ADAPTIVE CARTESIAN GRID METHODS FOR REPRESENTING
GEOMETRY IN INVISCID COMPRESSIBLE FLOW=+

Richard B. Pember}
Lawrence Livermore National Laboratory
Livermore, CA 94550

John B. Bell}
Lawrence Livermore National Laboratory

Livermore, CA

94550

Phillip Colella§
University of California Berkeley
Berkeley, CA 94720

William Y. Crutchfieldi
Lawrence Livermore National Laboratory
Livermore, CA 94550

Michael L. Welcomei
Lawrence Livermore National Laboratory
Livermore, CA 94550

Abstract

In this paper we describe a Cartesian grid algo-
rithm for modeling time-dependent compressible flow in
complex geometry. In this approach problem geometry
is treated as an interface embedded in a regular Carte-
sian mesh. The discretization near the embedded boun-
dary is based on a volume-of-fluid approach with a
redistribution procedure to avoid time-step restrictions
arising from small cells where the boundary intersects
the mesh. The algorithm is coupled to an unsplit
second-order Godunov algorithm and is fully conserva-
tive, maintaining conservation at the boundary. The
Godunov / Cartesian grid integration scheme is coupled
to a local adaptive mesh refinement algorithm that
selectively refines regions of the computational grid to

» This work was performed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore National La-
boratory under contract W-7405-Eng-48. Support under contract
W-7405-Eng-48 was provided by the Applied Mathematical Sci-
ences Program and the HPCC Grand Challenge Program of the
Office of Scientific Computing at DOE and by the Defense Nu-
clear Agency under JACRO 93-817. Prof. Colella was support-
ed at UC Berkeley by DARPA and the National Science Foun-
dation under grant DMS-8919074; and by a National Science
Foundation Presidential Young Investigator award under grant
ACS-8958522; and by the Depanment of Energy High Perfor-
mance Computing and Commumications Program under grant
DE-FGO3-92ER25140.

1 Group Leader, Applied Mathematics Group

§ Associate Professor, Dept. of Mechanical Engineering

i Staff Scientist, Applied Mathematics Group

achieve a desired level of accuracy. Examples showing
the results of the combined Cartesian grid / local
refinement algorithm for both two- and three-
dimensional flows are presented.

Introduction

A broad range of engineering applications require
the modeling of inviscid compressible flows in complex
geometries. When viscous effects and heat transfer are
important considerations a regular body-fitted grid is
needed to accurately resolve the flow but when these
effects are not critical a simplified procedure can be
used. One approach is to use a fully unstructured grid
in which triangles (or tetrahedra in three dimensions)
are used to tessellate the flow domain. There are many
references in the literature on this approach; the
interested reader is referred to, for example, Jameson et
al [1] and Lohmner and Parikh [2]. An alternative
approach is to maintain a uniform computational mesh
and treat the problem geometry as a specialized boun-
dary embedded in the mesh. This approach was first
proposed by Wedan and South [3]. The interested
reader is referred to recent work by Berger and
LeVeque [4] and by Zeeuw and Powell [5] for a discus-
sion of the more recent literature in this area.

In this paper we present a Cartesian grid / embed-
ded boundary method by using ideas previously
developed for shock tracking by Chern and Colella [6]
and by Bell, Colella and Welcome [7]. In this
approach we view the boundary as a "tracked front” in

a regular Cartesian grid with the dynamics of the boun-
dary given by specified boundary conditions such as, for
example, a stationary reflecting wall. The discretiza-
tion near the boundary uses a volume-of-fluid approach
combined with an unsplit second-order Godunov
difference method that is fully conservative. This basic
integration methodology is coupled to a local adaptive
mesh refinement algorithm given by Bell et al [8]. For
this algorithm the geometry is specified by defining, for
each cell in the computational mesh, the volumne frac-
tdon of the cell inside the flow domain and the area
fraction of each face of the cell that is in the computa-
tional domain.

The key technical difficulty in developing this
approach for time-accurate flows arises from small cells
that can occur when the geometry is overlaid on the
mesh. There is essentially no control over that process
and arbitrarily small cells can be formed. Our approach
for dealing with this problem uses a variation of the
algebraic redistribution algorithm of Chern and Colella
[6] to conservatively distribute the update of small cells
to their neighbors 10 maintain conservation. This
allows the scheme to use time steps computed from
CFL considerations on the uniform grid.

In the next section we provide an overview of the
basic integration method for embedded boundaries. The
details of the algorithm are discussed in section 3. In
section 4, we describe the coupling of the basic integra-
tion algorithm to the local adaptive mesh refinement
algorithm of Bell et al [8]. The last section of the
paper presents numerical examples for both two- and
three-dimensional flows.

Overview of the Integration Algorithm

In this section we describe the basic second-order
Godunov algorithm with an embedded boundary in a
summary form. Although the methodology is applica-
ble to other systems of conservation laws such as, for
example, magnetohydrodynamics, we will restrict the
discussion in this paper to gas dynamics. The metho-
dology has been developed for Cartesian grids in two
and three dimensions and for cylindrical coordinates in
two dimensions. For clarity of exposition we will
describe the method for the three-dimensional case.
The restriction to two dimensions is straightforward,
and the modification for cylindrical coordinate will
sketched in section 3. Thus, we want to solve

oU . oF* OF’ OF?
a T T dy >
where, in the case of gas dynamics,

=0 2.1)

P pu
pu putp
U=|pv| F*U)=| puv
pw puw

E uE +up

pv pw
puv puw
FXU)=| pv+p | F*(U)=| pww
pvw pwip
vE +vp wE +wp

The representation of the solution consists of two com-
ponents, the state vector U and the representation of the
geometry. Thus, for each cell A;; in the computational
mesh we store the state vector U;; and volume frac-
tions and "apertures” which provide the geometric
description of the domain needed by the integration
algorithm. The volume fraction A;; is the fraction of
cell A;; that is inside the flow domain. Thus, A
equals 1 for cells completely inside the flow domain, 0
for cells completely outside the flow domain and an
appropriate fraction for mixed cells. The apertures
A;w*, A;JM, and A,‘J‘k.pﬁ spec1fy the fraction of the
area of the faces of cach cell that lie inside the flow
domain (where i+4,j,k refers to the face common to
cells A;;x and Ay, ;,.) We note that the geometry
specification is typically sparse with only a small frac-
tion of the computational cells being mixed. Sparse
data structures are used that compress this information
so that seven additional full arrays are not required.

The basic algorithm is, essentially, a two-step
process. In the first step we compute fluxes for U
"ignoring” the presence of the embedded front. To per-
form this step, it is necessary to extrapolate states out-
side the domain within one cell of a mixed cell. Using
these extrapolated values, whose exact specification is
given below, we define states UfF that extend the
definitions of U to a slightly larger domain

In the first step of the algorithm, we use an
unsplit second-order Godunov integration algorithm
developed by Colella [9] to compute fluxes for U. This
scheme has the form

At
Ut =Up; + g Fiomie —Fione) +

At At z
—A;'(F 7 i-ax—F, ?'.j+m)'*'z(Ff“-u —F{; 104)2.2)

Here, F;:w'&, F;’J.pu, F;z‘j’g% ap]xoximate time aver-
aged fluxes at the cell edges, and are assumed to be
explicit functions of U” of the form

Fisjpe = Fr(ULjo et vnlUl jarpets @aUdiy jor grs
weesD &)isr jor gr)

Flivar = FYUL jg-1vUljergars OgU dicr jor kers
seesDalU Yiar jrr kor)

Fijpen = FP (UL jano Ul jansrs @i jorkors
seesl D @U Diar v joar)

where D, represents the three one-sided differences at

each point, namely,
DrU)jr=Ulix—Ul1jss
DyUYjx =Uljx—Ulj s
D:U)ija =Ulja—Uljamr

In other words, Fiﬂ-’y&,j,&f:{j%k and F,‘z‘j#% depcnd on
the values of U” in the 18 cells nearest the cell edge
where the flux is defined, plus a possible dependence on
values of U"* farther away which appear only as one
sided differences in U”. In addition, the scheme has
the property that setting any of the D, U .D, U or D;U
1o zero adds dissipation to the scheme and when they
are all set to zero the resulting scheme is a first-order
version of Godunov’s method that has comner coupling
so that it is stable for CFL number’s up to 1.0. The
only modification made to the integration module is to
zero DU, DJU and D;U when these differences
involve cells that are entirely outside the fluid; ie.,
difference contributions for computing fluxes that
attempt to use values in cells where A;; = 0 are set o
Zero.

The second step of the algorithm uses the fluxes
computed in the first step and the geometric
specification to update cells near the embedded boun-
dary. This procedure is based on ideas developed by
Chern and Colella. The fluxes are combined with aper-
tures that specify the area (in space-time along each
edge) where that flux is applicable to compute a conser-
vative update for U for each cell through with the front
passes during a time step. Since cells intersected by the
boundary at the new time have a reduced volume, fully
updating the cell would lead to a violation of CFL con-
ditions and would potentially lead to an instability.
Thus, each cell receives a fraction of its specified con-
servative update that is consistent with stability. To
preserve conservation the remainder of the update is
redistributed to neighboring cells in a mass-weighted
manner,

The algorithm as described so far requires that
topologically separate regions of the fluid (for instance,
in the case where a baffie plate in embedded in the
flow) be separated by at least two computational cells
that are entirely contained in the body. This require-
ment is due to the construction of the extended states.
Because the one-sided differences DU, DyU and
D;U are set to zero if any body cells are involved, the
extended states enter the algorithm only in the solution
of the Riemann problem. If necessary, then, we can
overcome the above limitation by forcing the solution
of any Riemann problem at an edge separating a body
cell from a mixed or fluid cell to be the value of the
edge state corresponding to the non-body cell. We call
this approach the "thin-wall” approximation.

Even if the thin-wall approximation is employed,
the algorithm still requires that truly separate regions of
the flow be separated by at least one body cell. This

requirement is due to the redistribution algorithm.
Regardless of whether the thin-wall approximation is
used or not, the cell-separation requirement needs to be
met only at the finest level of calculation when the
integration algorithm is coupled with AMR.,

Integration Scheme with Embedded Boundaries

In this section we describe the integration scheme
with tracking in more detail. We denote the grid cells
by Aijk where i=fb,....i;,;, j'-‘jlo»~ < Ju. and
k=ky,, ... k. Before beginning the flux computation
we must first define the extended states. (This step is
not employed if the thin-wall approximation is used.)
The extension is done in a two step process. First, we
identify which cells require an extended state for the
flux computation. The form of the difference scheme
as specified by (2.2) indicates that cells where a value
is required are those within the 18 nearest neighbors of
edges that border mixed cells but which are outside the
fluid domain, Q. For later reference, we define a
marker, P;; such that Py, =1 for cells that require an
extended state and 0 otherwise. We then define an
extended state

Z ABU}IJ
T L)
Uijk_ E Al
nbh (i,j)

@3.1n

for each cell where P;=1, where nbh(i,j k) represents
the 26 neighboring cells. We are guaranteed that at
least one cell in nbh(i,j k) has nonzero A;; so that
(3.1) is defined.

In the first step of the algorithm, we use the
extended states defined above or the thin-wall approxi-
mation to compute fluxes for the edges of cells using
the second-order Godunov procedure described in the
previous section. The use of extended states or of the
thin-wall approximation and the modification to the
integration algorithm allows fluxes Fily ; &, F7 s, and
F}; 4+ to be defined for all edges of cell where A;;>0
or where A;jk = 0 and P;jg = 1.

The next step in the integration algorithm uses
the fluxes computed in the first step in a volume-of-
fluid update for the solution. Although we will not
make any distinction at this point in the discussion, for
cells entirely within the flow domain the algorithm dis-
cussed below collapses to the update formula (2.2)
using appropriate fluxes and for cells that are
sufficiently far from the embedded boundary the scheme
reduces to the full second-order Godunov algorithm.
For mixed cells, we recall that A;; represents the frac-
tion of the cell volume inside the flow domain and the
apertures Ay jx, Aijess and A; s represent the
fraction of the area of their respective cell-faces con-
tained within the problem domain. Using this notation,
we apply the divergence theorem to each cell to obtain
an initial approximation Uy to U at t**!

AxAy Az Ay Uy = AxAy Az AJUS -

At AY Az (Aiass j i F P ja—Al o j xF Eonjx)
+AIAIA2(A‘ JWFIJW'—'AtJ%# J—’/ﬁ.ﬁ}"'
+At Ax Ay (A; j x4sF 2 j kva—Ai jg-4F 7 j ks)

AL FL) 32
where the additional aperture Af; is the surface area of
the intersection of the embedded boundary with cell
A;i and the additional flux F,,, is the flux across that
surface. The frontal flux is computed by solving a suit-
able Riemann problem at the boundary with data taken
from Uj;. The first step in this process is to determine
an effective normal to the boundary. This is accom-
plished by integration of the gradient of a constant over

the portion of the cell inside the domain and applying
the divergence theorem. For any constant ¢ we have

0= j H Védxdyd:
= j o ndS
AdaMa
If we take ¢=1 in (3.3) we can specify A,,,, and ny, the

normal to the front, in terms of the other apertures
using

(3.3)

A,’;,,nf = A}‘AZ(A;_.\&J*—A"%*)H
AxAz(A; jopr—A; jonr)it
Ax Ay (A; j x-s~Ai jr+uK) 34)
For the typical case of a reflecting wall we can then
reflect U}, using an odd reflection of the normal velo-
city (relative to the normal n,) and an even reflection
of the other quantities to obtain values of U/ on each
side of the interface. Solution of the Riemann problem
using these states then gives the value of Ff,. Other
types of boundary conditions can be treated in an analo-
gous manner.
We want to now reexpress the update of U (3.2)
in terms of the change in U caused by the embedded

boundary. To accomplish this we first define an update
that ignores the front

U = Ut GE+ _(F;—v;,,z Flosjx)
(F‘a}-%* FJH&.&)

+ Zz'(Fin.k-% —Ffjxen) @3.5)

where the fluxes are computed from the extended states
U“**. Then we rewrite (3.5) as
AU = Ap UG + 8M;, 3.6)

where
ank AukUuk Aqu;fﬁ*l

1
AxAy Az
At Ax Bz [A; jona F7joni—Ai jos kPl jonst
At Ax Ay [A; j 4 oaFE j oA jr-wFlj x4
~DALFL) 3.7
We note that with this definition of 8M , sufficiently far
away from the embedded boundary 8M = 0 to that (3.7)
is simply a re-expression of (2.2). If we divide (3.6) by
AL we would have a conservative update for U,
namely,

(At AY Az [A; s j ik Fivs ja—Aios j i Filn j x 1+

U‘;H = U‘_'e;il.uﬂ + EMU!
ijic

However, because the A’s can be arbitrarily small, this
update can require an excessive time step restriction to
remain stable. (This update is, of course, stable for
cells where A=1.) To avoid this type of time-step limi-
tation we use the redistribution ideas of Chern and
Colella [6]. Their basic idea is to define a preliminary
update that adds a fraction of the update that will be
stable at the time step determined by the CFL criteria
on the regular grid. This gives a preliminary evolution
in time

(3.8)

This update does not preserve discrete conservation
form. In order to have conservation, we must distribute
(1-A;%)3M,;; onto the grid. In the general case we do
this by decomposing these increments into characteristic
variables and distributing them to nearby cells in a
volume-weighted fashion. That more general procedure
is discussed in the case of front tracking in Bell et al
[7]. For the case of a reflecting wall, the redistribution
procedure simplifies by not requiring an upwind,
characteristic-based approach; simply redistributing all
of (1-A;;)0M;; into the interior of the flow domain is
sufficient. For this simpler case we define

*
Uijap=Ulju+M;j,

MIE = (1-A;u)OM;, 20
”‘ijk = 2 p' HA (.)
nbh (i jJ)
Then we define the final values of U to be
Mz
Rl =Uj+ Y —24- (3.10)

nbh (i j k) Mije

We note the scaling the volumes by pf’ in (3.9)
causes the redistribution to be mass weighted in contrast
to the volume weighting used by Bell et al for shock
tracking. The use of mass weighting was found to be
somewhat superior in the embedded boundary case;
however, for a more general system of hyperbolic equa-
tions it may not be a meaningful choice. In fact, other
possible choices for the weighting can be used such as
total energy weighting or the original volume weight-
ing.

The restriction of the embedded boundary integra-
tion technique described above to a Cartesian grid in
two dimensions is straightforward. The treatment of
cylindrical coordinates in two dimensions introduces
some additional issues. The discussion here will be res-
tricted to the special case of gas dynamics. For cylindr-
ical coordinates, the basic second-order Godunov
integration scheme uses a volume coordinate form of
the equations, namely,

U, 9AF 3p 3G _
ot * av, M or * 0z =0 G.1D)

where A, =r and V, = %r2 The rationale for using
this form of the equations is that it retains the higher-
order discretization and is free-stream preserving, ie.,
no pressure gradients are generated in a uniform flow.
The issues associated with generalized volume coordi-
nates are discussed by Colella [10].

The first modification to the r-z Cartesian algo-
rithm is the specification of the geometry. The volume
fractions and apertures are determined using the actal
volume measure r dr Az;thus, for example,

” rdr Az
QA
j rdr Az
Ay

In addition, we also need the Cartesian volume fraction

Aijk =

I dr Az
A‘,C___n_mz_
T [ara

A'l
The metric terms introduce two changes in the
basic integration scheme. The determination of the nor-
mal to the boundary and the frontal aperture involve
additional terms. As before, we derive the formula by
integrating the gradient of a constant ¢ over the
domain. This gives

0= | Vordrdz

45N
= [¢ndS - [¢drdz. (3.12)
oy fa ayfa

If we take ¢=1 in (3.12) in this case we obtain

Alng = Az(Aiop iAo j Y

Ar (Aijy—Ajj A

where i,j are the indices in the r,z directions respec-
tively. A final modification is needed for the computa-
tion of 8M;; Direct differencing of the pressure gradient
in the r directions is not appropriate for mixed cells.
For a mixed cell we rewrite

dp _O%Ap 94,

——p§l7,‘=

ar v, 0

The right hand side is now used for the finite volume
discretization of dp/or in the computation of 3M;;. In
particular,

P _

i AlpnjDivnj~AlvsjDivaj
Pivnj t Piosj

-A§—L——= + plALnf,

2

where p;y,; are the edges fluxes computed by the
Godunov module and p;, A/ and n/ are the pressure,
aperture, and r component of the normal at the boun-
dary. This form maintains the free-stream preservation
property of the basic integration scheme in the embed-
ded boundary case.

Coupling to AMR

In this section we describe how the Cartesian grid
methodology is coupled to a local adaptive mesh
refinement algorithm described by Bell et al [8]. We
will briefly review the basic adaptive refinement algo-
rithm before describing the modifications needed to
incorporate the embedded boundary. The algorithm is
based on a hierarchical grid structure composed of grids
of varying resolution. The grid hierarchy is constructed
using an error estimation procedure to identify cells
having unacceptable errors that are then clustered into
logically-rectangular grids that are subdivided to form
finer cells where more resolution is required. Integra-
tion of the differential equations on this hierarchical
grid structure is a three-step procedure. First, the
coarse grid is integrated to supply boundary data for
finer grids. The fine grids are then integrated, subcy-
cling in time, to catch up to the coarse grid. Finally,
the coarse grids are corrected to reflect the improved
resolution of the finer grids.

There are three modifications that are required to
couple the Cartesian grid algorithm to adaptive
refinement. First, in order to maintain consistency of
the representation of the geometry on different levels of
refinement, the volume fractions and the area fractions
are calculated on the finest level of resolution and then
averaged down to the coarser levels in a volume
weighted or area weighted fashion. Second, interpola-
tion from coarse grids to finer grids, which occurs in
interpolating boundary conditions for the fine grids and
in initializing fine grids from coarse grids when the
error estimation criteria call for finer grids in a particu-
lar region, is modified in a fashion similar to the calcu-
lation of one-sided differences in the integration algo-
rithm; that is, any one-sided slopes used in the conser-
vation interpolation calculation are set to zero if any of
the cells involved fall entirely out of the fluid domain.
Similarly, in averaging fine grid cells to define values
on an underlying coarse grid cell, the averaging must be
weighted by the volume fractions in the fine cells to
ensure conservation. The compatibility between levels
is then guaranteed because the geometry of the coarse

grid is defined as the average of the fine grid geometry.

The third modification represents a more substan-
tial change. Without the embedded boundary, the
correction to the coarse grid to reflect the improved
resolution of the fine grid is to replace underlying
coarse grid values with the average of the covering fine
grid values and to add a flux correction 8F to coarse
grid cells that border fine grids. More precisely, we set

Ue = U‘+-—3€- @)

where
O8F =Y (A A FTy - A°A1€F°

with the sum taken over the fine grid edges that cover
the coarse edge and over the number of time steps the
fine grid is subcycled for a coarse step. Here, V¢ is the
volume of the coarse cell, and A<V are the areas of the
coarse cell faces and the fine cell faces that cover it
Note that 8F is an extensive quantity, e.g. mass not
density. The update (4.1) is equivalent to repeating the
integration of the coarse cell using the sum of the fine
grid fluxes to update the cell instead of the coarse grid
flux.

When embedded boundaries are included, addi-
tional modifications are needed to account for the
effects of the redistribution step of the algorithm.
These corrections arise because redistribution provides
an additional mechanism for communication across a
coarse-fine boundary. There are four basic coarse-fine
redistribution terms:
8R}: These are the values redistributed into the fine

grid from the grid boundary cells; hence, there

are artificial and their effect must be removed.
SR!: These are the values redistributed from the coarse
grid into the coarse grid cells underlying the fine
grid that are subsequently lost when the coarse
values is redefined by averaging the fine values.

8Rf: These are the values redistributed from the fine
grid into its boundary cell. These values are then
lost.
3RE. These denote the redistribution values from the
coarse grid underlying the fine grid to the coarse
grid cells on the boundary of the fine grid. Their
effect should be removed.
We now define
8R! = &RI-Y8R} @.2)
and
SRE = YARF-SRE 4.3)

These terms, which are accumulated in extensive form,
represent the values that should be added to the coarse
interior cells on the boundary of the fine grid (and the
fine cells that cover them) and the comrection 0 be

added to the coarse grid exterior to the find grid. We
associate 8R! with the coarse grid cell from which the
values came and 8RE with the coarse grid cell that
received them. We note that the 8R’s and the 8F s
must, in general, be accumulated on both the coarse and
the fine grids and that the fluxes appearing in the
definition of &F are aperture weighted. These terms are
then combined to form

1
VC
which is a generalized reflux comection to coarse grid
cells that border fine grids. As we did in the main
integration step, we include a stable portion of the
update in each cell and redistribute the remainder to its
neighbors. Thus,

Un«lrl :=Uu+l+wc >

M, ; = —(8F + 3RE + &R') “.4)

and
M = (1-A)M, ¢ @.5)

The 3M[* are then redistributed to the neighboring
coarse cells using the procedure defined in the previous
section. Values redistributed during this procedure to
coarse grids that are covered by fine grid cells are lifted
to the fine grid, weighted by the fine grid A’s. 'We note
that for interfaces between coarse and fine grids that are
not near a portion of the embedded boundary, the 8R ’s
in (4.4) vanish and the reflux correction reduces to
4.1).

Numerical Example

In this section we present several numerical
examples showing the combined Cartesian grid / adap-
tive mesh refinement algorithm.

The first example is the calculation of the
Prandtl-Meyer expansion wave resulting from a Mach
1.2 flow wrning through an angle of 30 degrees. Figure
1 shows a contour plot of the density at late time for a
uniform 160x80 grid; figure 2 displays the density in
the mixed cells, ie., the density profile along the
fluid/body interface. We performed a convergence study
of the algorithm using this problem by doing three cal-
culations on 80x40, 160x80, and 320x160 grids for 250,
500, and 1000 time steps, respectively. Two measures
of the error in the solution at the final time step were
vsed, an area weighted relative error for the entire prob-
lem domain and a length weighted relative error for the
solution along the fluid/body interface. The two ermor
measures are tabulated below for two quantities, log-
entropy and stagnation enthalpy, both of which are con-
stants for the flow under consideration:

grid log-entropy stag. enthalpy
error wall error error wall error
80x40 | 00154 0233 222e-4 00314
160x80 | .00042 .0108 8.05e-5 .00193
320x160 | .00010 0049 2.70e-5 00124

These results suggest that the algorithm is second order
accurate away from the fluid/body interface and first
order accurate at the interface.

The second example shows a Mach 10 flow past a
30 degree ramp. Figure 3 shows density contours of
the solution obtained using the Cartesian grid algorithm.
For comparison, the solution obtained using the
second-order Godunov method described in Colella [9]
with the adaptive mesh refinement scheme described in
Bell et. al. [8]. is displayed in Figure 4. Each calcula-
tion uses the same size coarse level cells and the same
refinement ratios in building two levels of successively
finer cells. Hence, the effective resolution of the two
calculations is the same at all levels of refinement. The
grids at the different levels of refinement are shown as
boxes. We observe that the results of the Cartesian grid
calculation compare favorably with the results of the
other calculation. (We note here that the jaggedness of
the fluid/body interface in grids at the coarser levels of
refinement in figure 3 and in later figures is a plotting
artifact.)

The third example (Figure 4) shows a Mach 1.597
flow past a cone with a semi-apex angle of 9.5 degrees.
This flow is calculated using the r-z formulation of the
Cartesian grid algorithm. The results of the calculation
for the most part compare favorably with experimental
results [11]. However, the computed flow in the wake
region is not as well developed as the wake flow
observed experimentally since the former is calculated
in a purely axially symmetric fashion.

The last example shows a Mach 2.33 flow past a
cone/cylinder with a semi-apex angle of 8.58 degrees.
Figure 6 shows the density at late time of four longitu-
dinal slices of the flow. Figure 7 shows a rendering of
the density at the same time in the entire flow region
and in the wake region. The calculated results show
good agreement with experimental results using the
same configuration

References

1. A. Jameson, T. J. Baker, and N. P. Weatherhill,
‘““Calculation of inviscid transonic flow over a
complete aircraft,”” AIAA 86-0102, 1986.

2. R. Lohner, P. Parikh, and M. Merriam, ‘‘Parallel
unstructure grid generation,”” in Proceedings of
the 10th AIAA Computational Fluid Dynamics
Conference, AIAA, Honolulu, 1991.

10.

11.

12.

B. Wedan and J. South, ‘‘A method for solving
the transonic full-potential equations for general
configurations,” in Proceedings of the 6th AIAA
Computational Fluid Dynamics Conference,
AIAA, Danvers, Mass., 1983.

M. J. Berger and R. J. LeVeque, ‘‘An adaptive
Cartesian mesh algorithm for the Euler equations
in aribtrary geometries,”’ in Proceedings of the
9th AIAA Computational Fluid Dynamics Confer-
ence, AIAA, Buffalo, 1989.

D. D. Zeeuw and K. G. Powell, ‘‘An adaptively-
refined Cartesian mesh solver for the Eunler equa-
tions,”” in Proceedings of the 10th AIAA Compu-
tational Fluid Dynamics Conference, AIAA,
Honolulu, 1991.

1-L. Chern and P. Colella, ‘“‘A Conservative
Front Tracking Method for Hyperbolic Conserva-
tions Laws,”” UCRL-97200, LLNL, July 1987.

1. B. Bell, P. Colella, and M. Welcome, ‘‘Conser-
vative Front-Tracking for Inviscid Compressible
Flow,”’ in Proceedings of the AIAA 10th Compu-
tational Fluid Dynamics Conference, AIAA,
Honoluly, 1991.

J. B. Bell, M. J. Berger, J. S. Saltzman, and M.
Welcome, ‘‘Three Dimensional Adaptive Mesh
Refinement for Hyperbolic Conservation Laws,”
UCRL-JC-108794, LLNL, December 1991. sub-

" mitted to J. Comput. Phys.

P. Colella, ‘“‘A Multidimensional Second Order
Godunov Scheme for Conservation Laws,’”” J.
Comp. Phys., vol. 87, pp. 171-200, 1990.

P. Colella, ‘A Direct Eulerian MUSCL Scheme
for Gas Dynamics,”” SIAM J. on Scientific and
Statistical Computing, vol. 6, pp. 104-117, Janu-
ary 1985.

Z. Kopal, Tables of supersonic flow around cones,
MIT, Cambridge, Mass., 1947.

A. H. Shapiro, The dynamics and thermodynamics
of compressible fluid flow, p. Ronald Press Co.,
New Yark, 1954,

)
L

Fi1G. 1. Density contours from the computation of a Prandtl-Meyer expansion wave resulting
from 2 Mach 1.2 flow turning through an angle of 30 degress.

Set0

p-
-

| N RN S T U OO TN D N TN TN SN O Y JOUO N S N |

e
&
F ¥y 17T YT T TrT 1rmr T T rrrrrrriorr

035 b ! { | H H H w x 103
20000 30000 40000 SOO00 S00.00 70000 80000

F1G. 2. Density profile along the fluid/body interface for the computed flow displayed in figure 1.

-
N\

ML \\ﬁ/
__//_1\—\
=10
di
0y =
;r/ AV&

LT
\
A

g
/-
£

Fi1G. 3. Density contours from a computation of a Mach 10 flow past a 30 degree ramp.

F1G. 4. Density contours from a higher order Godunov/AMR computation for the flow displayed
in figure 3.

s

F——]

/[J

/

F1G. 5. Density contours from an r-z compuation of a Mach 1.597 flow past a cone with a
semi-apex angle of 9.5 degrees.

Figure 6. Longitudinal slices of density field for Mach 2.33 flow past a cone-cylinder,
with a semi-apex angle of 8.58 degrees.

Figure 7. Rendering of density field for Mach 2.33 flow past a cone-cylinder,
with a semi-apex angle of 8.58 degrees. Full and wake views.

