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Abstract

Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved.
When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas
(e.g., fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this
technique with plasma Particle-In-Cell simulations and present two implementations in more detail, with examples.
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1. Introduction

Numerical simulations of ion beam transport in a Heavy lon Fusion (HFaccelerator and reaction chamber
currently model different stages of the process separately. A completely self-consistent treatment, which is ulti-
mately needed, requires an end-to-end simulation from the ion source to the fusion target. This represents a real
challenge, even extrapolating near-future computer power, and we must consider the use of the most advanced
numerical techniques. One of the difficulties of these simulations resides in the disparity of scales in time and in
space which must be resolved. When these disparities are in distinctive zones of the simulation domain, a method
which has proven to be effective in other areas (e.qg., fluid dynamics simulations) is the Adaptive-Mesh-Refinement
(AMR) technique. We have begun the exploration of introducing this technique into the Particle-In-Cell (or PIC)
method. A collaboration between the Heavy lon Fusion Virtual National Laboratory (HIF-VNL) and LBNL's Com-
putational Research Division was initiated to develop an AMR library of subroyhésrgeted at providing AMR
capabilities for existing plasma PIC simulation coi#s
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2. Application of mesh refinement to Particle-In-Cell electrostatic plasma simulation
2.1. Two possible strategies for coarse-fine grid coupling

When solving the Poisson equation with mesh refinement, several strategies can be envisioned to couple a fine
grid and the coarser grid in which it is enclosed; vensidered two of them. We consider a grid (denoted the
“coarse” or “parent” grid) and its refinemgpatch (denoted the “fine” or “child” grid).

The method which is conceptually the simplest consists of solving the Poisson equation on the coarse grid first,
ignoring the presence of the patchgahen solving on the patch alone using Dirichlet boundary condition derived
by interpolation of the solution of the coarse grid.

A second method, which is the default in the Chombo pack2fyeonsists of iterating the solution back and
forth between the patch and its “gant” grid. After one iteration on the coarse grid, values on the fine grid are
interpolated from the coarse grid solution. Then, a specified number of iterations are performed on the fine grid
and the fine and coarse grid solutions are reconciled during a “synchronization” step which consists in imposing
the fine grid solution on the coarse grid nodes located inside the fine grid patch. This procedure is iterated until
convergencé].

In the rest of the article, we will refer to the first method as “1-pass” and the second as “multipass”.

2.2. Issues

While the second method has been shown to be of higher order in accuracy, it violates a discrete version of
Gauss’ law under a nodal implementation because it madifie coarse grid solutio&ventually ths introduces
a nonlinearity that is not present in thearse-grid solution. This effentay be an issue for accelerator modeling
(unharmonic forces).

Also, the use of AMR implies breaking the symmetry in the field solution which in turn introduces a spurious
force when gathering the electric field from the potential on the set of grids. This may potentially alter the particle
motion to a degree which cannot be neglected. This effect was studied in detail for a one particlpbiestwas
determined that, when using the “1-pass” solver, a sufficient number of guard cells can be defined on the border
of the patch that effectively mitigates most of the effect of the spurious force, since its amplitude grows with the
inverse of the distance to the patch border. In effect, the effective area of the patch is delimited by its total area
minus the guard cells. No such simple mitigating technique can be applied when using the “multipass” solver.

We refer the reader ti®] for a more detailed discussion of these issues.

3. Two examples of implementations

A prototype AMR Poisson solver was built on the foundations of the WARP axisymmetric (r, z) multigrid Pois-
son solver, using the “1-pass” scheme for coarse-fine grid coupling and guard cells to reduce the effect of spurious
self-force, as described above. While this RZ prototype is allowing us to begin to explore the benefits of AMR on
injector simulation, the production-level general three-dimensional AMR-Poisson solver is being developed as part
of the Chombo package. We briefly describe the two implementations. We note that in both cases, linear weighting
is used for charge deposition and force gathering.

3.1. Prototype implementation in WARP-RZ solver

The implementation of AMR in the axisymmetric (RZ) solver in WARP relies on the use of FORTRAN90
derived types. The type “grid” is defined as
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type grid
i nt eger ooid ' grid ID
i nt eger .onr, nz
real oormn, rmax, zmn, zmax
real, allocatable oophi(:,:), rho(:,:)
real, allocatable coophip(:,:), rhop(:,:) ! in parallel only
real, allocatable crobp(i, ), Ipfd(:, )
i nt eger ;.ogmnr, gmaxr, gnmnz, gmaxz
i nt eger .. nlevels, npre, npost
real 11 ngparam
type(bndy), pointer :: bnd
type(grid), pointer :: up, down, next, prev

end type grid

The variablesnr andnz define the dimensions of the patch array while the variablasn, r max, zni n
andzmex define its extension in the physical system of coordinates. The gotdysndr ho store the electric
potential and the charge density respectively. The ampdyp andr hop, which store the same quantities, are
used only on parallel platforms for efficiency when a different domain decomposition is used for the fields and
particles.

The arrayd p andl pf d are lookup tables that are used for rapid localization of particles in the grid structure
during the steps of charge deposition and force gathering.

The variablegm nr, gmaxr , gmi nz andgnmaxz are the number of guard cells to be used on each side of the
patch for the spurious self-force reduction.

The variablesil evel s, npr e, npost andngpar amcontrol the multigrid solve and define respectively the
number of multigrid levels, the number of relaxation steps before and after the coarsening stage and the relaxation
parameter used in the Gauss—Seidel relaxation. Thexseneters can be optimizeding a specialized routine.

Since their optimized values are dependent upon the geometry and the grid mesh aspect ratio, the optimization
is performed at run time. By defining them in the grid type, the optimizing routine can derive a set of optimized
parameters for each individual patch.

The variablebond, which is of derived typdndy (which we do not describe here), contains the variables that
describe the part of the geometry which is enclosed into the considered patch.

The variablesip, down, next andpr ev are pointers of typgr i d which are used to construct a tree structure
by means of a 2-D linked list. The trunk of the tree is defined by default in WARP and constitutes the main grid
covering the entire simulation domain. The user can add patches at run time by using the function add_subgrid at
the Python level:

add_subgrid(id,nr,nz,dr,dz,rnmn, zn n, gm nr, gnaxr, gnm nz, gnaxz)

integer :: id ! IDof grid to add a patch to (parent)
integer :: nr, nz ! nb of neshes of patch inr and z

real : dr, dz ! mesh size inr and z

r eal coormn, zmn ! min location of patch in physical coord.
real :: gmnr, gmaxr ! nunber of guard cells inr

r eal .. gmnz, gmaxz ! nunber of guard cells in z

The tree is maintained internally by WARP. When a patch is added, a new branch is added either to the grid of
ID i d by creating a newlown pointer or, ifdown has already been allocated, to thst element of the linked-list
described bylown. next . . . next . The following restrictions apply:
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(1) the patch must be entirely enclosed into its parent grid,
(2) the minimum and maximum of the patch are forced to lie on lines of the parent grid; the size of the mesh is
resized if necessary.

The first restriction allows for a simple tree structure and avoids complications due to overlaps. The second allows
for quicker testing of particle localization relative to the grid structure.

For each macroparticle, the charge deposition is performed on the finest grid which contains it. Once the
charge from all the particles has been deposited, thegehaf each patch is deposited onto its parent, start-
ing from the finest patch to the main grid, recursyveélhe Poisson solve can then proceed, starting on the
main grid and recursively solving down on each bracithe tree. The Poisson solve is activated by “call
solve_allgrids_rz(maingrid, accuracyyhere the subroutine solve_allgrids_rz is:

recursive subroutine solve_ allgrids_rz(g, accuracy)

type(grid) :: g

real 11 accuracy

i f(associ ated(g%up)) call interpol ate(g, g%up, bnd_only)

call solve_nultigridrz(g, accuracy)

i f(associ ated(g%down)) call solve_allgrids_rz(g%lown, accuracy)

i f(associ ated(g¥%ext)) call solve_allgrids_rz(g%ext, accuracy)
end subroutine solve_allgrids rz

The routine checks first if the grid is a child and interpolates the field from the parent grid to the child if it is one
(interpolates only on the patch boundary if bnd_only is true or on the entire patch otherwise). The Poisson equation
is then solved oy and the entire operation is repedtrecursively on any childg@glown) and ‘brother/sister’
(g%next).

For the force gathering, the field is interpolated from the finest grid containing the macroparticles, excluding the
guard cells (in which it is interpolated from the parent grid).

In order to speedup the process of particle localization in the grid structure, the patch ID value is deposited in the
array Ip of the parent grid at the nodes covered by the entire patch (except the upper bounds). The same operation is
performed on the array Ipfd but considering the patctauit the guard cells (the effective area of the patch). The
arrays Ip and Ipfd are used as lookup tables in a recuaitsigp starting from the main grid for each macroparticle
when depositing the charge and gathering the force.ao&ls the cumbersome and inefficient series of boundary
tests. Although this method may not be the most efficient that can be devised, it is easy to implement and balances
simplicity and efficacy. Thus, it was considered of adequate efficiency for prototyping.

3.2. 2-D and 3-D implementation in the Chombo package

A nodal implementation of a multigrid AMR solver for tioisson equation using Shortley—Weller (“cut cell”)
discretization of the Laplacian operator (to account for maéboundaries at subcell resolution) has been developed
in Chombo[4]. In our configuration, a library containing Chombo’s executable routines is provided to the WARP
linker which merges the two packages together (Sge 1). Appropriate calls to Chombo routines are made by
WARP’s FORTRAN routines as enabled by a flag which istsethe user in WARP’s Python script interface. For
specialized use, some of the Chombo routines, such as its AMR Poisson solver, are callable directly from WARP's
Python interface. Both methods for gilg the Poisson equatioas described above, are being implemented in
Chombo and are being tested and compared.

A prototype PIC interface to Chombo (called ChomboPIC) has been developed using this AMR Poisson solver
and integrated into the WARP code. This prototype is purposefully simplistic, and maps straightforwardly to the
structure shown ifrig. 1L The design goal for the prototype was to provide sufficient functionality to allow various
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Fig. 1. Diagram of WARRZhombo configuration.

applications to incorporate Chombo’s adaptive mestabdipy without significant chages to the application code
itself, allowing experimentation with methods and interface details.

The data that must pass across the interface from the application (WARP) to ChomboPIC is limited to the loca-
tions and charges of the particles and the potential on the bounddaiiesdata that passes back from ChomboPIC
to the application is the electric field at the particles. In the prototype implementation, the particle data is passed
back in the same ordering in whighwas given. Because the adaptive method used in Chombo inevitably re-
arranges the particle data, restoring the original ordering adds an extra computational expense, as a result of
copying the data. This expense increases in parallel with the number of processors, so an alternative scheme in
which the patrticles are returned in a different ordering is likely to be needed in the future.

The simplest possible use of ChomboPIC from an application requires calls to 7 subroutines. Four are needed
to initialize parameters and clean up afterwards, analls need to be called only once each. The remaining 3
pass the particle data to Chombo, solve the Poisson problem, and get the results back. These would be called for
each iteration around the loop shownFig. 1. ChomboPIC handles depositing the charge from the particles and
interpolating the electric field from the solution back to the particles.

4. Examples of PIC-AMR simulations

Fig. 2shows a snapshot taken from a movie of an end-to-end simulation of the High-Current experiment (HCX)
[6] at LBNL. It shows the beam emitted from a triodeusce and traveling through the four accelerating and
focusing electrostatic quadrupoles oétimjector. The modeling of the triodegien is critical since it determines
the initial phase-space shape of the beam. It is also a challenging part to model since there is a large range of
particle density close to the emitter and an accurate description of the edge of the emitter and the beam is crucial.
This makes this problem ideal for texy the mesh refinement technique.

4.1. WARP example

We display inFig. 3a) a snapshot of the beam taken from a quasi-steady state axisymmetric WARP simulation
of the triode. By quasi-steady state, we mean that we run a time-dependent calculation of the beam being emitted
from the source, solving for the field evetytime steps with 16< n < 50 typically. We stop the simulation when
an equilibrium is reached, under the assumption that the equilibrium solution exists and is unique (both of these
assumptions are not guaranteed but seem to be fulfilled in practice).

Fig. 30) shows the grid structure that we used when AMR was turned on. A refinement patch covering the whole
beam was set up. In order to emulate a more complicated structure of grids covering only the emitting region and

1 Although the Poisson solver implements complex geometry, due to time corstrarIC prototype currently does not.
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Fig. 2. 3-D rendering of HCX injector siulation from a movie of an end-to-end WARP simulation of the HCX experiment
(http://hifweb.lbl.goviwebpages/theory/simulation_movies.htrhis shows the beam, emitted from the source (left), propagating through
the first quadrupole lenses.

the beam edge, the arripfd (which controls, at the cell level, whatever the field acting on patrticles is taken from
the patch solution or from its parent) was set in a special way such that the field from the main coarse grid was used
inside the beam, while the field frorhe patch solution was used at the beam edge and around the emitter. Thus,
the fine gridded area that is depictedHig. 3b) corresponds to the effective area of the patch, as defined above.
This effective area was reset each time step to adaptively follow the edge of the beam.

The evolution of the RMS normalized emittance versus Z is show#ign4 for three runs using uniform low,
medium and high resolution and a fourth run using medium resolution plus the refinement patch. The jump of
resolution from low to medium and edium to high is a factor of 2 in each direction and a factor of 4 in the
number of macroparticles, in order to keep the number of macroparticles per cell constant on average. The number
of macroparticles used is the same in both of the medium resolution runs, with or without AMR. The results show
that the emittance converges downward with increasing resolution and that the high resolution result is recovered
from the medium resolution run with AMR at about a fourth of the computational cost.

4.2. Chombo example
The three-dimensional solution of the electrostatic potential in the HCX injector was computed with Chombo

using its automatic meshing capability. The criterion for refinement was to refine volumes covering the edge of
conductors of the source & 0.1 m) with a ratio between coarse and fine mesh of four. The result is displayed in
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Fig. 3. a) color contour plot of electric potertiaith triode structure (blue) and beam (red); schematic of griding when using AMR: the
emitting area and the beam edge are covered with a finer grid.

Fig. 5and shows how Chombo will handle a complicated structure of grid blocks to get to the required solution
optimally. The criterion used for refinement in this case is for demonstration purpose of the capability. Different
criterion may be devised for actual modeling of the injector, for example refining the emitting region and the beam
edge, as successfully used in the WARP-RZ prototype example described above.

5. Conclusion

We have presented a short overview of our efforts to couple the Particle-In-Cell and mesh refinement techniques.
In this paper, we emphasized the description of the implementations of our prototype in WARP and the full-featured
production package Chombo. Specific issues have been identified (for example, non-physical forces which arise
at the edges of refined areas), and studied in detail using prototypes. Using the prototype developed in WARP,
we demonstrated the effectiveness of mesh refinemeRaiticle-In-Cell simulation of a problem of interest,
where a gain of almost four was obtained in computing time and memory requirement. An example of Chombo’s
three-dimensional field solve with automatic refinement around conductors leading to a complicated structure of
refinement boxes was given as a preview of Chombo’s capabilities to come. Typical gains of a factor of ten or more
are expected with Chombo once discrete-particle support is fully integrated.
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Fig. 4. Beam RMS emittance (a figure of merit for beam quality—the lower the better) as a functi¢muofierical noise has been removed for
clarity): the emittance converges downward with increasing resolufioe high resolution result is recovered with a run at medium resolution
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Fig. 5. Three-dimensional solution of theeetrostatic potential in the HCX injector, as calculated by CHOMBO. A slice with the actual
meshing (left) shows that the regions closethie boundaries of conductors (grey) are described with a finer mesh. The picture on the right
shows a three-dimensional rendering that includes two orthogonal slices of the solution (with magnitude of electrostatic potential shown with
a grey scale, conductors in black) and the edges of the different doomitaining finer mesh spacing (in this case, mesh refinement covered

the conductor edges only in the area surrounding the source).
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