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Abstract

In this paper we describe a front-wracking algo-
rithm for modeling the propagation of discontinuons
waves in two space dimensions. The algorithm uses a
volume-of-fluid representation of the front in which the
local frontal geometry is reconstructed from the state
information on either side of the discontinuity and the
Rankine-Hugoniot relations. The algorithm is coupled
to an unsplit second-order Godunov algorithm and is
fully conservative, maintaining conservation at the
front. The combination of a volume-of-fluid representa-
tion of the front and a fully conservative algorithm
leads to a robust high resolution method that easily
acomodates changes in the topology of the front as well
as kinks arising when a tracked front interacts with a
captured discontinuity. The Godunov/tracking integra-
ton scheme is coupled to a local adaptive mesh
refinement algorithm that selectively refines regions of
the computational grid to achieve a desired level of
accuracy. An example showing the combination of
tracking and local refinement is presented.
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A broad range of phenomena in unsteady super-
sonic flow are dominated by the propagation and
interaction of discontinuous nonlinear waves. There are
two basic approaches to treating discontinuous waves
associated with hyperbolic conservation laws. One
approach is high-resolution finite difference methods
that resolve discontinuities on a grid by addition of a
suitable dissipation while preserving high accuracy in
smooth regions. The other approach is front tracking
where the discontinuity is treated as a free boundary
whose dynamics are described in terms of Rankine-
Hugoniot relations and appropriate entropy considera-
tions. The liccrature associated with both of these
approaches is vast and a comprehensive study is beyond
the scope of this paper. The interested reader is
referred to Chern and Colella [1], Chem et al [2), and
Woodward and Colella {3] for a survey of the literature
associated with these areas.

In this paper we present a new algorithm, which
generalizes earlier work on Chem and Colella [1], that
combines a conservative front-tracking scheme with an
unsplit second-order Godunov difference method used
in conjunction with local adaptive mesh refinement.
The basic strategy is to explicitly model the propagation
of some distinguished discontinuity through a fixed
finite difference mesh and rely on the difference tech-
nique to capture other waves. The tracked discontinuity
is represented using a volume of fluid description that is
insensitive to complexity of the front, changes in front
topology, and is readily extendable to three space
dimensions.

The key idea of Chern and Colella is the use of
an algebraic redistribution technique to alleviate CFL
time step restrictions arising when a finite difference
cell is split into two pieces, one of which can be arbi-
trarily small. The use of the redistribution technique
provides a meihod that is globally conservative without
encwrring a penalty in time step size. The principal



innovations discussed in this paper are the use of a
finite difference approximation to an effective advection
equation for moving the front and the use of the redis-
tribution technique to couple the tracking method 10 a
local mesh refinement scheme where the tracked front
can cross different levels of refinement.

In the next section we provide an overview of the
basic tracking integration method. The details of the
tracking algorithm of discuss in section 3. In section 4,
we describe the coupling of tracking to the local adap-
tive mesh refinement algorithm of Berger and Colella
{4]. The last section of the paper presents a numerical
example,

Overview of the Integration Algorithm

In this section we describe the basic second-order
Godunov algorithm with front tracking in a summary
form. Details of the various components are described
in the next section. We will describe the method in a
fairly general form; however, the emphasis in this paper
will be on tracking a gas-dynamic shock. In particular,
that components of the algorithm that are specific to the
type of discontinuity being tracked will be discussed
only in the context of a gas-dynamic shock. Further-
more, special simplifications of the algorithm for this
case will be indicated. Thus, we want 1o solve
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o] pu pv
2
pu pu+p puv
= x = y -

4 pv F*U) puv FrU) pv24p

pE PUE +up PVE +vp

The representation uses a distinct state U on each side
of the tracked front. We will refer 10 one of the states
as "inside” the front and the other as "outside” the front
which we will denote as U' and U? respectively.
Thus, for each cell, A;;, through which the front passes,
we define both states, U;} and U;2. For these "mixed”
cell through which the front passes we also define
Al,1=12 10 denote the volume fraction of the cell
inside and outside the front respectively.
(A} + A% = 1) Cells fully inside or outside the front
require only a single state vector. For the special case
of a gas-dynamic shock, the post-shock state will be
correspond to /=1 and the pre-shock state to 1=2.

The basic algorithm is, essentially, a three-step
process. In the first two steps, which are actually
independent, we compute fluxes in for U' and U?
"ignoring” the presence of the tracked front and we
advance the location of the front. To perform these
first two steps, it is necessary to extrapolate states to the
opposite side of the front; e.g., for cells within two
zones of the front we must define U' in cells where

Al =0 and U? in cells where A% = 0 Using these extra-
polated values, whose exact specification is given
below, we define states U/, I=12 that extend the
definitions of U and U2 The constructions used in the
first two steps of the algorithm use these extended
states.

In the first step of the algorithm, we use an
unsplit second-order Godunov integration algorithm
developed by Colella [5] to compute fluxes for the pre-
and post-shock states. This scheme has the form

ULS' = Uty + gy oy =Flom)

At
+ "Z;(F Yin—Fjas). 2.2)
Here, Flis . F}jss approximate time averaged fluxes
at the cell edges, and are assumed to be explicit func-
tions of U" of the form

i = FXUlja e Ulgers OxUdicpjors
Dy U )icp jor 1D Udisr jor Oy U iar jar)
Flima = FYUL Ul s O Uiy jors
DyU )iy jor vesDx U iap jar Py Udine jar)
where
DU =Uli-Ulye  OyU)ija =Ul-Ulya

In other words, Fliy ;. F} ;s on U* depends on the 6
cells nearest the cell edge where the flux is defined,
plus a possible dependence on values of U™ farther
away which appear only as one sided differences in U*.
In addition, the scheme has the property that setting any
of the D;U,D;U to zero adds dissipation to the
scheme and when they are all set to zero the resulting
scheme is a first-order version of Godunov’s method
that has comer coupling so that it is stable for CFL’s up
to 1.0. Here, tae fluxes for U! and U? are computed
independently, ignoring the presence of the tracked
front, using the extended values to fill the required sten-
cil of the difference scheme. The only modification
made to the integration module is to zero DU and
Dy U when these differences involve cells that are fully
on the other side of the front; i.e., difference contribu-
tions for computing U’-fluxes that attempt to use U’-
values in cells where AL = 0 are set to zero.

In the second step, we reconstruct the front shape
from the volume fractions and solve an advection equa-
tion to advance the front. The reconstruction assumes
that a normal to the front 7, and a front speed s;; can
be computed from local information and that this infor-
mation can be extended to a neighborhood around the
mixed cells containing zones that can participate in the
front movement, e.g., cells that are within one zone of a
mixed cell. This phase of the algorithm depends on the
specific type of discontinuity that is being tracked; its
form for a shock is discussed in the next section, Using
the normal and the volume fraction we can determine a



linear reconstruction of the front inside each mixed cell,
An cffective equation for the volume fraction is then
used to advance the front by computing volume frac-
tions at the new time level. In particular, we integrate

A, + V-(PA) = -A VP (23)

where ¥ = s® using a piecewise linear reconstruction of
the front inside each cell to compute the volume frac-
tion flux.

The final step of the algorithm uses the fluxes
computed in the second step and the frontal dynamics
from the first step to update the cells near the tracked
front. This procedure is based on ideas developed by
Chem and Colella. The fluxes are combined with aper-
tures that specify the area (in space-time along each
edge) where that flux is applicable to compute a conser-
vative update for both U' and U2 for each cell
through with the front passes during a time step. Since
cells intersected by the front at the new time have a
reduced volume, fully updating the cell would lead to a
violation of CFL conditions and would potentially lead
to an instability. Thus, each cell receives a fraction of
its specified conservative update that is consistent with
stability. To preserve conservation the remainder of the
update is redistributed to neighboring cells in a
volume-weighted manner that is consistent with the
characteristic structure of the equations.

ign Sch ith Trackin

In this section we describe the integration scheme
with racking in more detail. We denote the grid cells
by A;; where i=iy Jjy and j=j, ju. Before beginning
either the front advancement or the flux computation we
must first define the extended states. The extension is
done in a two step process. First, we identify a grid
cells as potentially participating in the front motion if it
is either a mixed cell, 0<Af; <1, or it is adjacent to a
mixed cell. These are the cells through which a portion
of the front may pass during the time step. For later
reference, we define a marker, P;; such that P;;=1 for
cells that can participate in front motion and 0 other-
wise. In the first stage of the extension, we define an
extended state

z Au.l Uu.l
1o | kG )
Uj= T A
nbh(i f)
for each cell where A'=0, and P;;=1, where nbh(i j)
represents the 8 neighboring cells. We are guaranteed
that at least one cell in nbh(i j) has nonzero A’ so that
(3.1) is defined. We must now extend an additional cell
beyond the cells defined by (3.1). For this purpose, for
each cell that does not participate in front motion but
borders_a participating cell and satisfies A} =0 we
define I.J‘A,- to be the average of the U’ values defined by
(3.1) lying in nbh(i j). (A volume weighted averaged

3B.n

does not make sense here because the barred states are
associated with these cells have A! =0.) These addi-
tional states are required to complete the stencil of the
difference scheme for each cell that participates in front
motion, We then define the extended states US*"* w
be U’ if A}>0, U for cells that participate 1n front
motion but for which A}=0, and U}; for neighboring
cells that are not otherwise defined.

In the first step of the algorithm, we use the
extend states defined above to compute fluxes for the
edges of cells using the second-order Godunov pro-
cedure described in the previous section. The use of
extended states and the modification to the integration
algorithm allows fluxes F&,; and F7}\s to be defined
for all edges of cell where A/>0 or where Af; = 0 and
P ij = 1.

In the mext step of the algorithm we reconstruct
and move the front. To accomplish this step we need
to define a normal to the front, @ and a front speed s,
for each cell that participates in front motion. In the
case of a shock wave, the Rankine-Hugoniot relations
determine the normal In particular,

2 = [u;‘}""-u.?"’]x

ij © ext 1 axt
173 Vij ‘.vl.j 2
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Vg w7 + v A
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which reflects k2 fact that the change in velocity across
a shock occurs in a direction normal to the shock.
Once the normal has been computed the shock speed s;;
is determined by projecting the pre- and post-shock
states (I=2 and [=1, respectively) onto the normal
direction and solving the associated Riemann problem
to determine the resulting shock speed.

These normals and shock speeds can now be used

to solve (2.3) to advance the front. We have used an
operator split approach in which we solve

Al + (s, AN, = =Als, (3.3a)

and

Al + (AN, =-Alsy, (3.3b)
alternating whih is performed first between successive
time steps. Here, s, and s, are the x and y com-
ponents of s, (We are using A! to advance the front;
we will derive A2 from the constraint that the A's sum
10 1. To discretize the x-sweep, we first define edge-
centered speeds using
Pij i + Py Sl

P+ Py

Sivaj =

for each edge pordering a cell where P;=1. These
edge velocities are then used to compute volume-
fraction fluxes across each cell edge. In computing
these fluxes we need to utilize the local structure of the
front. Using Ajj and 7; we can uniquely construct the



front in cell A;;. In particular, for each cell we can find
a unique value of a such that

§;=(®e A; s.L.RP-a<0)

satisfies

Area(S;;

pg = sy
Ax Ay
The volumetric flux of A though edge i+%/ is the area
of the intersection of S in the upwind cell with the por-
tion of that cell sweep out by the edge velocity. More
precisely, if 5;,1, ;20 then
Fiby,j = Area(S;;n[Ax -5, j At AxIX[0,Ay])

where the rectangle is defined with respect 1o a local
coordinate system on A;; where the lower-left comer of
the cell is the origin. Similarly, if s;,,, ;<0 then

Fiduy = —Area(S;y ;010,54 A1 1X[0,Ay])

where the rectangle is defined with respect to analogous
cell i+l coordinates. With this volumemric flux
definition,

y FiuFiy ]

AL = } (34)

Sivg j ~Si 4 j
1-At————
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The y-sweep is defined analogously and defines A**!
from A™**,

The final step in the integration algorithm merges
the results of the first two steps. Although we will not
make any distinction at this point in the discussion, for
cells that are sufficiently far from the tracked front the
algorithm discussed below collapses to the update fog-
mula (2.2) using appropriate fluxes. To incorporate the
effects of the front into the update for U’ we must con-
struct an approximation to the motion of the front dur-
ing the time step. For cells that are mixed (O<A<l),
given AJ', AR*!!, and the front speed s;;, we can find
a plane S, in (@) space of the form
So=((®4): PA -5t +a=0} that locally represents
the trajectory of the tracked front through the finite
difference cell A;;. If we define

S, = {@ua): A=5 t+a <0},
then ¥ and a can be chosen so that
A"; = area of Sl r\A,-j)({l"]
A = area of §) NAx(1**) .

In the case that O<AZ' A <1, §, will be uniquely
determined from the A’s and B with using the front
speed 5;;. In the case when one of the A’s is zero, then
the speed s is used to define T in determining .

We will use S, are S, to determine the areas of
the surfaces in space-time on which fluxes of each of

the componenis are imposed. We define apertures
A:]W-l to be lhc area of (Sth;wX[t.Jﬂ*'NDv and
apertures  A/Y*! 10  be the area of
S, f\L;Jf/,X[“,!""AlD, where the L‘m L Jin are the
sides of A;;. We also define

AJ = area of S A;x[t"* 4" +At].

The calculation of A/F*J"!, AlY*¥1, A/ s a straightfor-
ward exercise in trigonometry. Theses apertures
represent the portion of the edge on which fluxes for U
are applied. The U? apertures are defined using by the
compatibility condition

ATIEAL L AIIEA2 = Ax Ay
and

AT ATBAI 22 Ay AL
We mention that A/ is easily calculated from the
Ai¥Aicg AlV¥g and A’s using the divergence
theorem. Away from the front, the appropriate aper-
tures are defined to be Ar x the length of the cell edge
and A/ =0.

We now apply the divergence theorem to each
cell 10 obtain an initial approximation U;;” to U' at £**!
AU =AU -

1
gj;(AﬁwFf;fa.,—-As'-wF LAy

+A! jF 1 on—Al i F 2 fon H-1) ALF])

Here A,”w, A;’ Jas are given by

3.5

1 iom s ianes
Alp = -E(A,-‘";f””"+,4,-‘:,*:‘,vl-‘)
and
1. .
Aljos = E(Afjfxm +Al}

In the general case, F/ is the flux across the tracked
front in the czll, given by
Fxfj = F?(Ui;')_sijUE;;

where U” is the value of the solution to the Riemann
problem for the system (2.1) projected in the &}; direc-
tion along the ray &/t=y;, with left and right states
U2 US!. In the case of a shock wave a simpler
approximation can be used, namely,

Ff = FY(USZ*2) -5, US 2, (3.6)

We want 10 now reexpress (3.5) the update of U
in terms of the change in U caused by the tracked
front. To accomplish this we first define update that
ignore the front

U = Ul S, - FE )

At
+ X;(F 2on = FY o). (3.79)



where the fluxes are computed from the extended states
U, Then we rewrite (3.5) as

AU = AU 4 M (3.7b)
where
M) = AJUS - AJHUZ Y -
s Al Pl
Al josF Y on—Al ol F LB H1ALFS (370)

We note that with this definition of 8M , sufficiently far
away from the tracked front 8M =0 to that (3.7) is
simply a re-expression of (2.2). If we divide (3.7b) by
A" we would have a conservative update for U’,
namely,

H
n4ll

However, because the A’s can be arbitra-ily small, this
update can require an excessive time step restriction to
remain stable. (This update is, of course, stable for
cells where A=1.) To avoid this type of time-step limi-
tation we will use the redistribution ideas of Chemn and
Colella [1]. Their basic idea is to define a preliminary
update that adds a fraction of the update that will be
stable at the time step determined CFL criteria on the
regular grid. This gives a preliminary evolution in
time, given by

+1) _ yrexta+ll
U.‘; J—U;j A +

U,‘.J'l = U‘"J“F SM"!J (3.8)

This update does not preserve discrete conservation
form. In order to have conservation, we must distribute
(1-AZ*"H8M}; onto the grid. In the general case we
do this by decomposing these increments into charac-
teristic variables and distributing them to nearby cells in
a volume-weighted fashion. If we expand

(1-A3*h8M), = Zalr]

where 7, (U), k=1,...N are the linearized right eigen-
vectors of the system (2.1) projected in the F); direc-
tion, with r{ = r,(T};), then we can define

M = YTolrf
kop

M~ = Tajr
k>p
0 _
M = Qpr,

aMnd.l = &M+.1+8M+,2+8M0.1 (3-9)

M2 = M~ 4+8M 2+ 8M°?
A‘:‘d,) = Z An#l.}
nBA G j)
Then we define the final values of U3*' (0 be
SMndJ

n+l) _ Fra+l)

] (3.10)
iy A5

Again, in the special case of a gas dynamic shock, the
redistribution step can be simplified by setting

wmd.l - (I_Anﬂ,l)wl + Au-&!.lml’
and
SM™2 = (.

Finally, we note that in the shock wave case,
several minor modifications were made to the metho-
dology to deal with degenerate sitnations. First, when
the jump in velocity in (3.2) across the front is small
compared to the jump in pressure, the computation of
the normal from the velocity jump is not reliable. This
can occur, for example, when pieces of the front col-
lide. When the jump is judged to be small we convert
the pre-shock fluid in the zone to post-shock and adjust
the volume fractions to reflect this change. These
modifications are accumulated into the 8M’'s in the
redistribution step to that the method remains conserva-
tive. The other type of degeneracy that is encountered
occurs whern there are extremely sharp comners in the
front. In this case it is possible for isolated fragments
of pre-shock material to be entrained into the post-
shock regior. When this fragmentation occurs the frag-
ments are absorbed into the post-shock states and the
volume fractions are adjusted.

in AM

In this section we describe how the basic conser-
vative tracking methodology is coupled to a local adap-
tive mesh renement algorithm based on the approach
of Berger and Colella [2). We will briefly review the
basic adaptive refinement algorithm before describing
the modificaucrs needed to incorporate tracking. The
algorithm is baced on a hierarchical grid structure com-
posed of grids of varying resolution. The grid hierarchy
is constructed using an error estimation procedure to
identify cells having unacceptable errors that are then
clustered into logically-rectangular grids that are subdi-
vided to form finer cells where more resolution is
required. Integration of the differential equations on
this hierarchical grid structure is a three-step procedure.
First, the coarse grid is integrated to supply boundary
data for finer grids, The fine grids are then integrated,
subcycling in time, to catch up to the coarse grid.
Finally, the coarse grids are comrected to reflect the
improved resnlution of the finer grids.

The bulk of the tracking methodology appears in
the integration module of the code which is cleanly
separated from the adaptive mesh shell. There are two
modifications that are required to combine tracking with
adaptive refinement. First, interpolation from coarse
grids to finer grids is no longer a simple interpolation
procedure; instead the front must be constructed on the
coarse grid and the relation of the fine grid cells to the
front must be used in the interpolation. This occurs in

interpolating boundary conditions for the fine grids and



in initializing fine grids from coarse grids when the
error estimation criteria call for finer grids in a particu-
lar region. Similarly, in averaging fine grid cells to
define values on an underlying coarse grid cell, the
averaging must be weighted by the volume fractions in
the fine cells to ensure conservation.

The second modification represents a more sub-
stantial change. Without tracking the correction to the
coarse grid to reflect the improved resolution of the fine
grid is to replace underlying coarse grid values with the
average of the covering fine grid values and 0 add a
flux correction &F to coarse grid cells that border fine
grids. More precisely, we set

vt = U‘+-§€- @.1)

where
8F =3 (L ATFTy - Le At F©

with the sum taken over the fine grid edges that cover
the coarse edge and over the number of time steps the
fine grid is subcycled for a coarse step. Here, A€ is the
area of the coarse cell, LY are the lengths of the
coarse cell edge and the fine cell edges that cover it
Note that 8F is an extrinsic quantity, e.g. mass not den-
sity. The update (4.1) is equivalent to repeating the
integration of the coarse cell using the sum of the fine
grid fluxes to update the cell instead of the coarse grid
flux.

When  tracking is  included,  additional
modification are needed to account for the effects of the
redistribution step of the algorithm. These carrections
arise because redistribution provides an additional
mechanism for communication across a coarse-fine
boundary. There are four basic coarse-fine redistribu-
tion terms:

8R}: These are the values redistributed into the fine
grid from the grid boundary cells; hence, there
are artificial and their effect must be removed.

These are the values redistributed from the coarse
grid into the coarse grid cells underlying the fine
grid that are subsequently lost when the coarse
values is redefined by averaging the fine values.

: These are the values redistributed from the fine
grid into its boundary cell. These values are then
lost.

These denote the redistribution values from the
coarse grid underlying the fine grid to the coarse
grid cells on the boundary of the fine grid. Their
effect should be removed.

We now define
&R’ = 8RI-Y 8R!

3Rr!:

SRE:

4.2)
and

8RE = Y8R/ “-8RE 43)

These terms, which are accumulated in extrinsic form,
represent the values that should be added to the coarse
interior cells on the boundary of the fine grid (and the
fine cells that cover them) and the correction to be
added to the coarse grid exterior to the find grid. We
associate 8R’ with the coarse grid cell from which the
values came and SRE with the coarse grid cell that
received them. We note that the 8R's and the &8F's
must, in genersu be accumulated by both states and that
the fluxes appearing in the definition of 8F are aperture
weighted. These terms are then combined to form

M}, = 21;.(5;: + 8REZ 4+ &R @.4)
which is a generalized reflux correction to coarse grid
cells that border fine grids. As we did in the main
integration step, we include a stable portion of the
update in each cell and redistribute the remainder to its
neighbors. Thus,

Ur=Un el
and
amdd = (1-AhaML, @.5)

The 3M7%’ are then redistributed to the neighboring
coarse cells using the procedure defined in the previous
section. Values redistributed during this procedure to
coarse grids tha: are covered by fine grid cells are lifted
to the fine grid, weighted by the fine grid A’s. We note
that for interfaces between coarse and fine grids that are
not near a postion of the tracked front, the &R s in (4.4)
vanish and the reflux correction reduces to (4.1). For a
shock wave the redistribution can be simplified. First,
3RE2 and &R’ are both zero in (4.4). Furthermore,
the pre-shock redistribution in (4.5) can call be placed
in the post-¢i:xck cells as in the basic integration algo-
rithm.

Numerical Example

In this section we present a numerical example
showing the combined tracking / adaptive mesh
refinement algorithm. The example shows a tracked
Mach 10 shoc't impinging on a circular cloud of gas.
The cloud region is in thermodynamic equilibrium but
it is 10 times as dense as the surrounding ambient gas.
The shock is initially to the left of the cloud and mov-
ing to the right with the cloud initially at rest The
base grid is 60x30 with two levels of refinement
allowed. Each refinement reduces the grid spacing by a
factor of 4 in each direction, thus, a single grid at the
finest level of resolution would be 960x480. The
refinement criteria set to prevent the incident shock
from being refined in the upper portion of the domain.
Figures la through 1d show contours of the logarithm
of density. In the contouring algorithm the pre- and
post-shock states are averaged onto the grid for contour-
ing. Thus, we observe an apparent thickening of the



tracked front as its level of refinement progresses from
the finest level near the cloud to the coarsest level near
the top of the domain. Figure 1a shows early time
when the shock has just begun to enter the cloud. In
the next frame, the shock has progressed most of the
way through the cloud and the cloud is beginning to
deform dramatically. Note that the bow shock is well-
resolve using the capturing scheme. In 1c the tracked
shock has left the cloud and the cloud has continued to
deform. In the final frame, the tracked shock has tran-
sitioned to Mach reflection. The cloud is continuing to
undergo increasingly complex distortions.

Figures 2a through 2d show a composite of the
tracked front superimposed on boxes that represent
where the refined grid patches are located. (Not at the
same times as the frames in Figure 1.) The larger boxes
show where the level 1 grids are located and the
smaller boxes show the level 2 grids. During this
sequence we note several changes in the structure of the
front. Between frames 2a and 2b, the front pinches off
to form two separate pieces. Between frames 2b and 2c
the smaller piece of the front disappears. Finally,
between 2c and 2d we see a sharp kink develop in the
tracked front indicating the transition of Mach
reflections. Because the algorithm reconstructs the front
locally at each step from the local state variables and a
volume fraction no special cases are needed to deter-
mine how fronts interact or change topology.
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Figure 1. Times sequence of logarithmically spaced density contours from computation of a Mach 10 shock hitting
a dense cloud.
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Figure 2. Times sequence of tracked front location superimposed with location of fine grids.



