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Abstract

In this paper we describe a second-order projec-
tion method for the time-dependent, incompressible
Navier-Stokes equations. The method is a second-order
fractional step scheme in which one first solves
diffusion-convection equations to determine intermedi-
ate velocities which are then projected onto the space of
divergence-free vector fields. The diffusion-convection
step uses a specialized second-order Godunov method
for differencing the nonlinear convective terms that is
conservative and free-stream preserving and provides a
robust treatment of the nonlinearities at high Reynolds
number. The projection is based on cell-centered cen-
tered difference approximations to divergence and gra-
dient operators with the resulting linear system solved
using a multigrid relaxation scheme. We apply the
method to vortex spindown in a box to validate the
numerical convergence of the method and to measure
its overall performance.

Introduction

This paper describes 8 second-order projection
method for the incompressible Navier Stokes equations
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U +UV)U =AU - Vp (1.1)
VU =0 1.2)

Projection methods, which were first introduced by
Chorin [1,2,3], are fractional step methods that com-
pute an intermediate velocity field by solving (1.1),
ignoring the incompressibility condition (1.2). This
intermediate velocity field is then projected onto the
space of divergence-free fields to recover the approxi-
mation to the velocity.

Several second-order generalizations of the origi-
nal projection method have been proposed. Kim and
Moin {4] use an inhomogeneous boundary condition for
the intermediate velocity field, replacing the treatment
of the nonlincar terms with a second-order explicit
Adams-Bashforth scheme and using the staggered grid
system of Harlow and Welch [5]. They provide compu-
tational evidence that their scheme is second-order
accurate. Van Kan {6] proposes another second-order
generalization of the projection method. This method is
based on first discretizing the spatial terms using the
Harlow and Welch staggered grid, thereby reducing the
partial differential equations to a system of differential
algebraic equations. He then develops a second-order
integration technique of projection-type for this system.

Another second-order projection method (BCG)
was introduced by Bell, Colella and Glaz (7). This
method uses a strategy similar to van Kan's for the
basic temporal discretization. It also incorporates an
improved treatment of the nonlinear terms in (1) using
a second order Godunov method that provides a robust
treatment of the nonlinearity at high Reynolds number.
The BCG algorithm has subsequently been extended to
quadrilateral grids [8], three space dimensions [9], and
variable density fiows [10].

In the present work, we discuss a number of
improvements to the BCG algorithm described in [7] o



improve its efficiency and robustness. We introduce a
somewhat different treatment of the differencing of the
advective terms that eliminates an instability observed
for high Reynolds number and Euler calculations at
advective CFL numbers 20.5. We also systematically
use multigrid algorithms for the projection and the para-
bolic terms throughout; this is a nontrivial step for the
projection operators, since they involve nonstandard,
locally decoupled stencils for the discrete Laplacian.
Combining these two ideas leads to an overall factor of
5§ speedup over the method in [7).

The numerical method is a three-step process. In
the first step, an unsplit, second-order Godunov method
is used to compute time-centered conservative
differences of the nonlinear flux terms (U-VYU. The
Godunov method is a predictor-corrector method in
which characteristics are used to extrapolate velocities
to "™ from the solution at time t*. These predicted
velocities are then used in a comrector step in which
Riemann problems are solved to resolve ambiguities in
the upwind direction and the resultant states are used to
evaluate centered difference approximations to the
advective derivatives. In the second step of the algo-
rithm we solve (1.2) using a Crank-Nicholson discreti-
zation in which the pressure gradient and the nonlinear
term (evaluated during the previous step) are treated as
source terms. The pressure gradient is evaluated at
time %, The explicit, second-order treatment of the
nonlinear term in the first step provides a time-centered
approximation of this term while maintaining a sym-
metric positive-definite system for the linear algebra
associated with the Crank-Nicholison time discretization.
The result of the second step of the algorithm would
have been a second order approximation to &**! if a
time centered pressure had been available. The lagging
of the pressure term in (1.1) introduces a second-order
perturbation into the result of step two. This perturba-
tion is manifest in the failure of the incompressibility
condition (1.2). In the final step of the algorithm, a
discrete Hodge decomposition is performed to remave
the non-divergence-free component from the solution at
1**! and to update the pressure.

In the next section we describe the basic frac-
tional step algorithm that specifies temporal discretiza-
tion strategy. Details of the Godunov procedure for
computing the time-centered approximation of (U-V)U
are described in section 3. The multigrid algorithm for
computing the discrete projection is described in the
fourth section. Finally, we present a numerical example
with timings to illustrate the performance of the
method.

Temporal discretization
In this section we review the second-order frac-
tional step formulation from [7] used in the present
work. Projection methods are based on the decomposi-
tion of vector fields into a divergence-free component

and the gradient of a scalar field. More precisely, any
vector field V can be uniquely written as V = U, + Vo
where ¢ is a scalar and U,; is divergence free and
satisfies specified boundary conditions. For the purposes
of this paper, we shall assume that a solid boundary
encloses the entire fluid, so that U, m=0. One can
define an orthogonal projection P such that U, = PV
and V¢ =(d-P)V. (See Temam [11] for a more
detailed discussion of the projection.) Using the projec-
tion we can rewrite the Navier-Stokes equations (1.1)-
(1.2) in the equivalent form

U, =PEeAU - (U-V)U) (2.1)

Equation (2.1) describes the evolution of U in terms of
a nonlinear functional of U; the pressure has been elim-
inated from the system. The pressure in (1.1)-(1.2)
represents the gradient component of the vector field
that is projected in (2.1); ie.,

Vp =(@-P)eAU - (U-W)V)

For the basic temporal discretization, we assume
that we are given an approximation to U". Further-
more, we assume that we have already computed a
second-order, time-centered approximation to the non-
linear terms [(U-V) UI**%. (A Godunov-type procedure
for computing this approximation is described in the
next section.) A second-order discretization of (2.1) can
be obtained using a Crank-Nicholson approximation

U:NI_UR
T =

P %A(U'+U‘*’)-[(U~V)U]’"*] . 22

However, the lincar algebra problem associated with
solving (2.2) would be extremely costly because of the
nonlocal behavior of the projection.

As a less costly alternative, we construct a frac-
tional step method that approximates (2.2) to second-
order accuracy. To accomplish this we will assume that
we are also given an approximation to Vp"™%, We
then compute an intermediate velocity field U” using

AUV (U UT™ @3)
where U" satisfies the same boundary conditions as U.
The role of the pressure gradient term in (2.3) is
approximate the effect of the projection in (2.2). We
now apply the projection to decompose U” into
divergence-free and gradient components to obtain U**!
and an update for Vp

urt=pU" (2.4a)
Vp***4 = Vp*™ 4 A\ A-PYU’ (2.4b)
Equations (2.3)-(2.4) represent the fractional step



scheme that we have used. The relatdonship between
(2.3)-(2.4) and the Crank-Nicholson scheme (2.2) can
be seen by first observing that (2.4) is equivalent to

41 _ . LA 511
v v .p[” v +vp--""] @.53)

At Ar
Vp** = (1-P) [E—;Tl& + Vp"""‘] . (2.5)
If we use equation (2.3) to replace

v _-u" +vpn-¥1

in (2.5) we obtain

R i A e 2O
A -P[zA(U +U")-[(U-V)U] ]

Vp"* = (I-P) [—;-A(U“+U' s (VA1 1""""]

from which we can see that (2.4a) corresponds to (2.2)
with U”*! approximated by U° on the right hand side
and that Vp™** represents the gradient component of
the vector field being projected.

We note that since Vp~ is not available initially,
we iterate (2.3) and (2.4) (with Vp = 0 initially) on the
first step. The inclusion of the Vp*~™ in (2.3) makes
the algorithm second-order accurate in time (see [71).

Before describing the spatial discretizations used
in the algorithm we will summarize the basic approach.
First we solve the diffusion-convection equations (2.3).
This is a two—stia process in which we first approxi-
mate [(U-VYUT**™ using a second-order Godunov pro-
cedure. Then, we solve the two parabolic equations
represented by (2.3) with the nonlinear term treated as a
source termn. In the second step of the algorithm, we
apply the projection to update U and Vp. In the next
section we discuss the spatial discretization of the
diffusion-convection equations that forms the first step
of the algorithm. In the following section we describe
the approximation of the projection.

Spatial discretization

In this section we discuss the spatial discretization
of the diffusion-convection equations (2.3) that form the
first step of the algorithm, The spatial discretization is
based on a cellcentered approximation that provides
the most natural setting for Godunov-type methods.
We let i,j denote the cell whose center is located at
(i-Bax ,(j-H)Ay) for i=1..I;, j=1,.J. The
right edge and top edge of cell i,j are denoted by
i+%,j and i j+%, respectively. Thus, %4,/ and I+
refer to the left and right boundaries of the domain, etc.
Velocity and pressure unknowns are specified at cell
centers and velocity boundary conditions are specified
at cell edges on the boundary.

The first step in solving (2.3) is the evaluation of
[(U-V)U*™ using a specialized second-order
Godunov method. In {7], the construction of the time-
centered predicted velocities is done by computing the
leading order terms in the Taylor expansion of U at the
cell center, replacing the time derivative with space
derivatives using (1.1). The pressure gradient used for
this purpose was that obtained on the previous time
step. The use of this lagged pressure gradient in the
predictor step for the advective derivatives leads to a
nonlinear instability for advective CFL numbers 20.5.
Analysis and computational experimentation suggested
that this instability was related to the failure of the
predicted velocities to satisfy (1.2). Here we present a
modified version of the discretization of (U-V)U that
respects (1.2) which we find eliminates an instabilities
at high advective CFL.

In the new version of the the predictor step, we
proceed as before to compute the time-centered edge
velocities using a Taylor series approximation.

U =UP,; + i‘z-’iv;,-,- + %‘—U:,-,- (.12)
M= UL - 5 Lrpyn+ ';‘U,';j (G.1b)
URAE = U + -ézlv;_,-,. + %’-Urﬁ G.10)
f-ﬁf UI'J U;.u A2t t‘i:' . (3.1d)

The first two quantities denote the extrapolation of U to
the left side of edge-(i+'%.j) and to the right side of
edge-(i —%4.j), respectively. The last two are the extra-
polation of U to the bottom side of edge-i ,j+% and the
top side of edge-i ,j—%. We now approximate U, using
the differential equation (1.1). This approximation will
be built in three stages. First, we define U, which only
includes the derivative terms normal to the edge. In the
second phase, we add the viscous terms and an approxi-
mation to the transverse derivatives using U to compute
the next approximation {/. An upwinding procedure is
applied to the s to resolve ambiguities at the inter-
face and a MAC-type projection is used to incorporate
the effect of the pressure gradient on the final edge
values U, Thus, we have, for (3.1a)

T a Ax At A »

U,L "-U +SL [2 —“2-11,'."]{]“"‘!‘ (3.23)
where 5; is 1 if u J-ZO and O otherwise; and
(VU,).‘.,‘

Gwcn left and right extrapolated values of the form,
UR4.; or URL,, we assume that we have a means of
exzmcung single edge-centered values U,% Uivajs
corresponding 10 an upwinding procedure; such a pro-
cedure is given below.

Ok, = OF; - + SeaUny;  G2b)



In equation (3.2), AU/; is evaluated using a standard
five point finite difference approximation. The U, term
is evaluated using a fourth-order monotonicity limited
slope approximation given by

Axg,;; =@q)ij.q=uwv,
(Bg):; = sign(qis1 j~Qi-15)%
2gin i) (@ )i jHY @)iay)

3 6
& q)ij = min21g;4 ;i1 189, ;)
XSign{(qiay j—gi-1)
@"q); j = min(21q;4y—4i j 1 214; j~qia g 1)
if (9i+15-9: X9 j—9i-17)>0
= 0 otherwise ,

In [7] the slope formula corresponding to 8¢ =& ¢
was used; the slope formula given here is preferred, as

it has slightly less damping than the previous one (see
[12]). The transverse derivative term vU, is given by

1. . .
‘E(Vs,jmﬂa 5NO; s ;i)

This form of the transverse derivative term is slightly
more elaborate than the one originally used in [7]; for
linear advection, it is known to have somewhat lower

phase error.

Our upwinding procedure is based on the
Riemann problem for Burgers® equation. In particular,
to uniquely define edge values U,% from left and
right extrapolated values U,,M‘,, U,%, we first define
the normal component (in this case u).

1L,6"q)i ;)

min(|

vU, =

ul if ul20,ut +uf20
Bippj = 0 3.3)

if ut<0,u®>0
u® otherwise

(We suppress i+'%,j spatial indices on left and right
states for clarity.) Now we upwind v based on the nor-
mal velocity.

L

v if Uiy j> 0

R

Viswj = ¥ if u,-+-,,v;<0 (3.4)

Vawk + vF) i wp ;=0

To obtain a time-centered value for U at the cell
edges, we must adjust U,.%, to account for the effect
of the incompressibility condition to order Af?, i.e. by
adding the pressure gradient term from (3.1):

Uu+‘/z (3 .2C)

~ At

N (Vp)ivaj
In [7], this was accomplished by addmg to the right
hand side of (3.2b) the quantity -~Ar/2Vp7* J using the
estimate of the pressure gradient obtained in the projec-
tion step (2.4) during the previous time step. We have

found the use of this lagged pressure gradient intro-
duces a mild instability for high Reynolds number and
inviscid problems for advective CFL numbers greater
than 0.5. For that reason, we have introduced the fol-
lowing alternative method, which eliminates that insta-
bility. Given l:ri-o-%,jr 17; J+a WE compute the MAC
divergence at the cell centers .

- 1, o 1 -
o¥0y,; = 'Z;(“im.j"ui-%.j)*‘z;("i.jd%‘vijdd)

We then solve A ¢ =DM, where A, is the standard
five-point discretization of the Laplacian with cell-
centered homogeneous Neumann boundary conditions.
We use the field so obtained to compute the correction

Al 1
=3 Privaj = 5o @i )

At 1
5 Priwni = 'az;@’i.i+l+¢i+l,i+l-(¢iJ-—l+¢i+l.j—l))

The resulting values for U**™ have the property that
DMy** = 0; in particular, one can use the normal
velocities at the cell edges to advect additional quanti-
ties in a way that is both conservative and leaves spa-
fially constant fields unchanged.

Finally, we difference the U*%'s to compute the
approximation to [(U-V)U1**%.

WU, +vU),; = Yol jtitisn j X Ui — Vi)
+ YV joaty Ui jew — Ui jow)  (3.5)

The Godunov method is an explicit difference
scheme and, as such, requires a time-step restriction. A
linear, constant-coefficient analysis shows that we must
require

lu,‘ J | At IV" J 1At
M (A )
for stability. The time-step restriction of the Godunov
method is used to set the time step for the overall algo-
rithm.

Once the evaluation of [(U-V)U)*** is complete,
we solve (2.3) with [(U-V)UI"** and Vp"™ terms
treated as source terms. Operationally, the equations
are reduced to simple diffusion equations with source
terms. The Laplacians in these equations are discre-
tized using standard five-point finite difference equa-
tions. Both the linear system resulting from this discret-
ization, and the one resulting from the MAC projection,
are solved using using standard multigrid techniques.
(See Briggs [13], for an introduction to multigrid tech-
niques.)

<1

Discretization of the projection
The final step of the algorithm involve application
of the discrete projection to U° to define the new velo-
city approximation and an update for the pressure as



specified by (2.4). In this section we describe the
discrete Hodge decomposition that is used to compute
the divergence-free component of the velocity field U®.
The present formulation is different from the approach
used in [7] in that both scalars (pressure) and vectors
(velocity) are defined at cell centers. In addition, we
use a multigrid scheme tailored to the particular proper-
ties of the projection operator.

In the following, we assume that /] =J =2V for
some N. To simplify the formulas, we also assume that
Ax = Ay = h, although that is not essential. To further
simplify the notation we will develop the projection for
an arbitrary given discrete vector field V defined on our
grid, having component (v;;,v%). We want 1o compute
compute the decomposition

V=v4+G¢ @.1)
where D and G are discrete divergence and gradient
operators and DV4=0. D and G are assumed to be

adjoints with respect to a pair of inner products (-,7),
and (-,’), on discrete vector and scalar fields.

DV .6),=~(V.G9),
(¢vW): = E(¢l JVig L 2
ij

VW), = TV, ;W k2
iJ
Thus, only one of the operators D, G can be specified,
the other being uniquely determined by (4.2) To define
D in the interior of the grid, we use centered
differences to approximate the derivatives appearing in
the divergence operator,

“2)

1 1
ol = Vis1 j=Vi-1,7)
x 2h

o2 v =v-1)

y 2h
At the solid-wall boundary, we use a one-sided
difference approximation that incorporates the noflow
boundary condition V-n=0 to define the divergence
operator. For example, at the leftmost point on the
grid, we use the approximation

vl ~ V]lJ*'f'Vz‘J
* 2h
With this definition of D, it is easy to derive the form

of G from (4.2) In the interior, the gradient operator is
also approximated by centered differences:

(@41, i1,

¢xiJ: ¢ 142,2 ld)

_ i j-1)
¢, ; = —L——

At boundaries, we obtain an apparently inconsistent
approximation to G.

However, when one takes into account the boundary
condition for the gradient field in the Hodge decomposi-
tion o¢von = 0, we see that the definition of the discrete
gradient at the boundaries is a combination of the inte-
rior formula and an extrapolation that sets

boj =1, - @3)

Taking the divergence of equation (4.1) gives an
equation

DG =DV 4.4)

to be solved for ¢, after which V is easily obtained
from (4.1).

There are two complications to this problem.
Because we use centered differences for D and G, the
resulting stencil for DG is not the usual 5-point approx-
imation to the Laplacian, but rather is twice as large.
Specifically, if we enforce (43) and the additional
reflection

¢ =¢2; - @4.5)
then DG is of the form
DG )= '4—:1';(4’,'-2,; +hisoy iy jor 40 ;) 4.6)

This stencil locally decouples the computational mesh
into four disjoint subgrids that are globally coupled at
the boundary by the boundary conditions (4.3) and
(4.5); in particular, the nullspace of DG is the one-
dimensional space of constant scalar fields. The idea,
then, is to develop a version of multigrid that respects
the local decoupling of the stencil (4.6) while account-
ing correctly for the boundary coupling.

Our basic multigrid relaxation cycle is the full
multigrid V-cycle (FMV) (cf. [13].) Given ¢, a current
guess at the solution, p, the right-hand side, and &, the
mesh spacing, we compute MG (¢,0.h ), a new update to
¢, as follows.

(i) Relax the solution with a point-relaxation scheme:
¢ = ¢ + relax($,p.h).
(i) Form the residual R=p-DG ¢, and average onto

the coarsened grid with spacing 2i: R€=A (R)
(iii) Apply multigrid relaxation on the 24 mesh:

8€:=MG (5 R€ 2h), where & is initialized 10 be

identically zero. If 2A is equal 1o the size of the
domain, step (ii),(iii) and (iv) are omiited.
(iv) Interpolate the correction onto the fine mesh, and

add 1o the current guess ¢: o:=¢+7 (5).
(v) Perform a second point-relaxation

¢ = ¢ + relax ($.p,h).

We use Gauss-Seidel with red-black ordering
(relative to the larger siencil), on each of the four
locally-decoupled subgrids as our basic relaxation
scheme. This choice insures that any high-frequency
components in the residual on each subgrid are damped

step:



sufficiently prior to coarsening. Of course, any high-
frequency component to the residual corresponding, for
example, to different constant values on each of the
four subgrids, will not be damped. * Our averaging and
interpolation operators are chosen to preserve the local
decoupling. They are given as follows.

AR i1yt i1y =
1
7 Ra-tyrati-ty + Ra-1yzer aii-1pe

+ Rty aG-1p2es + Rago1yi2er aj-134240)
T @ agi-tyrrsr ai-tyrese’ = & 2i-1)or Aj=1ybs
(rs)=(Q1,1,(12).2.1).22)
(r's") = (0,0.(02).(2,0),(2.2)

For these choices of relaxation, averaging, and interpo-
lation operators, we obtain performance typcially found
on more standard elliptic equations, with maultigrid
reducing the residual by five orders of magnimde in
seven iterations.

Numerical results

We have timed the present method for a fully
vectorized version of the code, and have compared the
results to those reported in [7] All calculations were
performed on a Cray XMP with 9.5 nsec. clock, using
the cft77 compiler. For problems on a 128 x 128 mesh,
the present code takes 9.5 p secs. per cell per time step
for inviscid problems, and 17.9 p secs. per cell for Re =
100. The corresponding figures in [7] were 27.9 p secs.
and 41. p secs., respectively. This is despite the intro-
duction of an additional Poisson solve in the inviscid
predictor. Thus, from the introduction of multigrid
alone, we obtain a factor 2.3 - 2.9 speedup. Combined
with the doubled time step, we get a factor of 4.6 - 5.8
increase in efficiency. These timings include the effect
of the more elaborate slope and transverse derivative
calculations; when we use the simpler ones described in
[7] the speedups are slightly better. We also wish to
emphasize that all the multigrid solves were iterated
until the residual was less than 107 relative to the mag-
nitude of the velocity field. In Figure 1, we show the
vorticity contours for the viscous spindown of a vortex
in 2 box for Re = 20000 on a 256x256 grid. This cal-
culation was run at a time step that was continuously
adjusted so that the maximum advective CFL number
was exactly equal to 1.0; such a time step caused the
algorithm in [7] 1o go unstable, generating 2Ax noise
in the vorticity contours. We see no evidence of such
instabilities in the figures below. In Figure 2, we show
results on grids of size 64x64, 128x128 and 256x256.
We observe that the method is able to resolve the for-
mation of successive separation points in the boundary
layer and the resulting large vortical structures even on
the medium resolution grid. Finally, we note that the
running time for 256x256 problem was reduced to 8.7

| secs. per zone, due to the longer vector lengths and
higher Reynolds number.
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Figure 1. Spindown of a voriex in a box on a 256x256 grid. The maximum velocity in the initial data is .0686, and
the length of the sides of the box is 1. Vorticity contours are shown at times 20 (a), 40 (b), and 60 (c). The total
number of time steps taken is approximately 1100.



Figure 2. Spindown of 2 vortex in a box at time 60 on 64x64 (a), 128x128 (b) and 256x256 (c) grids.
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