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A direct comparison is made for several occurren ces of oblique shock-wave 
reflections between interferometric results obtained at the University of 
Toronto Institute for Aerospace Studies (UTIAS) 10 cm x 18 cm hyper­
velocity shock tube and numerical results obtained by using a current 
computational method for solving the Euler equations. Very good 
qualitative agreement is obtained for equilibrium and frozen flow fields 
except in small regions where the experiments were dominated by viscous 
flow . The quantitative agreement is very close in some cases but can be 
out by 10-15 % in cases with non-equilibrium flow or viscous structures 
or both. Additional parametrized sequences of calculations are presented 
to assess the utility of the present numerical method in constructing the 
various reflection-transition lines for perfect inviscid flows in the 
shock-Jave Mach number, wedge-ang~e (Ms' 0w)-plane, and the validity 
of the 'boundary -layer defect ' theory, 

1. INTRODUCTION 

Over the past several years, substantial advances have been made in the numerical 
analysis of hyperbolic equations of motion, especially the equations of non­
stationary gas dynamics, It is now possible to apply routinely the resulting 
computer codes on problems that involve complex physical phenomena such as 
flows with multiple shock waves and slipstreams. 

Several questions arise from such work. First, how accurate are the numerical 
results in reproducing solutions of the Euler equations? In particular, to what 
extent does the truncation error inherent in a numerical method alter the system 
of equations being solved? For example, large amounts of artificial viscosity can 
effectively produce a solution to a parabolic approximation of the Euler equations 
but not to the Navier-Stokes equations and completely miss the fine structure of 
wave interacti<;ms. Secondly, how well do such results compare with experimental 
data (which deal with real flows , including viscous effects), if such data are 
available? 

Reliable numerical results are needed for a wide variety of non-stationary com­
pressible-flow problems in shock-wave dynamics, explosion-implosion dynamics 
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and elsewhere; in some cases, there are virtually no experimental data avail­
able for analysis. This creates the requirement for a benchmark problem that 
contains sufficiently complex nonlinear wave interactions to truly validate a 
computer code and yet is amenable to accurate experimental measurement. The 
problem of non-stationary oblique shock-wave reflections from a compressive 
corner in various gases is currently the strongest candidate for this role. The 
complex wave structure in the Mach-stem region of such flow fields closely 
resembles the flow-field phenomenology in typical applications (e.g. a spherical 
explosion reflecting off an ideal surface). Over the past five years, extensive 
experimental and analytical data were obtained for these problems (Ben-Dor & 
Glass 1979, 1980; Ando & Glass 1981; Lee & Glass 1984; Shirouzu & Glass 1982; 
Deschambault & Glass 1983; Deschambault 1984; Hu & Glass 1985; Hu 1985; 
Hu & Shirouzu 1985; Wheeler & Glass 1985; Wheeler 1985). Additionally, analytic 
and experimental work has been performed in this area since Mach (1878), and 
especially the work of von ~eumann (1943) on shock-wave theory for gases. 

In their comparison of experimental and computational results for this problem, 
Ben-Dor& Glass (1978) and Deschambault & Glass (1983) concluded that advances 
in numerical technique would be required before numerical results could be viewed 
with the same confidence as experimental data. In particular, they found that 
computer codes were able to obtain correctly the overall reflection pattern but gave 
poor agreement with interferometric data concerning the detailed structure of the 
isopycnics (lines of constant density) of the disturbed flow field behind the reflected 
shock. Many of these computational results were under-resolved as a result of the 
constraints of the computer technology existing at that time, while the results 
presented here are fully resolved because they were obtained with an updated 
low-diffusion scheme on a modern computer (CRAY I), taking full advantage ofthe 
computer's vector processor. The main object of this paper is to change this 
assessment and place the numerical analysis of perfect inviscid compressible flow on 
an equal footing with experimental methods. The present study will demonstrate 
this by comparison of the numerical with the experimental results for argon 
and air. 

Such comparisons are complicated by the fact that the flow fields under 
investigation are not ideal, because of the following phenomena. A boundary layer 
is induced behind the shock-wave system (figure 1) on the wedge surface. This not 
only alters the interaction ofthe slipstreams (S, S') with the wall but the transition 
boundary between regular and Mach reflection (Hornung & Taylor 1982). The 
slipstream is not an ideal contact surface between thermodynamically different 
states; it spreads and thickens and undergoes transition from a laminar to a 
turbulent state. In addition, the second shock wave (or Machstem), M', in 
double-Mach reflection is non-uniform in strength from the second triple point, 1", 
to the first slipstream, S, (figure 1). The interaction between this shock wave and 
the slipstream is not well understood either. The shock becomes a compression 
wave as it interacts with the slipstream, which remains stable despite the pressure 
gradient imposed on it. No reflected expansion waves are observed that might 
neutralize this gradient as in a steady supersonic jet outflow. Finally, the perfect 
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FIGURE 1. Schematic diagrams of types of oblique shock-wave reflections; (a) r.r.; (b) s.M.r.; 
(c) c.M.r.; (d) d.M.r.; also definitions of Land 8. 

(frozen) flows in air become excited and may be In non-equilibrium or equilibrium 
states. This complicates the numerical analyses, which now require complex 
equations of state for equilibrium flows or rate equations for the excitation of the 
internal degrees of freedom such as dissociation and ionization for non-equilibrium 
flows at high initial shock-wave Mach numbers. 
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2. OBLIQUE SHOCK-WAVE REFLECTIONS 

The four types of pseudo-stationary oblique shock-wave reflection patterns arc 
shown in figure 1 and consist of (a) regular reflection (r.r.), (b) single Mach reflection 
(s.M.r), (e) complex Mach reflection (c.M.r.) and (d) double Mach reflection (d.M.r.). 
Figure 1 illustrates the definitions of wedge angle Bw , triple-point trajectory angles, 
X, X', various shock waves I, R, R', M, M', slip surfaces S, S' and the flow regions 
1-5 produced by Lr., s.M.r., c.M.r. and d.M.r. reflections. The angle 0 between the 
incident I and reflected R shock waves is also shown as well as the angle w' between 
R and the wall or R and the triple-point trajectory X. The bow shock stand-off 
distance 8, and the length L, between the wedge corner and the reflection point 
or Mach stem are also indicated. Such quantities can be measured experimentally 
or predicted numerically and provide important information on the state of the 
gas whether frozen, non-equilibrium or equilibrium (Shirouzu & Glass 1982; Hu 
I985; Hu & Glass 1985). 

If real-gas and viscous effects can be ignored, the problem has no intrinsic 
length-scale, suggesting the use of the self-similar or pseudo-stationary coordinate 
system (g, 'Y}) = ((x-xo)/(t-to), (y-yo)/(t-to)) where (xo, Yo) are the coordinates 
of the wedge corner and to is the time at which the incident shock wave reaches 
the corner. Jones et al. (1951) show that the non-stationary Euler equations 
referred to in this coordinate system transform into the steady Euler equations 
with the addition of source terms. We note that the ratio sf L is constant for given 
initial conditions, for self-similar solutions of the non-stationary equations (Li & 
Glass 1985), just as 8 is constant for steady supersonic flow. In this and other ways 
a change to pseudo-stationary coordinates is very useful in the analysis of these 
flow fields and will be used in this study. 

In particular, the' type of reflection pattern is a function of the incident 
shock-wave Mach number M·s , the wedge angle Bw. and the gas equation of state. 
The transition boundaries in the (Ms' Bw)-plane for oblique shock-wave reflection 
are reproduced from Lee & Glass (1982) in figure 2 for real air and a polytropic 
equation of state with I' = 1.40. The analogous figure for argon (I' =~) may be 
found in this reference. The construction of the transition lines is based on various 
(heuristic) transition criteria and the numerical calculation of the jump conditions 
at reflection and triple points. These criteria, which have been the subject of 
extensive investigation in the literature, are summarized in Lee & Glass (1984) and 
Shirouzu & Glass (I982). In §5, the numerical results will be used to partly assess 
the validity of some of these criteria as well as the overall accuracy of the transition 
diagram, figure 2. 

The fourfold partition of the (Ms, Bw)-plane illustrated in figure 2 is quite coarse 
relative to the rich phenomenology present in these flow fields. Some other features 
that may be similarly partitioned (see Ben-Dor & Glass 1979) are (a) whether or 
not the reflected shock is detached or attached to the wedge corner; (b) in the 
attached case, whether the flow at the corner is subsonic or supersonic; (e) for r.L, 
whether the flow is subsonic or supersonic (in pseudo-stationary coordinates) at 
the reflection point and (d) for s.M.r., c.M.r. and d.M.r., whether or not M 
'toes-ou t' or 'toes-in'. 



ns are 
3ction 
M.r.). 
,ngles, 
~gions 

~n the 
tween 
nd-ofI 
point 

ntally 
of the 
2; Hu 

brinsic 
dinate 
-inates 
~aches 

ations 
ations 
. given 
: (Li & 
rways 
f these 

cident 
, state. 
ection 
'tropic 
lay be 
"arlOUS 

litions 
ject of 
4) and 
assess 

J.sition 

coarse 
,atures 
bher or 
in the 
'or r.r., 
,tes) at 
not M 

"'''. 

60 

40 

20 

Oblique shock-wave reflections 

----------

s.M,r. 

r.r. 

........ ...... ------------

d.M.r. 

OL.----I ___ -'-__ ---'-___ '--__ -' 

2 4 6 

Ms 

8 

121 

FIGURE 2. Regions of r.r., s.M.r., c.M.r. and d.M.r. and their transition boundaries in the (Ms' 
Owl-plane for perfect (frozen) air solid lines and imperfect (equilibrium) air broken lines, 
Po = 2.00 kPa, To = 300 K, ')' = 1.40. 

A comprehel}sive study of these issues is beyond the scope of this paper, but they 
will be discussed as appropriate in the comparison of experimental and numerical 
results in §5. 

3. EXPERIMENTAL TECHNIQUES 

The experiments for this study were performed in the University of Toronto 
Institute for Aerospace Studies (UTIAS) 10 cm x 18 cm hypervelocity shock tube. 
Background on the performance and operation of the shock tube can be found in 
Boyer (1964), with the details of the experiments in Deschambault (1984). The 
facility includes specialized instrumentation used to record density and pressure 
in the complex flow fields generated in the present experiments. 

The shock tube test section is equipped with large high-quality interferometric 
windows. To study the density distributions of the flow fields a 23 cm diameter 
field of view Mach-Zehnder interferometer was employed. The specifications and 
operating instructions for this instrument can be found in Hall (1954). The 
interferometer was used in the infinite-fringe mode that allows the direct 0 bservation 
ofisopycnics (lines of constant density) in the two-dimensional flow field. The light 
source employed was a giant pulse ruby laser that enabled the recording of dual 
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wavelength (694.3 and 347.2 nm) infinite-fringe interferograms, with an exposure 
time of30 ns. The test gases used in the present work were argon and medical-grade 
aIr. 

The reflection patterns were produced by the impingement of a normal shock 
wave with steel wedges. Both cold-gas (C0 2 driver) and combustion-driver 
techniques were used to produce the incident shock waves into the test gases used 
in the present study. For further discussion ofthe facility and error of measurement 
associated with the instrumentation see Deschambault (1984) and Glaz et al. 
(1985 ). 

For some of the experimental results presented here, it was necessary to use test 
gases with very low densities and pressures relative to atmospheric conditions. As 
a result, vibrational non-equilibrium effects must be taken into account when 
analysing the corresponding interferograms. We note here that it is easy to check 
for a relaxation zone behind the incident shock wave because such a zone will 
produce extra fringes parallel to the shock in the post-shock flow field. Behind the 
reflected shock wave, the characteristic signature of a relaxing gas is the degree of 
tangential incidence of the isopycnics and the refiected shock wave. 

4. NuMERICAL METHOD 

The numerical results presented in this paper have been calculated with a version 
of the Eulerian second-order Godunov scheme for non-stationary gas dynamics of 
a type considered by Colella & Woodward (1984). The version of the scheme used 
here is presented in Colella & Glaz (1982, 1983) including the modifications required 
for non-polytropic gases. 

The method is a finite-difference scheme for systems of hyperbolic conservation 
laws in one space-like dimension; for multidimensional applications such as the 
shock-on-wedge problem, we employ operator splitting. Differencing is in conser­
vation form and the numerical fluxes are computed by solving zone interface 
Riemann problems whose time-centred left and right states are computed from the 
characteristic form ofthe equations. This technique leads to second-order accuracy 
in smooth flow and ensures that the method is centred upstream. In practice, the 
method is very stable and robust. In the immediate vicinity of a strong shock, some 
dissipation is required; this has been accomplished by smoothly degrading the 
scheme to the first-order Godunov scheme in such regions. The degree of 
degradation is a function of the shock width and strength. 

For argon, we have used a perfect (frozen) gas equation of state with y = i. If 
the shock-tube test gas was air, the equation of state was chosen to be either 
a perfect (frozen) gas with y = t or the Hansen (1959) real air equation of state 
as modified by Deschambault (1984) for the present application. The efficient 
solution of the Riemann problem in the context of our second-order Godunov 
method for an arbitrary equation of state is treated in Colella & Glaz (1982, 1983). 
Also, these papers demonstrate that the choice of equation of state has a 
substantial influence on the quantitative numerical results, as might be expected. 

As noted in the preceding section, vibrational non-equilibrium, which is only 
temperature dependent, can be significant for moderate to high Mach numbers 
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when the test gas is air (at high Mach numbers dissociation effects are also density 
dependent); for the argon cases considered here, we expect the gas to remain 
frozen. The choice of an appropriatc equation of state for the air calculations 
depends mainly on the vibrational relaxation length, lv, behind the shock waves 
I, R, M of figure 1. If lv ~ l (where l is a characteristic flow length arising in the 
problem), then the gas is frozen and the perfect gas equation of state is correct. 
If l ~ lv, then the gas is in equilibrium and the Hansen equation of state for real 
air is used. Finally, if lv ~ l, then neither the frozen nor the equilibrium hypothesis 
is appropriate, and the flow is said to be in non-equilibrium. We have numerically 
treated such cases as equilibrium flow fields by using the Hansen equation of state, 
although the only correct procedure would be to solve an extra partial differential 
equation representing a rate equation for vibrational relaxat ion (and for dissociation 
at high Mach numbers). This decision will be an important issue in our discussion 
of these cases in §5. 

The computational mesh and our problem initialization procedure is illustrated 
in figure 3. Note that these figures are drawn from right to left to conform with 
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FIGURE 3. Numerical scheme for flow initialization; (a) starting procedure; 
(b) shock reaching corner; (c) elimination of small disturbances. 
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the experimental interferograms. We have used a square (i.e. Ax = Ay = constant) 
mesh ':Or all of the computations in §5. Because the flow is pseudo-stationary, the 
choice of Ax is immaterial; however, wher:) a comparison of pressure-gauge records 
was desi!'able (see Glaz et al. 1985), the total length shou!d be chosen appropriately. 

The initial data a:::e taken as Uo, Ms where U = (p, p, u, V)T is the state vector 
and Ms is the initial shock-wave Mach number. From these data and the given 
equation of state, the post-shock state U1 may be calculated. To initialize the 
two-dimensional calculation, these data are placed on the grid far upstream 
(ca. 60-75 zones) of the corner, :)'s illustrated in figure 3a; interpolation of conserved 
quantities [i.e. UC = (p, pu, pv, pE)T] is used for zones that straddle the incident 
shock. However, this is a very poor representation of the numerical shock because 
any shock-capturing scheme will diffuse a shock wave over two or more zones in 
the computational mesh. The resulting structure is referred to as a discrete 
travelling WEve (i.e. a mesh function that depends only on x- Vt, where V is the 
vector velr~'.)ity of the wave and equals the shock speed in magnitude for a discrete 
shockwave). Starting with any initial data (e.g. the one zone Uo- U1 jump described 
above) satisfying the Rankine---Hugoniot ccnditions, the solution will tend as the 
number of time-steps becomes large towards the appropriate discrete travelling 
wave, plus otp;1r low-amplitude waves that we refer to as 'starting error', with 
the starting error separating from the travelling wave. For the present application, 
it is very important to ellsure that the starting error is eliminated before the shock 
wav~ is allowed to reflect, and we proceed as follows. First, the computer code is 
allowed to run until the shock wave reaches the corner, and the situation in 
figure 3b is reached. In this figure, the region immediately behind the shock and 
about 2-3 zones thick is the discrete travelling wave and the small (less than 5 %) 
relative amplitude disturbances further downstream is the one-time starting error. 
The computer code then arbitrarily changes the flow field to that illustrated in 
figure 3c, i.e. the discrete travelling wave (arbitrarily set to exactly 4 zones in 
the computer code) is retained but the starting error is replaced by the post-shock 
state U1 • 

At this point, the flow field becomes truly two-dimensional and the computer 
code ~s now run without further interruption until the end of the calculation is 
rea&ied. 

The boundary conditions for this problem, which are standard, are discussed in 
detail in Colella & Glaz (1983). We remark here that our treatment of the 
intersection of the incident shock with the upper or left-hand boundary or both 
is not entirely consistent with the ·:liscrete travelling wave and leads to the 
introduction ofa low relative amplitude (ca. 1 %) wave behind the incident shock 
at its intersection with the boundary. This wave, which we call a boundary error, 
may lead to po, rather unaesthetic structure in the contour plots and it can impinge 
on the disturbed flow field behind the reflected shock. Examples will be noted in § 5. 

All calculations were performed on a CRAY I at Los Alamos National Laboratory, 
Los Alamos, New Mexico. The computer code was designed to take significant 
ad~Tantage of the machine's vector architecture. Each calculation in §5 required 
15-40 min c.p. time with most in the range of 20-30 min. Much of this time is 
wasted on the extra grid points introduced to eliminate the starting error as well 
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as grid points outside the reflected shock. Also, a fine mesh is only really needed 
in the Mach stem region. Thus, an intelligent adaptive mesh structure could reduce 
these timings substantially. 

5. COMPUTATIONAL RESULTS 

A direct comparison of experimental results and numerical calculations is 
presented in §5.1 for five cases. In §5.2, the results of a parametrized sequence of 
calculations are presented to demonstrate the capability of our numerical method 
to compute transition boundaries in the (Ms, 0w)-plane. An additional sequence 
is prcsented to demonstrate (upon comparison with experimental data) the effect 
of boundary-layer displacement on the r.r. ~d.M.r. transition. 

5.1. Comparison of experiment with calc1tlation 

The initial conditions for the five eases are listed in table 1 along with the 
computational mesh (NX, NY) and the equation of state (e.o.s.) selected for each 
calculation. All four wave configurations are represented in the range of (Ms' Ow) 

TABLE 1. EXPERIMENTAL AND NUMERICAL INITIAL CONDITIONS 

case 2 3 4 5 

gas argon air air air air 
type r.r. 8.M.r. c.M.r. c.-d.M.r. d.M.r. 
ew(O) 60 27 10 20 27 
Ms 2.05 2.03 10.37 7.19 8.70 
1'0 (kPa) 20.0 33.3 6.7 8.0 4.1 
Po (kg/m3 ) 3.23 x 10-1 3.87 X 10-1 7.53 X 10-1 9.29 X 10-2 4.76 X 10-2 

e.O.S. y=~ y=t Hansen Hansen Hansen 
NX 355 350 400 420 440 
NY 90 130 140 220 85 

considered. The following data are presented for each case: experimental isopycnics, 
computed isopycnics with the use of the same density levels as were obtained in 
the experiment, computed isopycnics with the use of thirty contour levels spaced 
equally between the extreme flow field densities, and a wall-density distribution 
plot (pi Po against xl L) containing both the numerical and experimental results. 
Numerically generated contour plots (with thirty equally spaced contour levels) 
of other flow-field quantities will occasionally be included in the discussion. 
Of particular interest is the Mach number in pseudo-stationary coordinates, 
£1, defined by M2(x, y, t) = [(u-g)2+(v-1J)2]la2 wh.:re a = sound speed. The 
quantity £1 -1 is plotted so that the zero contour level corresponds to the sonic 
line in this coordinate system. 

Case 1: r.r., Ms = 2.05, Ow = 60°, argon. Comparison of the experimental and 
numerical isopycnics (figures 4a, b) show them to be in good agreement with an 
error of about one fringe at the start of the subsonic regicn. The wall density 
distribution (figure 4d) disagrees by about the same amou;J.t. It may be observed 
in figure 4c that the contour levels curve sharply towards the reflection point just 
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FIGURE 4. Case 1: r.r., Ms = 2.05, Ow = 60°, Po = 20.0 kPa, To = 297.6 K , argon, Po = 
0.323 kg/m3 . (a) Interferogram and experimental isopycnics; values given in table shown, 
(b) numerically simulated isopycnics shown in (a), (c) 30 numerical isopycnics, equally 
spaced between the minimum and maximum flow field densities, (d) wall-density distri­
bution; -, computational results ;., experimental data, (e) 30 equally spaced numerical 
isobars. 

above the wedge surface, an effect that is not present in the experimental results. 
This numerical error is referred to as 'wall heating' and is commonly observed in 
shock capturing calculations as shown, for example, in Noh (1976). Wall heating 
affects only the density, temperature, etc. , and not the pressure (figure 4e). It may 
be seen to account for part of the observed error in this case, including the slight 
error in the value of the reflected shock wave density P2 on the wall. In addition, 
the error in the stand-off distance of the bow shock s, relative to the experimental 
distance from the reflection point P to the corner L, is about 6.2 %. 

Case 2: s.M.r., Ms = 2.03, 8w = 27°, air. The agreement for this case is extremely 
good in all respects (figures 5a-d). Quantitatively, the isopycnics are out by about 
one fringe (figures 5a, b), and the wall-density plot (figure 5d) shows similar 
agreement for its entire length. Note that the contact discontinuity spreads out 
in the experiment and, consequently, does not roll up as much as in the calculation. 

Case 3: c.M.r., Ms = 10.37, 8w = 20°, air. The experimental results (figure 6a) 
show very strong non-equilibrium effects in the disturbed flow field behind the 
reflected shock, with an almost equilibrium incident shock. The wedge surface does 
not appear to be straight because of diffraction effects, indicating that the sidewall 
boundary layer is significant. We get reasonably good qualitative agreement in the 
isopycnic patterns (figures 6a, c) although the tangential incidence at the reflected 
shock in figure 6a cannot appear in figure 6c. Also, the numerical wall heating is 
substantial. The quantitative agreement is equally good (figures 6a, b). In 
considering the wall-density plot (figure 6d), we note that the data points were 
evaluated assuming frozen triple-point conditions. Also, we measure X = 12.5-13.25 
and 15.3° and the attachment angle = 20-21 and 25.5° for the experiment and 
calculation, respectively. The latter difference explains the disagreement in 
figure 6d near xl L = 1.0. If the vortex roll-up patterns could be lined up and the 
Hansen equation of state used in evaluating the data, it seems that quite good 
quantitative agreement could be obtained where xl L is small, despite the wall 
heating error. The dip in figure 6d at xl L ~ 0.25 is due to the boundary error. 

Case 4: c.M.r.-d.M.r., Ms = 7.19, 8w = 20°, air . The experimental isopycnics 
(figure 7 a) show clearly that this flow field is neither frozen nor in equilibrium. Also, 
the isopycnics leave the reflected shock almost tangentially, which indicates that 
there are substantial non-equilibrium effects across this wave as well. A more 
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0.8 1.2 

FIGURE 5. Case 2: s.M.r., Ms = 2.03, Ow = 27°, Po = 33.3 kPa, To = 299.2 K, air, Po = 
0.387 kg/mao (a) Interferogram and experimental isopycnics, (b) numerically simulated 
isopycnics shown in (a), (e) 30 equally spaced numerical isopycnics, (d) wall·density 
distribution; -, computational results;., experimental data. 
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region p/Po region p/Po region p/Po 

(0) 1.00 a 6.70 f 8.69 
(1) 5.73 b 7.10 g 9.09 
(1') 6.33 c 7.50 h 9.49 
(2) 6.30 d 7.90 9.89 
(3) 5.77 e 8.29 j 10.29 

12 (d) 

8 . . 
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. . 
Q.. 
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o 0 0.4 0.8 1.2 
x/L 

FIGURE 6. Case 3: c.M.r., Ms = 10.37, (}w = 10°, Po = 6.7 kPa, To = 299.0 K , air, Po = 
0.753 kg/m3 . (a) Interferogram and experimental isopycnics, (b) numerically simulated 
isopycnics shown in (a), (c) 30 equally spaced isopycnics, (d) wall-density distribution; -, 
computational results;., experimental data. 
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(e) 

FIGU RE 7. Case 4 : c.-d.M.r., Ms = 7.19 , ()w = 20°, Po = 8.0 kPa, To = 298.5 K , air, Po = 

0.0929 kg/m3 . (a) Interferogram and experimental isopycnics, (b) numerically simulated 
isopycnics shown in (a), (c) 30 equally spaced isopycnics. (d) wall-density distribution; -, 
computational results;., experimental data, (e) 30 M contour levels (blowup frame) ; 
minimum and maximum M values are relative to the frame. 

detailed discussion of equation of state and non-equilibrium effects in the 
numerical analysis of this case is available in Colella & Glaz (1983). For the 
equation of state used here, the triple-point angle is in exact agreement. Note that 
P31 Po is in very poor agreement (figure 7 d) because the experimental data reduction 
used the frozen triple-point conditions . . The otherwise excellent agreement for 
xlL < 0.15 is surprising in view of the strong non-equilibrium and viscous effects 
in this region. The contours, including the vortex pattern, are in excellent 
qualitative and quantitative agreement (figures 7 a-c). The attached shock wave 
at the corner is bifurcated in the experiment (figure 7 a). The flow there is supersonic 
in the calculation (figures 7 b, e) . The M contours (figure 7 e) show the sonic line 
approaching the kink that corresponds to this case lying on the c.M.r.-d.M.r. 
transition boundary; Lee & Glass (1984) conjecture that this transition occurs 
when the sonic line reaches the kink. This case is an excellent example of the effects 
of the computational boundary error on the disturbed flow field (figures 7 b-d ; 
xlL ~ 0.35). 

Case 5: d.M.r., Ms = 8.7 ew = 27°, air. Figure 8a exhibits substantial non­
equilibrium effects. In particular, lv ~ 0.2 xl L for the incident shock and the 
isopycnics are at tangential incidence to the reflected shock. Also, the relaxing gas 
in the Mach stem region has 0 bscured the slipstream and part of the roll-up pattern. 
Comparison of figures 8a, e show very good agreement. The roll-up pattern agrees 
very well, although the slipstream normal to the wall at xl L ~ 0.02 and the 
backward facing shock normal to the wall at xl L ~ 0.065 in figure 8e are either 
not resolved or are lost as a result of viscous effects in figure 8a. Details of the 
calculated flowfield in the Mach stem region are presented in figures 8e-g. The 
existence of an extra pseudo-stationary stagnation point where the velocity is zero 
is noted in figure 8g. We have measured X = 9.6 and 7.0° and R (= ratio of 
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FIGURE 8 (a-d). For description see facing page. 
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FIGURE 8. Case 5 : d .M.r., Ms = 8.70, Ow = 27°, Po = 4 .1 kPa, To = 299.2 K, air, Po = 
0.0476 kg/m3 . (a) Interferogram and experimental isopycnics, (b) numerically simulated 
isopycnics shown in (a) , (c) 30 equally spaced isopycnics, (d) wall-density distribution; 
-, computational results;., experimental data, (e) density contours (blowup frame), 
(j) pressure contours (blowup frame), (g) (ii" v)-vector plot (blowup frame plus overlay of 
wave system) . 
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FIGURE 9 (a-c) . F or description see facing page. 
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(d) 

R / 

FIGURE 9. Transition sequence for perfect (frozen) air, ()w = 45°; (a) isopycnics, Ms = 1.70, 
()w = 45°, (b) M blowup for Ms = 1.70, showing sonic line interior to the reflected shock, 
(0) M blowup for Ms = 1.80, showing region of supersonic flow beneath the reflected shock, 
(d)isopycnics, Ms = 2.30, Ow = 45°, d.M.r., (e) blowup showing details ofMfor case (d) above, 
where sonic line intersects the kink. 

the distance between the two triple points and L) = 0.1854 and 0.1769 for the 
calculation and experiment, respectively. The data points in figure 8d near 
xl L = 0.0 were obtained by using the triple-point conditions for y = 1.40 and 
X = 7.0°. The measured corner attachment angles are 33.5 and 23.0° for the 
calculation and cxperiment, respectively. This non-equilibrium effect (which 
apparently is poorly modelled with the equilibrium Hansen equation of state) 
explains the disagreement near x I L = 1.0 in figure 8 d. We note that the numerical 
thermal layer is a large effect for this problem. Overall, real-gas effects have an 
extensive impact on the flow dynamics for this case and the equilibrium calculation 
cannot reproduce these effects. 

5.2. Transition sequences 

We have calculated a sequence of cases for perfect air at Ow = 45° for 
1.3 ~ Ms ~ 2.6 in increments of AMs = 0.1. Because oflack of space, only a small 
portion of the results will be presented here. The full study, as well as the 
calculations for other line segments in the (Ms, 0w)-plane are included in Glaz 
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(0) 1.00 
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(2) 6.69 
(3) 3.91 
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FIGURE 10. Transition sequence for argon, Ms = 7.1. (a) Interferogram and experimental 
isopycnics , Ms = 7.1, ()w = 49.0°, Po = 2.0 kPa, To = 296.3 K , Po = 0.0329 kg/m3 , (b) 30 
equally spaced isopycnics, ()w = 49.0°, (c) 30 equally spaced isopycnics , ()w = 53.2° , (d) Plot 
of d.M.r. Mach stem height versus ()w, extrapolated to zero height for r.r. (h / L = 0 for 
(Jw = 53.85°), h/ L = 0 for (Jw = 54° is a numerical result. • . experimental point;., numeri cal 
results. 
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et al. (1985). The purpose of these calculations is to demonstrate the feasibility 
of using the computer code to construct the inviscid transition lines in the 
(Ms ' 8w)-plane and to test transition theories based on inviscid arguments. 

The contours of constant density for the case where Ms = 1.70 are shown in 
figure 9a. The configuration can be seen to be near the s.M.r. ¢ c.M.r. boundary, 
but it is difficult to judge precisely the shape of the reflected shock. Contours of 
constant self-similar Mach numbers in the vicinity of the triple point are shown for 
this case and for Ms = 1.80 in figure 9b, c. This sonic line (in pseudo-stationary 
coordinates) has moved into region 2 for the cases where Ms = 1.80; the extent of the 
supersonic region increases with increasing shock-wave Mach number, Ms ~ 1.80 
(not shown). Assuming that the s.M.r.¢c.M.r. transition occu~s when region 2 
becomes supersonic at the triple point (see Lee & Glass 1984), it follows that the 
Ms = 1.80 case is a c.M.r. Similarly, we find that the cases where 1.3:::; Ms :::; 1.7 are 
s.M.rs, because region 2 is entirely subsonic for these results (not shown). Therefore, 
the computer code predicts the 45°, perfect gas s.M.r. ¢ c.M.r. transition to lie in 
the range 1.70:::; Ms :::; 1.80. We remark that the analogous calculations for 45°, 
imperfect air with the Hansen equation of state (not shown) predicts 
1.60:::; Ms :::; 1.70 for the same transition. Both results agree reasonably well with 
figure 2, but the Hansen results are in better agreement. A more precise prediction 
would simply be a matter of choosing a smaller value of I:!..Ms and, perhaps, by 
using more mesh points in the triple-point region to improve resolution. 

The results for the weak d.M.r. case, Ms = 2.30, are shown in figure 9d, e. One 
theory for the c.M.r.¢d.M.r. transition (see Lee & Glass 1984) is that the flow 
at the first triple point should be supersonic with respect to the motion of the kink. 
Because the flow immediately beneath the reflected shock and between the two 
triple points is constant, this criterion is equivalent to requiring that the sonic line 
(in pseudo-stationary coordinates) intersect the kink. Also, the sonic line should 
have the same tangent at the kink as the second Mach stem, because the flow is 
supersonic ahead and subsonic behind this discontinuity. By using this criterion, 
the calculations show that the Ms = 2.30 case is a weak d .M.r. but that the cases 
where 1.70:::; Ms :::; 2.20 are c.M.rs, in reasonable agreement with figure 2. We 
remark that 45°, imperfect air calculations (not shown) are in somewhat better 
agreement. 

Another sequence of cases for perfect argon with Ms = 7.10 has been calculated 
for various choices of 8w with 49° :::; 8w :::; 54°. The purpose of these calculations 
is to estimate the inviscid r.r. ¢ d .M.r. transition boundary and, by comparison 
with experimental results, to demonstrate and quantify the well known disagree­
ment between theory and experiment for this issue (see, for example, Shirouzu & 
Glass 1982). 

The experimental and computational double Mach-reflection configurations for 
8w = 49° are shown in figures lOa, b. These results are in substantial disagreement 
concerning the extent of the Mach stem region relative to the entire flow field. The 
computational results for 8w = 53.2° are shown in figure 10c; this case is in much 
closer agreement with the experiment at 8w = 49° than is figure lOb. The difference, 
1:!..8w ~ 4.0-4.5°, may be viewed as the ' boundary-layer defect' (see Hornung & 
Taylor 1982; Shirouzu & Glass 1982; Wheeler & Glass 1985). We have attempted 
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to calculate the precise r.r. ¢ d.M.r. transition point by plotting the height of the 
Mach stem relative to hi L against ()w for several computations in figure 10d and 
extrapolating the curve to zero height. The result is ()w ~ 53.8.5°, which disagrees 
moderately with the theoretical result of ()w ~ 54.4° in Lee & Glass (1984). We 
remark that this error may be caused by an unnoticed bias in our measuring 
technique (done simply by using a ruler on the computer-generated contour plots 
ofthe blow-up Mach stem region), lack of numerical resolution when the Mach stem 
is only 1-2 zones high, or a numerical error in the post-shock flow field at the wall. 
In any case, the error is small relative to the viscous-in viscid difference and it is 
also possible that the theoretical inviscid prediction, which. is an infinitesimal 
result, of ()w :::::: 54.4° does not apply when the entire disturbed flow field is taken 
into account. 

6. CONCLUSIONS 

A computer code has been developed for the inviscid, perfect gas shock-on-wedge 
problem and the results have been compared with the best available experimental 
data. The code is based on contemporary methodology and has only recently been 
available. 

Good to excellent qualitative agreement has been obtained in all cases, and this 
applies to structures beneath the reflected shock such as the vortex roll-up as well 
as coarser criteria such as the reflection pattern. Non-equilibrium effects and 
viscous structures are the probable causes of the qualitative disagreements. 
Quantitatively, the results are very good for flow fields without observable 
non-equilibrium or viscous effects. When such effects are significant, errors of 
10-15 % are typical. A pervasivc but easily analysable numerical error present in 
most cases is the' wall-heating' effect. 

Although not entirely proven, it appears that the computer code represents a 
substantial predictive capability for thc shock-on-wedge problem restricted to 
inviscid, perfect gases. Even for viscous, real gas flow fields, the computational 
results provide a significant amount of information, including highly resolved 
flow -field structures. 

Significant non-equilibrium and viscous effects have been demonstratcd in the 
shock-wave diffraction experiments. Much of this could be inferred without the 
numerical study, but the latter can provide a quantitative estimate of the various 
effects. In particular, vibrational relaxation is observed in the high shoek-wave 
Mach number eases, and this can have large-scale effects on criteria such as the 
corner attachment angle and type (subsonic or supersonic) and viscous effects are 
important in determining the vortex roll-up pattern and the wedge corner flow 
field. Although these effects occur in thin layers or small regions, they may have 
an efl'ect on the quantitative results in the inviseid portion of the flow field. 

The capability of the computer code to discriminate between very small 
inerements in problem parameters (Ms, ()w, and the equation of state, although 
the latter has not been treated here) has been demonstrated. 

By using parametrized sequences of calculations, it would be possible to 
construct transition boundaries in the (Ms, ()w)-plane. Of course, the transitions 
obtained would be dependent on the transition criteria used in their construction; 
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our use of the sonic criterion in self-similar coordinates shows how the infinite 
amount of data potentially available from a calculation can be invaluable in 
evaluating one of the proposed criteria. 

Also, we have been able to validate the conjecture that the r.r. ¢d.M.r. 
transition is offset in experiments by a boundary-layer defect. 

In future work, we intend to modify our computer code and include an 
approximation for vibrational relaxation. We expect that this work will settle some 
of the questions raised in this paper. The results presented here demonstrate, 
however, that a valid approximate solution method for the N avier-8tokes equations 
will be required if complete agreement between experiment and calculation is 
demanded. Despite these shortcomings, the comparison of the present numerical 
simulations with interferometric data from r.r., s.M.r., c.M.r. andd.M.r. experiments 
are probably the best available to date. Additional results are available in Glaz 
et al. (1985). 

We are grateful to Mr Ralph Ferguson for his extensive programming work for 
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