current problem and flow solver, the cost of the 
semi- implicit scheme is about triple that of a pure ex
plicit scheme. Thus, CPU time is reduced by a factor 
of over 600. 

Supersonic flow over a blunt body at M = 5-
adapted mesh 

Figures 6-8 show a solution for the same problem 
as above except at Re = 125000. This time the re
sults were obtained using adaptive mesh refinement to 
improve the resolution of the flow. A single level of re
finement was used, with a refinement ratio of four. Fig. 
6a shows the adapted mesh near the leading edge of the 
wedge. Figure 7 shows Mach number in the same re
gion. Figure 8 shows the velocity field in the stagnation 
region and the formation of the boundary layer on the 
leading edge of the wedge. In this simulation, the re
fined regions were restricted to the near-wall region, ef
fectively preventing refinement around the shock. Note l 

as the mesh in the boundary layer has been refined by a 
factor of four, the largest allowable time step for stabil
ity of the implicit scheme has been reduced by a factor 
of four compared to tha.t for the unada.pted grid. How
ever, the cell Reynolds numbers for refined cells in the 
boundary layer on the wedge are of the order of 10-4 • 

Thus for an explicit scheme the maximum allowable 
time step would have been reduced by a. factor of 40. 

Shock reflection off an isothermal non-slip ramp 

The second sample solution is for the interaction 
of a shock in Argon with an isothermal non-slip ramp 
at an angle near transition between Mach and regular 
reflection. The computational domain was taken to be 
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2.5 centimeters long horizontally. The computations 
were done using uniform rectangular grids-no cluster
ing of grid points near the solid wall boundary was used 
in the initial grid. The solution was computed using the 
coarsest level grid and four refined levels, each a factor 
of four more refined than its predecessor. 

The results for the shock-inclined ramp interac
tion are shown in Fig. 9 and 10. Figure 9 shows 
the magnitude of the horizontal velocity. Lighter col
ors indicate lower velocity. Figure 9a shows the entire 
computational domain which is covered by the coarsest 
grid. The figure shows well the overall shock structure. 
However ~ a Mach stem or boundary layer are not vis
ible at this level of resolution. Figures 9b-e show the 
subregion near the intersection of the incident shock 
with the ramp at finer levels of refinement, which in 
this calculation were restricted to the near wall region. 
At the finest level of refinement, (e), the grid spacing is 
0041 microns. Fine levels of refinement clearly resolve 
the Mach stem and viscous boundary layer on the ramp 
surface, which are not apparent at coarser levels. 

Figure 10 shows a plot of horizontal velocity pro
files in the viscous boundary layer at several locations 
behind the Mach stem. Note, all distances have been 
normalized by the grid spacing on the finest mesh level. 
The figures show that the boundary layer is well cap
tured with the present method. 

Conclusions 

Due to the severe restriction on time step size re
sulting from small cell Reynolds numbers, pure explicit 
discretizations of the Navier-Stokes equations are typi
cally not practical for simulations of unsteady, medium 
or high Reynolds number flows. To overcome this lim
itation, the discretization must be at least in part im
plicit. In Ref. 4 new methodology was proposed for 
such simulation, in which the viscous terms are inte
grated implicitly, using the trapezoidal rule, while the 
inviscid terms are treated explicitly. In this paper, 
which can be considered a continuation of Ref. 4, the 
discretization is revisited and an efficient solution algo
rithm for the implicit system of equations is described 
in detail. Also, the use of adaptive mesh refinement, 
which is an integral part of the proposed methodology, 
is discussed. The effectiveness of the algorithm was 
demonstrated by computing both steady and unsteady 
flows on traditional body-fitted structured grids as well 
as adaptively refined Cartesian grids. 
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Figure 1. A grid system on three levels-a coarse 
grid covering the entire physical domain and two prop
erly nested fine grid levels. 
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Figure 2. A body-fitted curvilinear grid system for a 
blunt-edge wedge. 
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Figure 3. Supersonic flow at M = 5 over a blunt
edge wedge----contours of Mach number showing forma
tion of the bow shock: Ml = 0., f::..M = 0.3. 
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Figure 4. Supersonic flow at M = 5 over a blunt
edge wedge: (a) contours of Mach number; MI = 0., 
f::..M = 0.3, (b) contours of pressure; PI = 2, .6.p = 1, 
(c) pressure on stagnation stream line. 
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(b) 

Figure 5. Supersonic Howat M = 5 over a blunt
edge wedge: (a) velocity field near leading edge, (b) 
boundary layer on the wedge. 
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Figure 6. A body-fitted, adapted curvilinear grid sys
tem for a blunt-edge wedge. 

Figure 7. Supersonic How a.t M = 5 and Re = 125000 
over a blunt-edge wedge-contours of Mach number; 
Ml = 0., flM = 0.3. 
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Figure 8. Supersonic flow at M = 5 and Re = 125000 
over a blunt-edge wedge-velocity field near stagnation 
point. 
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Figure 9. See caption on next page. 
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(e) 

Figure 9 cont. Interaction of a shock in Argon with isothermal non-slip ramp at angle near transition between Mach 
and regular reflection-level of horizontal velocity: (a) entire computational domain at coarsest level of refinement, 
(b)-(e) subregion near the Mach stem at finer and finer levels of refinement. 
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Figure 10. Interaction of a shock in Argon with isothermal non-slip ramp-profiles of horizontal velocity at eight 
stations behind Mach stem; distances normalized by grid spacing on the finest grid. 
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