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Abstract 
In this paper we describe a second-order projec­

tion method for the time-dependen£w incompressible 
Navier·Stokes equations. The method is a second-order 
fractional step scheme in which one first solves 
diffusion-convectioo equations to determine intermedi­
ate velocities which are then projected onto the space of 
divergence-free vector fields. The diffusion-convection 
step uses a specialized second-order GodlBlov method 
for differencing the nonlinear convective tenns tha1 is 
conservative and free-stream preserving and provides a 
robust tteatment of the nonlinearities at high Reynolds 
number. The projection is based on ceU-centered coo­
tered difference approximations to divergence and gra­
dient operators with the resulting linear system solved 
using a multigrid relaxation scheme. We apply the 
method to vortex spin down in a box to validate the 
nwnerical convergence of the method and to measure 
its overall performance. 

Introduction 

This paper describes 8 second-order projection 
method for the incompressible Navier Stokes equations 
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U, + (U·V) U = tMI - Vp (1.1) 

V·U = 0 (1.2) 

Projection methods. which were first inttoduced by 
Chorin [1.2.3], are fractional step methods tha1 com­
pute an incennediate velocity field by solving (1.1). 
ignoring the incompressibility conditioo (1.2). This 
intermectiate velocity field is then projecled onto the 
space of divergence-free fields to recover the approxi­
malion to the velocity. 

Several second-order generalizatiom of the origi. 
nal projection method have been JXOposed. Kim and 
Main [4] use an inhomogeneous boundary condition for 
the intennediate velocity field, replacing the treatment 
of the nonlinear terms with a second-order explicit 
Adams-Bashforth scheme and using the staggered grid 
system of Harlow and Welch [5]. They provide compu­
tational evidence that their scheme is second...arder 
accurate. Van Kan [6] pI'OIX)SeS another second-order 
genemlization of the projection method. This method is 
based on first discretizing the spatial terms using the 
Harlow and Welch staggered grid. thereby reducing the 
partial differential equations to a system of differential 
algebraic equations. He then develops a second-order 
integration technique of projection-type for this system. 

Another second-order projection method (BCG) 
was introduced by Bell. Colella and Glaz [7]. This 
method uses a strategy similar to van Kan I S for the 
basic temporal discretization. It also incorporates an 
improved treatment of the nonlinear terms in (l) using 
a second order Godunov method that provides a robust 
treatment of the nonlinearity at high Reynolds number. 
The BCG algorithm has subsequently been extended to 
quadrilateral grids [8], three space dimensions [9]9 and 
variable density flows [10]. 

In the present work, we discuss a number of 
improvements to the BeG algorithm described in [7) to 



improve its efficiency and robustness. We introduce a 
somewhat different treatment of the differencing of the 
advective terms that eliminates an instability observed 
for high Reynolds number and Euler calculations at 
advective CFL numbers ~.5. We also systematicaDy 
use multigrid algorithms for the projection and the para­
bolic terms throughout; this is a nontrivial step for the 
projection operators. since they involve nonstandard, 
locally decoupled stencils for the discrete Laplacian. 
Combining these two ideas leads to an overall factor of 
5 speedup over the method in [7]. 

The numerical method is a tJ1ree..step process. In 
the first step, an unspJit, second-order Godunov method 
is used to compute time-centered conservative 
differences of the nonlinear Bux terms (U' V)U • 1be 
Godunov method is a predictor-corrector method in 
which characteristics are used to extrapolate velocities 
to ,.+Va from the solution at time t·. 11lese predicted 
velocities are then used in a corrector step in which 
Riemann problems are solved to resolve ambiguities in 
the upwind direction and the resultant states are used to 
evaluate centered difference approximations to the 
advective derivatives. In the second step of the algo­
rithm we solve (1.2) using a Crank-Nicholson discreti­
zation in which the pressure gradient and Ibe nonlinear 
term (evaluated during the previous step) are treated as 
source terms. The pressure gradient is evaluated at 
time ,.-¥.t. The explicit, second-order treatment of the 
nonlinear term in the first step provides a time-centered 
approximation of this term while maintaining a sym­
meaic positive-definite system for the linear algebra 
associated with the Crank-Nicholson time discretization. 
The result of the second step of the algorithm would 
have been a second order approximation 10 ",.+1 if a 
time centered pressme bad been available. The lagging 
of the pressure term in (1.1) introduces a second-order 
perturbation into the result of step two. This pertwba­
lion is manifest in the failure of the incompressibility 
condition (1.2)- In the final step of the algorithm. a 
discrete Hodge decomposition is perfonned to remove 
the non-divergence-free component from the solution at 
t,,+l and to update the pressure. 

In the next section we describe the basic frac­
tional step algorithm that specifies temporal discretiza­
lion strategy. Details of the Godunov procedure for 
computing the time-centered approximation of (U' V) U 
are described in section 3. The multigrid algorithm for 
computing the discrete projection is described in the 
fourth section. Finally ~ we present a numerical example 
with timings to illustrate the performance of the 
method. 

Temporal discretization 

In this section we review the second-orde.r frac­
lional step fonnutation from [7] used in the present 
worlc. Projection methods are based on the decomposi-

tion of vector fields into a divergence-free component 
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and the gradient of a scalar field. More precisely, any 
vector field V can be uniquely written as V = Ud + V, 
where , is a scalar and U d is divergence free and 
satisfies specified boundary conditions. For the purposes 
of this paper. we shall assume that a solid boundary 
encloses the entire Buid. so that Udon = O. One can 
define an orthogonal projection P such that U 4. = PV 
and V, = (I-P)V. (See Temam [11] for a more 
detai1ed discussion of the projection.) Using the projec­
tion we can rewrite the Navier-Stokes equations (l.l}­
(1.2) in the equivalent form 

U, = P(tAU - (U-V)U) . (2.1) 

Equation (2.1) describes Ibe evolution of U in tenns of 
a nonlinear functional of U; the pressure has been elim­
inated from the system. The pressure in (1.1)-{1.2) 
represents the gradient component of the vector field 
that is projected in (2.1); ie .• 

Vp = (I-P}(tAU - (U·V)U) . 

For the basic temporal discretization, we assume 
that we are given an approximation to U". Furthet'­
more. we assume that we have already computed a 
second-order, time<entered approximation to the non­
linear terms [(U·V) U]"+%o (A Godunov-type procedure 
for computing this approximation is descnDed in the 
next section.) A second-order discretizatioo of (2.I) can 
be obtained using a Crank-Nicholson approximatioo 

u"+t-u" 
AI = 

p [~ A(u.+u •• I>-[(u.V)u j .... ] . (2.2) 

However. the linear algebra problem associated with 
solving (2.2) would be extremely costly because of the 
nonlocaI behavior of the projection. 

As a less costly alternative. we construct a frac­
tional step method that approximates (2.2) to second· 
order accuracy. To accomplish this we will assume that 
we are also given an approximation to Vp,,-Ih. We 
then compute an intermediate velocity field U· using 

U·-U" 
- ......... -+Vp"~= 

At 

; A(U"+U·)-[(U·V)U]"+~ ~ (2.3) 

where U· satisfies the same boundary conditions as U. 
The role of the pressure gradient tenn in (2.3) is to 
approximate the effect of the projection in (22). We 
now apply the projection to decompose U· into 
divergence-free and gradient components to obtain U,,+l 
and an update for Vp 

u,.+l = P U· (2.4a) 

Vp"+·h. = Vp,.-Ih. + Arl(1-p)u· (2Ab) 

Equations (2.3)·(2.4) represent the fractional step 
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scheme that we have used. The relationship between 
(2.3){2.4) and the Crank-Nicholson scheme (2.2) can 
be seen by first observing that (2.4) is equivalent 10 

U·+~ U· =P [U· ~ U· + Vp ...... ] (2.5a) 

Vp ..... = (I-P) [U· ~ U· + Vp· ..... ] • (2.Sb) 

If we use equation (2.3) 10 rep~ 

u· -u· V II~ 
AI + P 

in (2.5) we obtain 

U·~U· = P [; 4(U.+U·>-[(U.V)UJ ..... ] 

Vp· .... = (I-P) [~ A(U.+U·)-[(U.V)Ul ..... ] 

from which we can see that (24a) corresponds to (2.2) 
with U·+1 approximated by U· on the right band side 
and that Vp·+'h represems 1be gradient component of 
the vector field being projected. 

We note that since Vp~ is not available initially. 
we iterale (2.3) and (2.4) (with Vp = 0 initially) on the 
first step_ The inclusion of the V p.-*4 in (23) makes 
the algorithm second-atler acxmate in time (see [7]). 

Before descnbing the spatial disaetizations used 
in the algorithm we will summarize the basic approach. 
First we solve the diffusion-convection equations (2.3). 
This is a two-step process in which we first approxi­
mate [(U'V)UJ"+'h using a second..order Godunov pr0-

cedure. The~ we solve the two parabolic equations 
represented by (2.3) with the nonlinear term treated as a 
source term, In the second step of the algorithm. we 
apply the projection to update U and V p . In the next 
section we discuss the spatial discretization of the 
diffusion-convection equations that forms the first step 
of the algorithm. In the following section we describe 
the approximation of the projection. 

Spatial discretization 

In this section we discuss the spatial discretization 
of the diffusion-convection equations (23) that fonn the 
first step of the algorithm. The spatial discretization is 
based on a cell-centered approximation that provides 
the most naUJral setting for Godunov·type methods. 
We let i J denote the cell whose center is located at 
«i-lh}A%tU-1h)Ay) for ;=1, ... ,1; j=l, ... ,J. The 
right edge and lOp edge of cell i J are denoted by 
i+lhJ and i J+1h, respectively. Thus, YlJ and l+'hj 
refer to the left and right boundaries of the domain. etc. 
Velocity and pressure unknowns are specified at cell 
centers and velocity boundary conditions are specified 
at ceU edges on the boundary. 
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The first step in solving (2.3) is the evaluation of 
[(U • V) U],,+'h using a specialized sec:ond-order 
Godunov method. In [7], the construCtion of the time­
centered predicted velocities is done by computing the 
leading order terms in the Taylor expansion of U at the 
cen center. replacing the time derivative with space 
derivatives using (1.1). The pressure gradient used for 
this purpose was that obtained on the previous time 
step. The use of this Jagged pressure gradient in the 
predictor step f« the advective derivatives leads 10 a 
nonlinear instability for advective CFL numbers ~.s. 
Analysis and computational experimentation suggested 
that this instability was related 10 the failure of the 
predicted velocities to satisfy (1.2). Here we present a 
modified vemoo of the disaetization of (U· V) U that 
respects (1.2) which we find eliminates an instabilities 
at bigb advective CFL. 

In the new version of the the predictor step. we 
proceed as before to compute the ti.me-centered edge 
velocities using a Taylor sezies approximation. 

1I,~ = U!'· + ~U· .. + M u,·,. (3.1a) 
I-rr"o/ 'oJ 2 z.JJ 2 JJ 

Ur~ = U;"j - ~ U:"ij + ~ U'''"ij (3.lb) 

UrJt:l = U;."J + ~U;;j + ~ U:"ij (3.1c) 

U!'~ - lI,!'. - ~U"·· + ~rT... (3.1d) .J...Ir\ - 'oJ 2 1JJ 2 VtJJ • 

The first two quantities denote the extrapolation of U to 
the left side of edge..(; +~J) and to the right side of 
edge..(i -~J). respectively. The last two are the extra­
polation of U to the bottom side of edge-i j +1,h and the 
top side of edge-i J -lh. We now approximate U, using 
the differential equation (1.1). This approximation will 
be built in three stages. Fust.. we define (; • which only 
includes the derivative terms normal 10 the edge. In the 
second phase. we add the viscous terms and an approxi. 
mation to the transverse derivatives using (; to compute 
the next approximation O. An upwinding procedure is 
applied 10 the (rs to resolve ambiguities at the inter­
face and a MAC-type projection is used to incorporale 
the effect of the pressure gradient on the final edge 
values U"+Va. Thus, we have. for (3.la) 

Of.....; = Ufj + SL (~ ~ ":j JU:';j (3.28) 

where SL is 1 if ~"i;dJ and 0 otherwise; and 

-L "'L AI AJ 
Ui+'h.J = U;J - T(vU;y);j + T£(AU")iJ (3.2b) 

Given left and right extrapolated values of the form. 
"'L.R -L.R U;+VaJ or U;~. we assume that we have a means of 

extracting single edge-centered values Vi+'hJ' (h+¥J,J. 
corresponding to an upwinding procedure; such a pr0-

cedure is given below. 



In equation (3.2). AUtj is evaluated using a standard 
five point finite difference approximation. The U;r. tenn 
is evaluated using a fomth-order monotonicity limited. 
slope approximation given by 

Ax'lxJj = (8q)iJ t'l = &t.y. 

(8q);j = sign('l;+lj-q;'-lj)X 

. (I 2(Qi+1J-q;'-lj) «fI q)i+lj+(tI q)i-lj) I ~tim ) __ ) 
mID 3 6 .\U q'J 

co(· ~lirn 
(0' q)ij = mm(2IQi+lj-qi-IJ l,u 'l;j) 

XSign(qi+lj-qi-lj) 

(ftDQ)ij = min(2Iqi+lj-qij 1,2I'lij-qi-lj I) 

if (q;+lj-qij)(Qij-q;'-lj)>O 

= 0 otherwise . 

In [7] the slope formula corresponding to 8q = tI q 
was used; the slope fonnuJa given here is preferred, as 
it has slightly less damping than the previous one (see 
[12]). The tnmsverse derivative term yU, is given by 

1 A A 

yU, = 24, (Vij+¥l.+Vij.."J(U,j+'l!-Uij-w 

This fonn of the transverse derivative term is slightly 
more elaborate than the one originally used in [7]; for 
linear advection. it is known to have somewhat lower 
phase error. 

Our upwinding procedure is based m the 
Riemann problem for Bmgers" equation. In particular. 
to uniquely define edge values Uj:+"la.j from left and 
right exttapolated values uf+Yljl U~. we first define 
the nonna) component (in this case ",). 

t
UL if uL~O,,&tL+uR~O 

&ti+'hJ = 0 if ilL < 0 • II R> 0 (3.3) 
II. R otherwise 

(We suppress i+'hj spatial indices on left and right 
states for clarity.) Now we upwind" based on the nor­
ma) velocity. 

(3.4) 

To obtain a time-centered value for U at the cell 
edges, we must adjust U;+lIa.j to account for the effect 
of the incompressibility condition to order flJ'l, i.e. by 
adding the pressure gradient tenn from (3.1): 

(3.2c) 

In [7], this was accomplished by adding to the right 
hand side of (3.2b) the quantity -llJ /2VprJ'~h, using the 
estimate of the pressure gradient obtained in the projec­
tion step (2.4) during the previous time step. We have 
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found the use of this Jagged pressure gradient intto­
duces a mild instability for high Reynolds number and 
inviscid problems for advective CFL numbers greater 
than 0.5. For that reason. we have inttoduced the fol­
lowing alternative method, which eliminates that insta­
bility. Given Oi.+'hJ t O;j-tJlat we compute the MAC 
divergence at the cell centelS 

(DJlU)iJ = :x (U;+v.aj-Ui-v.aj) I ;, (ViJ+'I!-ViJ....J 

We then solve l1,. = DM O. where At is the standard 
five-point discretization of the Laplacian with cell­
centered homogeneous Neumann boundary conditions. 
We use the field so obtained to compute the correction 
(3.2c). 

- ~ P"..i+'4i = ~<.i+lJ .... ;.j) 

III 1 
2 P,,j.+VaJ = 4Ay ('ij+l"'i+lj+l-{'ij-l~i+lj-l» 

The resulting values for U,.+l,\ have the property that 
D'" U,,+¥1 = 0; in particular. one can use the normal 
velocities at the cell edges to advect additional quanti­
ties in a way that is both conservative and leaves spa­
tially constant fields unchanged. 

Finally, we difference the U,,'!Jts to compute the 
approximation to [(U' V) U1"+'1!. 

(II. U:& + y U.,)iJ = Ih(Ui~+Ui-yv)(Ui+'4.i - Ui...JlJj) 

+ *(Y; j+1A+Yij~(Ui.j+'lt - UiJ-w (3.5) 

The Godunov method is an explicit difference 
scheme and, as such. requires a time-step restriction. A 
linear. constant~fficient analysis shows that we must 
require 

lu- ·lflJ Iy· -IAt 
max ('J " 'J ) 5; 1 
ij Ax ~:y 

for stability. The time-step reslriction of the Godunov 
method is used to set the time step for the overall algo­
rithm. 

Once the evaluation of [(U· V) U ]"+'6 is complete. 
we solve (2.3) with [(U·V) U]"+'h and Vp".J1t. tenns 
treated as source tenns. Operationally, the equations 
are reduced to simple diffusion equations with soorce 
terms. The Laplacians in these equations are discre­
tized using standard five-point finite difference equa­
tions. Both the linear system resulting from this discret­
ization. and the one resulting from the MAC projection, 
are solved using using standard multigrid techniques. 
(See Briggs [13J. for an introduction to multigrid tech­
niques.) 

Discretization of tbe projection 

The final step of the algorithm involve application 
of the discrete projection to U· to define the new velo­
city approximation and an update for the pressure as 



specified by (2.4). In this section we describe the 
discrete Hodge decomposition that is used to compute 
the divergence·free component of the velocity field U· . 
The present formulation is different from the approach 
used in (7J in that both scalars (pressure) and vectors 
(velocity) are defined at cell centers. In addition. we 
use a multigrid scheme tailored to the particular propc.'2'­

ties of the projection operator. 

In the following. we assume that I = J = 'J!i for 
some N. To simplify the formulas. we also assume that 
Ax = 4y = h. although that is not essential. To further 
simplify the nowioo we will develop the projection for 
an arbitrary given di.screte vector field V defined on our 
grid. having component (Vi~,Vj~). We want to compute 
compute the decomposition 

V=V.l+Gf (4.1) 

where D and G are discrete divergence and gradient 
operators and DV.l=o. D and G are assumed to be 
adjoint; with respect to a pair of innec products ("t')" 
and (. t .)" on discrete vector and scalar fields. 

However, when one takes into account the boundary 
condition for the gradient field in the Hodge decomposi­
tion O4tIiln = 0. we see that the definition of the discrete 
gradient at the boundaries is a combination of the inte­
rior fannula and an extrapolation that set; 

+OJ = 'lj . (4.3) 

Taking the divergence of equation (4.1) gives an 
equation 

DG+=DV (4.4) 

to be solved for •• after which V is easily obtained 
from (4.1). 

There are two complications to this problem. 
Because we use centered differences for D and G. the 
resulting scencil for DG is not the usual S-point approx­
imatioo to the Laplacian. but rather is twice as large, 
Specifically. if we enforce (4.3) and the additional 
reflection 

+-lj =~ . (4.5) 

(DV.f).=-<V.G,)" 

<'.'11)" = D+ijlVij)h
2 

iJ 

(4.2) then DG is of the form 

(V .W)" = Levij,Wij)h2 

ij 

Thus. only one of the operators D t G can be specified. 
die other being uniquely detennined by (4.2) To define 
D in the inaerior of the grid. we use centered 
differences to approximate the derivatives appearing in 
the divergence operator. 

At the solid-wall boundary. we use a one-sided 
difference approximation that incorporates the noflow 
boundary condition V'n = 0 to define the divergence 
operator. For example, at the lefnnost point on the 
grid. we use the approximation 

With this definition of D, it is easy to derive the fonn 
of G from (4.2) In the interior, the gradient operator is 
also approximated by centered differences: 

At boundaries, we obtain an apparently inconsistent 
approximation to G. 

It. _ chJ-4>l.j 
"t',Z.lJ - 2h 

5 

1 
(DG+)ij = 4hl (4)>i-2J~;+2J~ij-:Z++ij+r4+;j) (4.6) 

This stencil locally decouples the computational mesh 
into four disjoint subgrids that are globally coupled at 
the boundary by the bolDldary conditions (43) and 
(4.5): in particular, the nullspace of DG is the one­
dimensional space of constant scalar fields. The idea, 
then, is to develop a version of multigrid that respects 
the local decoupling of the stencil (4.6) while account-
ing correctly for the boundary coupling. 

Our basic multigrid relaxation cycle is the full 
multigrid V-cycle (FMV) (cf. [13].) Given 't a current 
guess at the solution, p. the right-hand side. and h. the 
mesh spacing. we compute MG <,,p,h). a new update to 
., as follows. 

(i) Relax the solution with a point-relaxation scheme: 
• := ,+ reiax(4)>.p.h). 

(ii) Fonn the residual R =p-DG.. and average onto 
the coarsened grid with spacing 2h: R C =A (R ) 

(iii) Apply multigrid relaxation on the 2h mesh: 
aC :=MG (fP ,Rc J.h). where OC is initialized to be 
identically zero. H 2h is equal to the size of the 
domain. step (ii),,(iii) and (iv) are omitted. 

(iv) Interpolate the correction onto the fine mesh. and 
add to the current guess +: 41>:=4»+1 (fl). 

(v) Perfonn a second point-relaxation step: 
+ := 4» + relax ('.p.h). 

We use Gauss-Seidel with red-black ordering 
(relative to the larger stencil), on each of the four 
locaUy-decoupled subgrids as our basic relaxation 
scheme. This choice insures that any high-frequency 
components in the residual on each sUbgrid are damped 



sufficiently prior to coarsening. Of course. any high­
frequency component to the residual corresponding, for 
example, to different constant values 00 each of the 
four subgrids, will not be damped. • Our avetaging and 
interpOlation operators are chosen to preserve die local 
decoupling. They are given as follows. 

A (R ~i-l)w .2(j-l)+.r = 
1 

"4(R4(i-l)w.4U-1)+.r + R4(i-l)4-2+r.4U-l)oH 

+ R4(i-l>+r,4U-l}+2-H + R4Q-t}+2+f',<4U-l)4-2,..) 

I (O")4(i-l)+r+r·N-l)+.r .... • = ac 2(i-l)+r.2(j-l)N 

(r cS) = (1.1).(1.2),(2.1),(2,2) 

(r' .s ') = (O,O),(0,2).(2,O},{2,2) 

For these choices of relaxation. averaging, and interpo.­
lation operators. we obtain perfonnance typcially found 
on more standard elliptic equations. with multigrid 
reducing the residual by five orders of magnitude in 
seven iterations. 

Numerical results 

We have timed lIle present method for a fully 
vectorized version of the code, and have compared the 
results to those reported in [7] All calculations were 
perfonned on a Clay XMP with 9.5 DSeC. clock, using 
the cft77 compiler. For problems on a 128 x 128 mesh, 
the present code talces 9.5 J.L sees. per cell per time step 
for inviscid problems, and 17.9 J.L sees. per cell for Re = 
100. The corresponding figures in [7] were 27.9 JJ. sees. 
and 41. J.l sees., respectively. This is despite the intro­
duction of an additional Poisson solve in the inviscid 
predictor. Thus, from the introduction of multigrid 
alone, we obtain a factor 23 - 2.9 speedup. Combined 
with the doubled time step, we get a factor of 4.6 - 5.8 
increase in efficiency. These timings include the effect 
of the more elaborale slope and transverse derivative 
calculations; when we use the simpler ones described in 
(7] the speedups are slightly better. We also wish to 
emphasize that all the multigrid solves were iterated 
until the residual was less than 10-' relative to the mag­
nitude of the velocity field. In Figure 1. we show the 
vorticity contours for the viscous spindown of a vortex 
in a box for Re = 20000 on a 256><256 grid. This cal­
culation was run at a time step that was continuously 
adjusted so that the maximum advective CFL number 
was exactly equal to 1.0; such a time step caused the 
algorithm in [7] to go unstable. generating Ux noise 
in the vorticity contours. We see no evidence of such 
instabilities in the figures below. In Figure 2 we show 
results on grids of size 64x64. 128><128 and 256><256. 
We observe that the method is able to resolve the for­
mation of successive separation points in the. boundary 
layer and the resulting large vortical sttuclUreS even on 
the mediwn resolution grid. Finally, we Mte that the 
running time for 256x256 problem was reduced to 8.7 
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JJ. sees. per zone. due to the longer vector lengths and 
higher Reynolds number. 
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a b 

c 

Figure 1. Spindown of a vonex in a box on a 256>:256 grid. The maximum velocity in the initial data is .0686, and 
the Jength of the sides of the box is 1. Vorticity contours are shown at times 20 (a). 40 (b), and 60 (c). The total 
number of time steps taken is approximately 1100. 
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Figure 2. Spindown of a vortex in a box at time 60 on 64x64 (a). 128xl28 (b) and 256x256 (c) grids. 
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