
www.elsevier.com/locate/jcp

Journal of Computational Physics 201 (2004) 34–60
A node-centered local refinement algorithm for
Poisson’s equation in complex geometries

Peter McCorquodale a,*, Phillip Colella a, David P. Grote b, Jean-Luc Vay a

a Lawrence Berkeley National Laboratory, MS 50A-1148, 1 Cyclotron Rd, Berkeley, CA 94720, USA
b Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Received 19 December 2003; received in revised form 2 April 2004; accepted 13 April 2004

Available online 25 June 2004
Abstract

This paper presents a method for solving Poisson’s equation with Dirichlet boundary conditions on an irregular

bounded three-dimensional region. The method uses a nodal-point discretization and adaptive mesh refinement (AMR)

on Cartesian grids, and the AMR multigrid solver of Almgren. The discrete Laplacian operator at internal boundaries

comes from either linear or quadratic (Shortley–Weller) extrapolation, and the two methods are compared. It is shown

that either way, solution error is second order in the mesh spacing. Error in the gradient of the solution is first order

with linear extrapolation, but second order with Shortley–Weller. Examples are given with comparison with the exact

solution. The method is also applied to a heavy-ion fusion accelerator problem, showing the advantage of adaptivity.

Published by Elsevier Inc.

PACS: 65N06; 65N55; 78M20

Keywords: Finite difference methods; Poisson equation; Adaptive mesh refinement; Cartesian grid methods; Multigrid methods;

Shortley–Weller

1. Introduction

We present a numerical method for solving Poisson’s equation with Dirichlet boundary conditions

Du ¼ q on X; u ¼ g on oX ð1Þ

on a bounded three-dimensional region X. Our motivation is to combine adaptive mesh refinement with
complex geometry and eventually to include particle-in-cell (PIC) simulation following the ideas in [6].We use

a nodal-point scheme instead of a cell-centered or finite-volume discretization (as in [7] or [1]) because the

nodal discretization is a relatively simple way to treat geometry: a node is either inside or outside the domain.
*Corresponding author. Tel.: +1-510-495-2458; fax: +1-510-495-2505.

E-mail address: pwmccorquodale@lbl.gov (P. McCorquodale).

URL: http://seesar.lbl.gov/anag/.

0021-9991/$ - see front matter. Published by Elsevier Inc.

doi:10.1016/j.jcp.2004.04.022

mail to: pwmccorquodale@lbl.gov
http://seesar.lbl.gov/anag/

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 35
Our approach uses data on nodes of rectangular Cartesian grids. At nodes away from the domain

boundary, we take the standard seven-point discretization for (1), with truncation error that is second order

in the mesh spacing. At nodes adjoining the boundary, we use the same regular discretization after ex-
trapolating either linearly or quadratically from nodes in the domain. We combine this discretization with

an adaptive mesh refinement (AMR) procedure based on the block-structured approach of Almgren [2].

The term ‘‘adaptive’’ is customarily used in this field to refer to solvers on locally refined grids, even when

the grids are fixed in advance. Previous work on node-centered Poisson solvers on irregular domains, such

as [5,11], has been done on uniform grids only.

Other approaches to solving Poisson’s equation in complex geometries include unstructured grid

frameworks, but these do not work as easily with PIC methods, or with multigrid solvers. Cartesian grid

methods have the advantage over unstructured grids of easier grid generation, particularly in three di-
mensions, for which unstructured grid generation is an open problem. An approach closely related to ours

was developed by Young et al. [14] using a variational formulation based on rectangular finite elements. We

also note that their method uses conjugate gradient with an incomplete LU preconditioner as a solver, and

requires a great deal more memory than the matrix-free multigrid solver used here. We prefer to use a

simpler method that is as close to a classical finite-difference discretization method as possible and for which

there is considerable experience in combining them with PIC methods. There is an extensive literature on

Cartesian grid methods applied to other problems. For a survey, see [4]. These are mostly volume-of-fluid

methods for hyperbolic problems. The state of the art for both algorithms and software for elliptic
problems is far less well developed.

The truncation error of our method at the domain boundary varies with the mesh spacing in zeroth

order if the extrapolation is linear, or in first order if quadratic. However, even with zeroth-order trun-

cation error on the boundary, the overall induced solution error is still second-order accurate, as we show

using a modified-equation analysis as in Johansen and Colella [7]. We solve the linear system using a

simple domain-decomposition point-relaxation strategy. We show evidence that the algorithm is second-

order accurate in L1 norm for various exact solutions, and compare the adaptive and nonadaptive cal-

culations. We show that the gradient computed from the solution is also second-order accurate in L1
norm, provided the extrapolation at boundaries is quadratic; if extrapolation is linear, then the gradient is

only first-order accurate in L1 norm. Thus if gradients are needed, as they are with particle simulations,

then second-order accuracy requires quadratic extrapolation at boundary nodes, so that linear extrapo-

lation as suggested in [5] is no longer sufficient. Finally, we demonstrate that our method works efficiently

with good multigrid performance on a real physical problem, solving for the potential inside a heavy-ion

fusion accelerator.
2. Nodal discretization

2.1. AMR spatial discretization

Adaptive mesh refinement methods are based on sets of grids on multiple levels of refinement, such that

grids on the same level have the same mesh spacing. For each level in the AMR hierarchy, the underlying

discretization of space is given as lattice points ði0; . . . ; iD�1Þ ¼ i 2 ZD, where i corresponds to a point of

space x0 þ h � i, with x0 2 RD a fixed origin of coordinates for all levels, and h the mesh spacing at the
particular level.

The problem domain is discretized using node-centered grids. A grid C � ZD consists of the lattice points

within a rectangular region bounded by two points p; q 2 ZD, where p ¼ ðp0; . . . ; pD�1Þ is the lower corner of
C and q ¼ ðq0; . . . ; qD�1Þ is the upper corner. Thus C ¼ fi 2 ZD : p6 i6 qg, where the notation a6 b means

each entry of a is less than or equal to the corresponding entry of b.

36 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
We will find it useful to define a number of operators on points and subsets of ZD. We denote by Cþ i
the translation of a set C by a point i 2 ZD. We define a coarsening operator Cr : Z

D ! ZD, where r is a

positive integer, by

CrðiÞ ¼
i0
r

� �
; . . . ;

iD�1

r

� �� �
:

The coarsening operator acting on subsets of ZD can be extended in a natural way to a node-centered
grid: if C ¼ fi 2 ZD : p6 i6 qg then CrðCÞ ¼ fi 2 ZD : CrðpÞ6 i6CrðqÞg.

We extend this discretization of space to represent a nested hierarchy of grids that discretize the same

continuous spatial domain. We assume that our problem domain can be discretized by a nested hierarchy of

grids C0
N ; . . . ;C

lmax
N , with Clþ1

N ¼ Cnl
ref
ðCl

N Þ, where nlref is the refinement ratio between levels l and lþ 1.

AMR calculations are performed on a hierarchy of node-centered meshes Xl
N � Cl

N , with

Xl
N � Cnl

ref
ðXlþ1

N Þ. Typically, Xl
N is decomposed into a union of node-centered grids, RðXl

NÞ, such that any

two distinct C;C0 2 RðXl
NÞ intersect only on grid faces.

For a node-centered union of rectangles XN at a fixed level of refinement, we define the interior nodes
XN ;int as those for which all neighbors along coordinate axes are also in XN . That is

XN ;int ¼ XN \
\

d¼0;...;D�1

XN

��
þ ed

�
\ XN

�
� ed

��
;

where ed is the unit vector in dimension d.
A discretized dependent variable in AMR is a level array

ul : Xl
N ! Rm:

We denote by ui 2 Rm the value of u at node i 2 Xl
N , corresponding to the point x0 þ h � i 2 RD where h is

the mesh spacing at level l.
From a formal numerical analysis standpoint, a solution on an adaptive mesh hierarchy fXl

Ng
lmax

l¼0 ap-

proximates the exact solution to the PDE only on interior nodes, and only on those interior nodes that are
not covered by interior nodes at a finer level. These are defined as the valid nodes of Xl

N (see Fig. 1)

Xl
N ;valid ¼ Xl

N ;int � Cnl
ref
ðXlþ1

N ;intÞ:

A composite array ucomp is a collection of discrete values defined on the valid nodes at each of the levels

of refinement

ucomp ¼ ful;validglmax

l¼0 ; ul;valid : Xl
N ;valid ! Rm:
Fig. 1. A two-dimensional grid hierarchy with three levels of refinement. The valid nodes at the middle level are indicated by d.

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 37
2.2. Single-level Laplacian operator

The discrete Laplacian operator Dh on a level with mesh spacing h is defined on the valid nodes of that
level, as

ðDhuN ;lÞi ¼
XD�1

d¼0

Dh
du

N ;l
� �

i
; ð2Þ

where Dh
d is a second-derivative operator in dimension d

Dh
du

N ;l
� �

i
¼

uN ;l
i�ed

� 2uN ;l
i þ uN ;l

iþed

h2
: ð3Þ

The truncation error of this method can be analyzed. Let ue be the exact solution, and for all valid i,
ue;h

i ¼ ueðihþ x0Þ . Then the truncation error is defined as

sh ¼ Due � Dhue;h:

If all the points in the stencil (2) and (3) for i are valid nodes, then it is well known that ðshÞi ¼ Oðh2Þ.

2.3. Multilevel Laplacian operator

There are three cases in which i is a valid node at level l, but j ¼ i � ed is not (see Fig. 2).

(a) The node j is on the physical boundary. Then we take the value of uN ;l
j from the physical boundary

conditions.

(b) The node j is covered by a grid at finer level lþ 1. Then we project the valid data from the finer level,

uN ;l
j ¼ uN ;lþ1

nl
ref

j
.

(c) The node j is on the boundary with coarser level l� 1. Then we interpolate from the coarser-level nodes
on the coarse/fine interface, as described in Section 2.4.

2.4. Coarse/fine boundary interpolation

When the stencil for evaluating the operator on uN ;l at level l includes a node j lying on the boundary

with the next coarser level l� 1, as shown in Fig. 2(c), we must interpolate uN ;l
j from uN ;l�1 at the valid

coarser-level nodes.
j

(a)

j

(b)

j

(c)

Fig. 2. Cases in which data at non-valid nodes is needed in computing the discrete Laplacian at a valid node. Nodes of the stencil are

indicated by�, valid nodes at the current level byd. (a) Stencil reaches physical boundary (at top point). (b) Stencil is partially covered

by the next finer level (at bottom point). (c) Stencil intersects boundary with coarser level (at top point).

Fig. 3. A two-dimensional example with refinement ratio of 4. We interpolate to finer-level nodes on the coarse/fine interface in two

stages. First stage: interpolate from the valid coarser-level nodes indicated by s to interface nodes at the intermediate level, indicated

by }. Intermediate-level interface nodes that are also coarser-level nodes are indicated by s superimposed with }. Second stage:

interpolate from the intermediate-level interface nodes to the finer-level interface nodes. In interpolating to the node marked �, we use

only data at nodes indicated by } in this figure, and not data at other coarser-level or intermediate-level nodes.

38 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
We assume that the refinement ratio nl�1
ref is a power of 2. Then the interpolation from level l� 1 to level l

is a composition of log2ðnl�1
ref Þ successive interpolations each with refinement ratio of 2.

If nl�1
ref > 2 then we first interpolate from level l� 1 to the interface with the grids of level l coarsened by

nl�1
ref =2. The remaining inter-level interpolations use data only on the coarse/fine interface and the physical

boundary conditions, which are set at each intermediate stage (see Fig. 3).
In the remainder of this section, we assume a refinement ratio of 2.

If the level-l node j coincides with a node at level l� 1, then we project the value of uN ;l�1
j=2 . In other cases,

in two dimensions we use quadratic interpolation along one-dimensional interfaces, and in three dimen-

sions we use biquadratic interpolation along two-dimensional interfaces.

2.4.1. Two-dimensional problem: one-dimensional interface

In the two-dimensional problem, the coarse/fine interface is one-dimensional. Along the interface, the

coordinates vary in only one of the two dimensions, say the first. Let (a; b) be the coordinates of a point of
approximation on the interface. If h is the mesh spacing at the finer level, then the coarse nodes on the

interface are at ða� h; bÞ, ða� 3h; bÞ, etc. We interpolate to the fine nodes with a piecewise quadratic

function.

The piecewise linear interpolation function f1 on the interface has values equal to uN ;l�1 at the coarse

nodes. At the fine nodes

f1ðaÞ ¼
f1ða� hÞ þ f1ðaþ hÞ

2
: ð4Þ

This is extended to the piecewise quadratic interpolation function, f2, which also has values equal to uN ;l�1

at the coarse nodes. At the fine nodes

f2ðaÞ ¼ f1ðaÞ �
h2

2
f 00
2 ðaÞ: ð5Þ

The second derivative f 00
2 ðaÞ then comes from the coarse values f2ða� hÞ, f2ðaþ hÞ, and either f2ða� 3hÞ or

f2ðaþ 3hÞ or both, using one of the following formulas:

f 00
2 ðaÞ ¼

f2ða� 3hÞ � f2ða� hÞ � f2ðaþ hÞ þ f2ðaþ 3hÞ
2ð2hÞ2

; ð6aÞ

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 39
f 00
2 ðaÞ ¼

f2ða� 3hÞ � 2f2ða� hÞ þ f2ðaþ hÞ
ð2hÞ2

; ð6bÞ
f 00
2 ðaÞ ¼

f2ða� hÞ � 2f2ðaþ hÞ þ f2ðaþ 3hÞ
ð2hÞ2

: ð6cÞ

We use (6a) if both ða� 3h; bÞ and ðaþ 3h; bÞ are valid coarser-level nodes. In case the nodes ða� 3h; bÞ are
not both valid on the coarser level, at least one of them must be valid because every grid has length of at

least two cells in each dimension. So we use either (6b) or (6c).

2.4.2. Three-dimensional problem: two-dimensional interface

In the three-dimensional problem, the coarse/fine interface is two-dimensional, so that along the inter-

face, the coordinates vary in only two of the three dimensions, say the first two. Let (a; b; c) be the coor-

dinates, in level l, of a point of approximation on the interface with level l� 1. If both a and b are even,
then (a; b; c) is a coarse node, and we project the value uN ;l�1ða=2; b=2; c=2Þ. If either a or b is even, but not

both (see Fig. 4, left side) then we interpolate along the line as in Section 2.4.1. In the remainder of this

section we consider the case in which both a and b are odd (see Fig. 4, right side). Then the coarse nodes are

at ða� h; b� h; cÞ, ða� 3h; b� h; cÞ, ða� h; b� 3h; cÞ, etc. We interpolate to the fine nodes with a piecewise

biquadratic function.

The piecewise bilinear interpolation function f1 on the interface has values equal to uN ;l�1 at the coarse

nodes. At the fine nodes

f1ða; bÞ ¼
1

4

X
s¼�1;þ1

X
t¼�1;þ1

f1ðaþ sh; bþ thÞ: ð7Þ

This is extended to the piecewise biquadratic interpolation function f2, which also has values equal to uN ;l�1

at the coarse nodes. At the fine nodes,

f2ða; bÞ ¼ f1ða; bÞ �
h2

2

o2f2
ox2

ða; bÞ
�

þ o2f2
oy2

ða; bÞ
�
; ð8Þ

where f1 is the linear interpolant (7). Our value for the second derivative o2f2=ox2ða; bÞ comes from the

mean of estimates of o2f2=ox2ða; b� hÞ and o2f2=ox2ða; bþ hÞ. Likewise for o2f2=oy2ða; bÞ from
b

b-h

a

b+h b+h

b

b-h

a-h a a+h

Fig. 4. Interpolating a value at the point ða; bÞ, marked �, from coarse nodes indicated by s. Left: When a is even, interpolate along

the line where the first coordinate is fixed at a. Right: When both a and b are odd, interpolate from the four neighboring coarse nodes

and their coarse neighbors. In the piecewise biquadratic interpolant, second partial derivatives are estimated at points indicated by d.

40 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
o2f2=oy2ða� h; bÞ and o2f2=oy2ðaþ h; bÞ. We calculate these second derivatives from points along a line,

following Eq. (6) as described in Section 2.4.1.

2.5. Computing gradients

After solving for the electrostatic potential, we calculate its gradient in order to find the electric field. On

a single level with mesh spacing h, the gradient is computed at a valid node i as:

ðrhuN ;lÞi ¼
XD�1

d¼0

Dh
du

N ;l
� �

i
� ed ; ð9Þ

where Dh
d is a first-derivative operator in dimension d

Dh
du

N ;l
� �

i
¼

uN ;l
iþed

� uN ;l
i�ed

2h
: ð10Þ

This stencil for the gradient at i uses the same points as for the discrete Laplacian operator, except for i
itself. See Section 2.3 for the discussion of cases in which i is a valid node at level l, but j ¼ i � ed is not.

These cases are treated in exactly the same way for the gradient as for the discrete Laplacian. In particular,

coarse/fine boundary interpolation is as described in Section 2.4.

For an exact solution ue with ue;h
i ¼ ueðihþ x0Þ for valid i, consider the error in the gradient

gh ¼ rhue;h �rue:

If all the points in the stencil (9) and (10) for i are valid nodes, then ðghÞi ¼ Oðh2Þ.

2.6. Truncation error of multilevel operator

Section 2.3 listed the three cases in which i is a valid node at level l, but j ¼ i � ed is not.

If j is on the physical boundary (case (a)), then there is no error in taking uN ;l
j from the boundary

condition, so we still have ðshÞi ¼ Oðh2Þ.
If j is covered by a grid at finer level lþ 1 (case (b)), then there is no error in projecting the valid data

from the finer level, uN ;l
j ¼ uN ;lþ1

nl
ref

j
, so again, ðshÞi ¼ Oðh2Þ.

The rest of this section treats truncation error when uN ;l
j is interpolated from uN ;l�1 at the valid coarser-

level nodes (case (c)). The truncation error sh is at best Oðh2Þ, as it is with a single-level discrete Laplacian

operator as shown in Section 2.2. Because of the h2 denominator in (3), the truncation error is two orders of

accuracy below that of the approximation error at the interface point.

When interpolating along a one-dimensional interface, with (5) and the four-point formula (6a), the

interpolation is actually cubic, and hence fourth-order accurate

f2ðaÞ ¼ uN ;lða; bÞ þOðh4Þ; ð11Þ

so that when using the stencil (2) and (3) with such a point, the truncation error is shða; bÞ ¼ Oðh2Þ.
Formulas (6b) and (6c) with (5) are for quadratic interpolation and hence give third-order

accuracy

f2ðaÞ ¼ uN ;lða; bÞ þOðh3Þ; ð12Þ
which with (2) and (3) yields truncation error of shða; bÞ ¼ OðhÞ.

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 41
Interpolating across a two-dimensional interface with (7) and (8), if all four second partial derivatives

along lines are calculated with the four-point formula (6a), then the two-dimensional biquadratic ap-

proximation is fourth-order accurate

f2ða; bÞ ¼ uN ;lða; b; cÞ þOðh4Þ; ð13Þ

so yields truncation error of shða; b; cÞ ¼ Oðh2Þ when using the stencil (2) and (3) with such a point. If (6b)

or (6c) is used for one or more second partial derivatives, then the formula for f2 is third-order accurate

f2ða; bÞ ¼ uN ;lða; b; cÞ þOðh3Þ ð14Þ

yielding truncation error of shða; b; cÞ ¼ OðhÞ.

2.7. Solution error

If the computed solution with mesh spacing h is uh, then the solution error nh ¼ uh � ue satisfies the

equations

Dhnh ¼ sh; nhjoX ¼ 0: ð15Þ

As in [7], we can view this equation as being approximated by a continuous potential theory problem for

(1), in which the charge density is piecewise constant in cells, being ðshÞi in cell i. Each cell has volume hD.
The contribution of each cell to nh is proportional to the total charge on the cell:

• For a cell not on the coarse/fine interface, truncation error is sh ¼ Oðh2Þ, so total charge is OðhDþ2Þ.
There are Oð1=hDÞ such cells, leading to a contribution of Oðh2Þ to nh.

• For a cell on the coarse/fine interface, the truncation error is sh ¼ OðhÞ, so total charge is OðhDþ1Þ. There
are Oð1=hD�1Þ such cells, leading to a contribution of Oðh2Þ to nh.
Hence we expect solution error of nh ¼ Oðh2Þ. From a smooth solution, then, the error in the gradient

computed according to Section 2.5 is gh ¼ Oðh2Þ, for points on the coarse/fine interface as well as for points

away from the interface.
3. Generalizing to non-rectangular domains

3.1. Operators on non-rectangular domains

When the domain X is not rectangular, the regular stencil (2) and (3) for the discrete Laplacian operator

at a valid node may include points that are not in the domain. On a level with mesh spacing h, we use a

discretization of the form

ðDhuN ;lÞi ¼ c0i � u
N ;l
i þ

XD�1

d¼0

c2dþ1
i � uN ;l

iþed

�
þ c2dþ2

i � uN ;l
i�ed

�
þ c2Dþ1

i : ð16Þ

For the regular stencil, the coefficients are c0i ¼ �2D=h2; c2dþ1
i ¼ c2dþ2

i ¼ 1=h2 for d ¼ 0; . . . ;D� 1; and

c2Dþ1
i ¼ 0. The constant term c2Dþ1

i is nonzero when there are inhomogeneous internal boundary conditions,

as shown below. In this case, the discrete operator is affine, not linear, and before applying the solver in

Section 4, the problem must first be converted to residual–correction form.

At points near an internal boundary, where not all points of the regular stencil lie in the domain, we

make an approximation for ðDh
du

N ;lÞi (d ¼ 0; . . . ;D� 1) that is based on the regular 3-point stencil (3) and

L R

x x x
RL

Fig. 5. Points (marked by �) and distances used in approximating near an internal boundary, when the shaded area is outside the

domain. In this example, uL ¼ uðxLÞ ¼ uN ;l
i�ed

, and uR ¼ uðxRÞ is obtained from the Dirichlet boundary condition.

42 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
extrapolation from available data to covered points of the stencil. For a point of evaluation at index i,
corresponding to point in space x ¼ x0 þ h � i, we define xL and xR as follows (see Fig. 5):

• If i � ed 2 X, then set xL ¼ x� h � ed . Otherwise, set xL to be the first point on the segment from x to

x� h � ed that lies on the internal boundary.

• If i þ ed 2 X, then set xR ¼ xþ h � ed . Otherwise, set xR to be the first point on the segment from x to
xþ h � ed that lies on the internal boundary.

We also define uL as the value of u at xL from either uN ;l
i�ed

or the boundary condition, and similarly uR as

the value of u at xR from either uN ;l
iþed

or the boundary condition. We set distances L ¼ jjx� xLjj and
R ¼ jjxR � xjj.

With a Dirichlet boundary condition, two different approximations are used:

• The Shortley–Weller approximation [11], based on quadratic extrapolation from uN ;l
i , uL and uR to the

covered grid nodes of the regular stencil

Dh
du

N ;l
� �

i
¼ 2

L � ðLþ RÞuL �
2

L � RuN ;l
i þ 2

R � ðLþ RÞuR: ð17Þ

The error in this approximation to the second derivative is OðL� RÞ þOðL2 þ R2Þ ¼ OðhÞ.
• Linear extrapolation to the covered grid nodes of the regular stencil

Dh
du

N ;l
� �

i
¼ 1

h � LuL �
1

h
1

L

�
þ 1

R

�
uN ;l

i þ 1

h � RuR: ð18Þ

The error in this approximation to the second derivative is OððLþ RÞ=hÞ ¼ Oð1Þ.
The coefficients c0i ; . . . ; c

2Dþ1
i in (16) are the sums of coefficients in (17) or (18) over d from 0 to D� 1. In

particular, c0i is the sum of the coefficients of uN ;l
i in Eqs. (17) or (18). For a particular dimension d, the

coefficient of uL contributes to either c2dþ2
i or c2Dþ1

i , depending on whether xL is a grid point or a boundary

point. Likewise, the coefficient of uR contributes to either c2dþ1
i or c2Dþ1

i , depending on whether xR is a grid

point or a boundary point.

3.2. Coarse/fine boundary interpolation

If the domain is not rectangular, then coarse/fine boundary interpolation is more complicated. Near a

fine node on the coarse/fine interface, some of the coarse-node neighbors may be outside the domain.

As in the case of rectangular domains, we assume a refinement ratio of 2. For higher refinement ratios,

we perform a composition of interpolations with refinement ratio of 2.

Again, if a level-l node j of the stencil for the discrete Laplacian at i lies on the physical boundary, then

we apply the physical boundary conditions; and if j coincides with a node at level l� 1, then we project the
value of uN ;l�1

j=2 . In other cases, where possible we use quadratic interpolation in two dimensions, biquadratic

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 43
interpolation in three dimensions. If some of the required coarse points are covered, then the interpolation

formulas are modified as shown below.

For non-rectangular domains, our algorithms depend on whether or not nodes are reachable from other
nodes. In this context, ‘‘reachable’’ means that the segment connecting the nodes lies entirely in the domain.

3.2.1. Two-dimensional problem: one-dimensional interface

In the two-dimensional problem, the coarse/fine interface is one-dimensional. As in Section 2.4.1, let

ða; bÞ be the coordinates of a point on the interface over which the first coordinate varies. Let h be the finer-

level mesh spacing. We assume that at least one of the coarse neighbors ða� h; bÞ and ðaþ h; bÞ is reachable
from a. If both are reachable, then we use the formulas of Section 2.4.1.

If ðaþ h; bÞ is not reachable from ða; bÞ, then we must use one-sided formulas:
1. If ða� h; bÞ is reachable from ða; bÞ but ða� 3h; bÞ is not, then we use

f0ðaÞ ¼ f0ða� hÞ:

2. If ða� 3h; bÞ is reachable from ða; bÞ but ða� 5h; bÞ is not, then we use

f1ðaÞ ¼ 3
2
f1ða� hÞ � 1

2
f1ða� 3hÞ:

3. If ða� 5h; bÞ is reachable from ða; bÞ, then we use

f2ðaÞ ¼ 15
8
f2ða� hÞ � 5

4
f2ða� 3hÞ þ 3

8
f2ða� 5hÞ:
3.2.2. Three-dimensional problem: two-dimensional interface

In the three-dimensional problem, the coarse/fine interface is two-dimensional. As in Section 2.4.2, let

ða; b; cÞ be the coordinates of a point on the interface, along which the first two coordinates vary but the

third is fixed. If either a or b is even then we interpolate along the line, following Section 3.2.1. In the

remainder of this section, we assume both a and b are odd.

Letting h be the finer-level mesh spacing, then the nearest coarse neighbors of ða; b; cÞ on the interface are

ða� h; b� h; cÞ. We assume that at least one of these is reachable from ða; b; cÞ. If all are reachable, then we

can use the formulas of Section 2.4.2.
If not all four of the nearest coarse neighbors on the interface are reachable from ða; b; cÞ, then the first

approximation is the mean of the values at the subset of these coarse neighbors that are in the domain,

except that if the number is three, then one of them is ignored. See Fig. 6 for the five cases: (i) one coarse

neighbor; (ii) two coarse neighbors, on a line parallel to an axis; (iii) two coarse neighbors, not on a line

parallel to an axis; (iv) three coarse neighbors; (v) four coarse neighbors. In case (iv), the first approxi-

mation is the mean of the values at the two diagonally opposite coarse neighbors, as in case (iii). Note that

for fully resolved geometries, except on thin domains, all cases may occur except (iii).
1/2 1/2

0 1/4

1/4

1/4

1

1/2 1/2

1/41/2 1/2

(I) (II) (III) (IV) (V)

Fig. 6. The first approximation at the center node indicated by � is a weighted average of the neighboring coarse nodes that are in the

domain. Weights are indicated beside the coarse nodes.

1 1/2 1/4 1/4 1/2

-1/2

-1/2

-1/4 -1/4 -1/2

-1/2

(I) (II)

Fig. 7. One-sided bilinear correction to approximation at center node �. Weights of the correction are indicated beside the coarse

nodes: (i) If only one coarse neighbor of � is in the domain, we add a correction in each dimension where it is possible. With the

correction coefficients on the left, the approximation becomes bilinear, but with the correction coefficients on the right, there are not

enough points for a bilinear approximation. (ii) If two coarse neighbors of � are in the domain, and they lie on a line parallel to an axis,

then we add a correction in the perpendicular direction if possible.

44 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
In cases (iii), (iv) and (v), this first approximation is bilinear. In cases (i) and (ii), in order to get a bilinear

approximation we need to add a correction. Case (i) requires a correction in both directions, and case (ii)

requires a correction in the direction perpendicular to the line containing the two coarse neighbors. See
Fig. 7 for the coefficients of the corrections.

Adding to the bilinear approximation, we can make a biquadratic correction if there are enough coarse

nodes in the domain to obtain estimates of the second derivatives. We use one of the formulas (6) for

estimating the second derivative in each dimension, where the correction term takes the form � h2

2

o2f2
ox2 ða; bÞ

or � h2

2

o2f2
oy2 ða; bÞ. In cases (i) or (ii) above, in each dimension where a one-sided biquadratic correction is

made we also need an additional correction of ð2hÞ2
2

o2f2
ox2 ða; bÞ or

ð2hÞ2
2

o2f2
oy2 ða; bÞ.
3.3. Computing gradients

When the domain X is not rectangular, the regular stencil (9) and (10) for the gradient at a valid node

may include points that are not in the domain. On a level with mesh spacing h, we use a discretization of the

form

ðrhuN ;lÞi ¼
XD�1

d¼0

g4di � uN ;l
i

�
þ g4dþ1

i � uN ;l
iþed

þ g4dþ2
i � uN ;l

i�ed
þ g4dþ3

i

�
� ed :

For the regular stencil, the coefficients are g4dþ1
i ¼ 1=ð2hÞ, g4dþ2

i ¼ �1=ð2hÞ, and g4di ¼ g4dþ3
i ¼ 0 for

d ¼ 0; . . . ;D� 1.

At points near an internal boundary, where not all points of the regular stencil lie in the domain, we

make an approximation for Dh
du

N ;l based on the regular stencil (9) and (10) and quadratic extrapolation

from available data to covered points of the stencil. Using the same notation as Section 3.1 and Fig. 5, we

set

Dh
du

N ;l
� �

i
¼ �R

L � ðLþ RÞuL þ
R� L
L � R uN ;l

i þ L
R � ðLþ RÞuR: ð19Þ

The error in this approximation to the first derivative is OðLRÞ ¼ Oðh2Þ.
The same coarse/fine boundary interpolation described in Section 3.2 for computing the discrete

Laplacian is also used for computing the gradient.

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 45
3.4. Truncation error

Applied at an internal boundary point i, the Shortley–Weller formula (17) gives rise to truncation error
ðshÞi ¼ OðhÞ, and the linear extrapolation formula (18) gives rise to truncation error ðshÞi ¼ Oð1Þ.

In the two-dimensional problem, along a one-dimensional interface, if we use linear interpolation (4) at

ða; bÞ then truncation error is shða; bÞ ¼ Oð1Þ. As discussed in Section 2.6, if we use cubic interpolation (6a)

then shða; bÞ ¼ Oðh2Þ, and if we use quadratic interpolation, (6b) or (6c), then shða; bÞ ¼ OðhÞ. For the one-
sided cases listed in Section 3.2.1

1. Approximation by ða� h; bÞ alone yields first-order accuracy

f0ðaÞ ¼ uN ;lða; bÞ þOðhÞ

and hence truncation error shða; bÞ ¼ Oð1=hÞ.
2. Interpolation from ða� h; bÞ and ða� 3h; bÞ yields second-order accuracy

f1ðaÞ ¼ uN ;lða; bÞ þOðh2Þ

and truncation error shða; bÞ ¼ Oð1Þ.
3. Interpolation from ða� h; bÞ, ða� 3h; bÞ, and ða� 5h; bÞ yields third-order accuracy

f2ðaÞ ¼ uN ;lða; bÞ þOðh3Þ

and truncation error shða; bÞ ¼ OðhÞ.
Case 3 above is the only one that occurs in geometries that are resolved fully.

In three dimensions, the bilinear approximation f1 across a two-dimensional interface is second-order

accurate

f1ða; bÞ ¼ uN ;lða; b; cÞ þOðh2Þ;

so truncation error is shða; b; cÞ ¼ Oð1Þ. If we have data at enough coarse-level nodes to make a biquadratic

correction, as we can do with a rectangular domain and also expect with fully resolved geometries, then the

new approximation f2 is third-order accurate

f2ða; bÞ ¼ uN ;lða; b; cÞ þOðh3Þ

yielding truncation error of shða; b; cÞ ¼ OðhÞ.
3.5. Solution error

In Section 2.6, we showed that away from coarse/fine interfaces and internal boundaries, we have

truncation error sh ¼ Oðh2Þ. The analysis in Section 3.4 shows that with fully resolved geometries, we have

truncation error sh ¼ OðhÞ everywhere else, except on internal boundaries if the discrete Laplacian is

computed by the linear extrapolation formula (18), in which case sh ¼ Oð1Þ at these points.
As in Section 2.7, we can view the modified Eq. (15) for the solution error nh as a potential theory

problem for (1), in which the charge density is piecewise constant ðshÞi in cell i. The contribution of each cell

to nh is proportional to the total charge on the cell:

• For a cell not on the coarse/fine interface and not intersecting an internal boundary, truncation error is

sh ¼ Oðh2Þ, so total charge is OðhDþ2Þ. There are Oð1=hDÞ such cells, leading to a contribution of Oðh2Þ to
nh.

• For a cell on the coarse/fine interface, the truncation error is sh ¼ OðhÞ, so total charge is OðhDþ1Þ. There
are Oð1=hD�1Þ such cells, hence a contribution of Oðh2Þ to nh.

46 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
• For a cell intersecting an internal boundary, if the linear extrapolation formula (18) is used, then

sh ¼ Oð1Þ so total charge is OðhDÞ. But because there is a homogeneous Dirichlet boundary condition

on nh, the effect of the field induced by the charge in the partial cell can be represented as an image charge

of the same strength, but of opposite sign located a distance OðhÞ from the internal-boundary cell just
outside the boundary of the domain [7]. The result is that the contribution to nh is a dipole field that is

one order smaller in h, hence OðhDþ1Þ. There are Oð1=hD�1Þ such cells, leading to a contribution of Oðh2Þ
to nh. If the Shortley–Weller approximation (17) is used instead of linear extrapolation, then the trun-

cation error sh ¼ OðhÞ contributes Oðh3Þ to nh, a result that is proved under smoothness conditions

by Matsunaga and Yamamoto [9].

Hence we expect solution error of nh ¼ Oðh2Þ, even when derivatives at internal boundaries are com-

puted by linear extrapolation.

Away from internal boundaries, the error in the gradient of the solution as computed by the regular
stencil would then be gh ¼ Oðh2Þ, even on the coarse/fine interface. At points adjacent to internal

boundaries, the solution error gives rise to error in the gradient of gh ¼ OðhÞ if the discrete Laplacian is

from linear extrapolation (18), and gh ¼ Oðh2Þ if from Shortley–Weller (17).
4. AMR multigrid algorithm

Pseudo-code for the AMR multigrid algorithm [2] to solve LðuÞ ¼ q is shown in Fig. 9. Here L is the
multilevel operator on the composite array. We note that for convergence of a solution with node-centered

data, there must be at least one non-periodic dimension, because with periodic boundary conditions in all
Fig. 8. Recursive relaxation procedure using Gauss–Seidel relaxation with red–black ordering [2,3]. We set NumSmoothUp¼ 4,

NumSmoothDown¼ 4, and NumBottomGSRB¼ 8. The relaxation parameter at a point i is k ¼ �1=c0i with c0i the diagonal coefficient

in (16).

Fig. 9. Pseudo-code description of the AMR multigrid algorithm.

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 47
dimensions on multiple levels of data, it is not possible to set integral weights such that the integral over the

whole domain of the right-hand side is zero.

The operator at level l, Lcomp;l, depends not only on level l but also on the coarser level l� 1 and finer

level lþ 1, as outlined in Section 2.2. The pseudo-code also refers to the no-finer-level operator Lnfðuf ;ucÞ,
which operates on the level of uf , with uc as the data at the next coarser level, and no finer level.

The smoothing operator AMRmgRelax(uf ;Rf ; r), described in detail in Fig. 8, performs a mini-V-cycle

iteration on uf for Lnf and right-hand side Rf , assuming the coarse-grid values required for the boundary
conditions are identically zero. The number r is the refinement ratio. This procedure uses two routines

described in Appendix: Average for fine-to-coarse averaging (see Section A.1), and Interp for coarse-to-fine

interpolation (see Section A.2).
5. Convergence tests

Before describing the convergence tests, we define the norms we use to measure error on multilevel
hierarchies. Let f comp ¼ ff lglmax

l¼0 be a composite array defined on the nodes of each level. The L1 norm of f l

is defined as the maximum value over the valid nodes at level l:

jjf ljj1 ¼ max
i2Xl

N ;valid

jf l
i j:

48 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
The composite L1 norm is the maximum over all levels

jjf compjj1 ¼ max
lmax

l¼0
jjf ljj1:

For finite p we define the Lp norm of f l by integrating jf ljp over the valid nodes. If the mesh spacing on level

l is hl, then

jjf ljjp ¼ hDl
X

i2Xl
N ;valid

jf l
i j

p

0
@

1
A

1=p

:

The composite Lp norm is the pth root of the sum of pth powers of the norms of each level

jjf compjjp ¼
Xlmax

l¼0

jjf ljjpp

 !1=p

¼
Xlmax

l¼0

hDl
X

i2Xl
N ;valid

jf l
i j

p

0
@

1
A

1=p

:

If error eh is computed with mesh spacing h, and error e2h with mesh spacing 2h, then the convergence rate

of their norms is defined as
p ¼ log2
jje2hjj
jjehjj

� �
: ð20Þ
Thus eh ¼ OðhpÞ, so p ¼ 1 indicates first-order accuracy, and p ¼ 2 indicates second-order accuracy.

5.1. Solver tests on a rectangular domain

We initialize the right-hand side q of the solver to be a function for which we can compute the analytical

solution u in (1). We compute the solution on the two levels at different base refinements, and compare the

solutions Uh with base-level mesh spacing h to the exact solutions Ue. The boundary conditions of the

computed solution are inhomogeneous Dirichlet. The value at the boundary is set to the analytic solution at

that location. We find the difference between the computed and exact solutions, nh ¼ Uh � Ue, and between

the computed and exact values of the gradient, gh ¼ rhUh �rUe. We also evaluate the truncation error

sh ¼ q� DhUe.
Problem 1 (polynomial on rectangular domain). We initialize the charge density q to be a function of r

qðrÞ ¼
q0 2 r

R0

� �3
� 3 r

R0

� �2
þ 1

� �
; if r < R0;

0; if rPR0

8<
: ð21Þ

and set boundary conditions for the exact solution

UeðrÞ ¼
q0r

2 1
6
� 3

20
r
R0

� �2
þ 1

15
r
R0

� �3� �
; if r < R0;

q0R
2 3 � 1 R0
� �

; if rPR0:

8><
>: ð22Þ
0 20 15 r

Fig. 10. Grid configuration for Problem 1. There are two levels of refinement. The edges of the coarser-level grid and the face cells of

the finer-level grids are shown. The refinement ratio between the levels is two. In this illustration, the coarser-level domain contains one

16� 16� 16 grid, and there are four grids at the finer level where the domain is 32� 32� 32. We also use fully refined versions of this

same set of grids, all partitioned so that the maximum length of any grid in any dimension is 32.

Table 1

Norms and convergence rates of solution error for Problem 1

h jjnhjj1 p jjnhjj1 p jjnhjj2 p

1/32 1.49905� 10�5 2.23346� 10�6 3.69778� 10�6

1/64 3.54130� 10�6 2.08 5.33136� 10�7 2.07 8.67701� 10�7 2.09

1/128 8.61632� 10�7 2.04 1.30171� 10�7 2.03 2.10033� 10�7 2.05

1/256 2.12408� 10�7 2.02 3.21560� 10�8 2.02 5.16580� 10�8 2.02

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 49
We use the two-level grid hierarchy shown in Fig. 10, on a domain that has unit length in each direction

and is centered at the origin. Coarse/fine interpolation is biquadratic. In (21), we set R0 ¼ 1=2 and q0 ¼ 3=4.
In Table 1, we show the convergence of the error nh in the two-level solution with mesh spacing h at the

coarser level. Solution error converges quadratically to zero in all three norms, showing uniform second-

order convergence of the solution across the domain.

Table 2 shows the convergence of the truncation error, sh, and the order of convergence of its norms. The

truncation error converges to first order in L1 norm and to second order in L1 and L2 norms. These results
are consistent with second-order convergence everywhere except on a set of codimension two, on which

convergence is only first order. In the discretized problem space of OðnDÞ ¼ Oð1=hDÞ points, a set of co-
Table 2

Norms and convergence rates of truncation error for Problem 1

h jjshjj1 p jjshjj1 p jjshjj2 p

1/32 5.01139� 10�3 2.68607� 10�4 3.84822� 10�4

1/64 2.59449� 10�3 0.95 6.63975� 10�5 2.02 9.46695� 10�5 2.02

1/128 1.27999� 10�3 1.02 1.65126� 10�5 2.01 2.35043� 10�5 2.01

1/256 6.35341� 10�4 1.01 4.11761� 10�6 2.00 5.85700� 10�6 2.00

Table 3

Norms and convergence rates of gradient error for Problem 1

h jjghjj1 p jjghjj1 p jjghjj2 p

1/32 1.80511� 10�4 5.65881� 10�5 7.27800� 10�5

1/64 4.63199� 10�5 1.96 1.42181� 10�5 1.99 1.80996� 10�5 2.01

1/128 1.17451� 10�5 1.98 3.55935� 10�6 2.00 4.50787� 10�6 2.01

1/256 2.95639� 10�6 1.99 8.90189� 10�7 2.00 1.12451� 10�6 2.00

50 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
dimension two has OðnD�2Þ ¼ Oðh2=hDÞ points. If sh is OðhÞ on a set S of codimension two, but Oðh2Þ
elsewhere, then with each point weighted by OðhDÞ in the integrals:

jjshjj1 ¼
Z

jshj ¼
Z
S
OðhÞ þ

Z
X�S

Oðh2Þ ¼ Oðh2ÞOðhÞ þOð1ÞOðh2Þ ¼ Oðh2Þ; ð23Þ
jjshjj22 ¼
Z

jshj2 ¼
Z
S
OðhÞ2 þ

Z
X�S

Oðh2Þ2 ¼ Oðh2ÞOðh2Þ þOð1ÞOðh4Þ ¼ Oðh4Þ: ð24Þ

So jjshjj2 ¼ Oðh2Þ. These are the convergence properties expected from the analysis in Section 2.6 for

bicubic interpolation on the coarse–fine interfaces except on the edges (a set of points of codimension two)
where interpolation is biquadratic. The truncation error is OðhÞ on the edges and Oðh2Þ elsewhere.

Table 3 shows the convergence of the error in the gradient, gh, and the order of convergence of its norms.

The gradient error converges to second order in all three norms.

5.2. Solver tests on a non-rectangular domain

Problem 2 (point charge inside a sphere). In our tests of convergence on a non-rectangular domain, we use

the following physical example. The domain lies between a cube with corners at (1
2
; 0; 0) and (1; 1

2
; 1
2
) and a

sphere centered at ð1
2
; 1
2
; 1
2
Þ with radius r ¼ 1=

ffiffiffiffiffi
35

p
¼ 0:169, as illustrated in Fig. 11. We solve for the field

within this domain due to a point charge at q ¼ ð0:52; 0:45; 0:49Þ, from Laplace’s equation
Fig. 11. In our examples, we solve for the field outside the shaded region due to a point charge within it. We solve on nested hierarchies

of grids in the configuration shown with two levels of refinement.

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 51
Du ¼ 0

with inhomogeneous Dirichlet boundary conditions for u enforced on the sphere and on the faces of the
cube.

We use biquadratic interpolation at coarse/fine interfaces, and either the Shortley–Weller approximation

or linear extrapolation to compute the derivative near internal boundaries, as discussed in Section 3.1.
The exact solution is

uðxÞ ¼ 1

jjx� qjj2
: ð25Þ

In Tables 4 and 5, we show the norms of the solution error, nh, with h the mesh spacing at the coarser

level, and the order of convergence. We see that jjnhjj ¼ Oðh2Þ in all three norms, with both Shortley–Weller

and linear extrapolation, showing uniform second-order convergence of the solution across the domain. As

shown by Gibou et al. [5], the rate of convergence of solution error is the same for both methods.
Tables 6 and 7 show norms of truncation error, sh, and order of convergence. With Shortley–Weller ap-

proximation, the truncation error norms are jjshjj1 ¼ OðhÞ, jjshjj1 ¼ Oðh2Þ, and jjshjj2 ¼ Oðh3=2Þ. As can be
Table 4

Norms and convergence rates of solution error for Problem 2, Shortley–Weller

h jjnhjj1 p jjnhjj1 p jjnhjj2 p

1/32 4.03907� 10�3 5.74837� 10�5 2.60164� 10�4

1/64 1.07548� 10�3 1.91 1.40111� 10�5 2.04 6.26871� 10�5 2.05

1/128 2.73803� 10�4 1.97 3.44668� 10�6 2.02 1.53959� 10�5 2.03

1/256 6.91879� 10�5 1.98 8.54404� 10�7 2.01 3.81847� 10�6 2.01

1/512 1.73955� 10�5 1.99 2.12685� 10�7 2.01 9.51062� 10�7 2.01

Table 5

Norms and convergence rates of solution error for Problem 2, linear extrapolation

h jjnhjj1 p jjnhjj1 p jjnhjj2 p

1/32 1.84283� 10�2 6.90030� 10�5 3.51467� 10�4

1/64 5.64924� 10�3 1.71 1.70293� 10�5 2.02 8.71924� 10�5 2.01

1/128 1.83783� 10�3 1.62 4.22475� 10�6 2.01 2.18741� 10�5 1.99

1/256 4.88552� 10�4 1.91 1.05063� 10�6 2.01 5.46468� 10�6 2.00

1/512 1.26093� 10�4 1.95 2.62009� 10�7 2.00 1.36665� 10�6 2.00

Table 6

Norms and convergence rates of truncation error for Problem 2, Shortley–Weller

h jjshjj1 p jjshjj1 p jjshjj2 p

1/32 7.87124� 101 3.46152� 10�2 5.58357� 10�1

1/64 7.59587� 101 0.05 1.04699� 10�2 1.73 2.85664� 10�1 0.97

1/128 4.04698� 101 0.91 2.87025� 10�3 1.87 1.12606� 10�1 1.34

1/256 2.18532� 101 0.89 7.38420� 10�4 1.96 3.98319� 10�2 1.50

1/512 1.09962� 101 0.99 1.88378� 10�4 1.97 1.43731� 10�2 1.47

Table 8

Norms and convergence rates of gradient error for Problem 2, Shortley–Weller

h jjghjj1 p jjghjj1 p jjghjj2 p

1/32 6.83011� 10�1 3.31943� 10�3 1.99067� 10�2

1/64 2.29643� 10�1 1.57 8.83584� 10�4 1.91 5.22682� 10�3 1.93

1/128 6.70953� 10�2 1.78 2.27569� 10�4 1.96 1.33941� 10�3 1.96

1/256 1.77165� 10�2 1.92 5.77036� 10�5 1.98 3.38803� 10�4 1.98

1/512 4.95187� 10�3 1.84 1.45287� 10�5 1.99 8.52292� 10�5 1.99

Table 9

Norms and convergence rates of gradient error for Problem 2, linear extrapolation

h jjghjj1 p jjghjj1 p jjghjj2 p

1/32 3.30161� 100 3.63901� 10�3 2.97216� 10�2

1/64 2.51041� 100 0.40 9.88397� 10�4 1.88 1.01984� 10�2 1.54

1/128 1.90368� 100 0.40 2.62805� 10�4 1.91 4.00322� 10�3 1.35

1/256 9.23794� 10�1 1.04 6.73714� 10�5 1.96 1.38508� 10�3 1.53

1/512 5.26765� 10�1 0.81 1.71795� 10�5 1.97 5.05414� 10�4 1.45

Table 7

Norms and convergence rates of truncation error for Problem 2, linear extrapolation

h jjshjj1 p jjshjj1 p jjshjj2 p

1/32 4.39705� 102 7.53116� 10�2 2.82224� 100

1/64 4.49817� 102)0.03 3.29238� 10�2 1.19 2.02159� 100 0.48

1/128 5.60579� 102)0.32 1.59776� 10�2 1.04 1.55940� 100 0.37

1/256 5.46824� 102 0.04 7.55070� 10�3 1.08 1.09924� 100 0.50

1/512 5.51119� 102)0.01 3.74049� 10�3 1.01 7.92931� 10�1 0.47

52 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
seen by methods similar to those of (23) and (24), these norms are consistent with truncation error that is

second order everywhere except a set of codimension one – the interior boundary – where it is only first order.

With linear extrapolation, the truncation error norms are jjshjj1 ¼ Oð1Þ, jjshjj1 ¼ OðhÞ, and
jjshjj2 ¼ Oðh1=2Þ. These norms are consistent with truncation error that is second order everywhere except

on a set of codimension one – the interior boundary – where it is zeroth order.

Tables 8 and 9 show norms of gradient error, gh, and order of convergence. With Shortley–Weller

approximation, the gradient error tends to quadratic in all three norms. With linear extrapolation, the

gradient error norms are jjghjj1 ¼ OðhÞ, jjghjj1 ¼ Oðh2Þ, and jjghjj2 ¼ Oðh3=2Þ, consistent with second order

everywhere except on a set of codimension one – the internal boundary – where it is first order. Second-

order convergence of the solution with first-order convergence of the gradient has also been observed by

Jones and Menzies [8] in solving Poisson’s equation on nonuniform grids. If a Poisson solver is to be used in
conjunction with a particle-in-cell method, then the gradient must be calculated, so these results show an

advantage of the Shortley–Weller approximation over linear extrapolation at internal boundaries.

5.3. Accelerator example

The high current, heavy-ion beam injector of the High Current Experiment [10] is used as an example. In

this injector, an ion beam is extracted from an emitter in a triode configuration, and it then propagates into

a set of electrostatic quadrupoles, where it is both accelerated and transversely confined. Fig. 12 shows the

Fig. 12. Accelerator example, with grids shown at two levels of refinement. The surface shown separates grid points that are in the

domain from grid points that are not; no other information was used in drawing the surface. The finer-level grids are clustered around

the emitter, shown at the left.

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 53
overall configuration of the injector, with the emitter at the lower left corner of the image. The need of

AMR in this particular example is driven by the need to resolve high gradients in density in the vicinity of
the emitting surface and the beam edge, as well as adequately resolving the conductor geometry.

The modeling to date has been done with the Warp code [6], which provides a three-dimensional, time-

dependent description. Warp is a multidimensional intense beam simulation program being developed and

used at the Heavy Ion Fusion Virtual National Laboratory. The discrete-particle models in Warp combine

the particle-in-cell (PIC) technique commonly used for plasma modeling with a description of the ‘‘lattice’’

of accelerator elements. The self-consistent field is assumed electrostatic – Poisson’s equation is solved on a

mesh that moves with the beam. The three-dimensional Poisson solver is limited to a Cartesian mesh with

uniform spacing. Non-rectangular boundary conditions are included using the Shortley–Weller approxi-
mation. A prototype axisymmetric ðr; zÞ AMR Poisson solver has been implemented in Warp and used to

carry out time-dependent simulations of the injector. These simulations have shown the benefit and the

effectiveness of the mesh refinement technique in converging to the right physical solution using less grid

resolution [12,13].

In this example, the three-dimensional AMR solver is used to solve Laplace’s equation, given the injector

geometry as the boundary conditions. In a full simulation of the injector, Neumann boundary conditions

would be applied at the edge of mesh. However, Neumann boundary conditions have not yet been im-

plemented in the AMR solver, so Dirichlet boundaries are used. This limitation should not alter the
conclusions on how effective the AMR solver is on the example, and will be once Neumann boundary

conditions are implemented.

The illustration of the injector geometry in Fig. 12 shows grids at two levels of refinement. The coarser

level, with mesh spacing 1/40, has two boxes that together cover a rectangular domain with a 16� 16� 80

index space. The finer level has 23 boxes contained in the same rectangular domain with mesh spacing 1/160

in a 64� 64� 320 index space. These finer-level boxes are concentrated near the emitter.

Fig. 13 shows the convergence of the residual, with the results for runs with fine-level mesh spacings of

1/80, 1/160, and 1/320, and either one level or two levels. In the two-level examples, the refinement ratio
between the two levels is 4. As a measure of the amount of computation per iteration, Table 10 lists the

number of cells and number of grids at each level for the one- and two-level examples with the different

Fig. 13. Plot of the max norm of the residual with multigrid iteration number for the accelerator example on (left) one fully refined

level, and (right) two levels, with finer-level grids around emitter. From top to bottom in each graph, the curves represent runs for fine-

level mesh spacings of 1/320, 1/160, and 1/80.

Table 10

Number of cells and number of grids used in accelerator examples

Fine spacing One level only Finer of 2 levels Coarser of 2 levels

Cells Grids Cells Grids Cells Grids

1/80 163,840 4 8192 1 2560 1

1/160 1,310,720 8 39,936 23 20,480 2

1/320 10,485,760 64 198,592 781 163,840 4

Fig. 14. Contour lines of potential on a two-dimensional slice through the center of the domain in the accelerator example, with (top)

one fully refined level, and (bottom) two levels, with finer-level grids around emitter. The fine-level mesh spacing in both cases is 1/320.

In the bottom plot, the coarse-level mesh spacing is 1/80.

54 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60

Fig. 15. Close-ups of the contour plots in Fig. 14, showing the box boundaries in black, with (left) one fully refined level, and (right)

two levels, with finer-level grids around emitter.

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 55
mesh spacings. In Figs. 14 and 15, we show contour lines of the potential on a cross-section of the
domain.
6. Conclusions

We have demonstrated a method of solving Poisson’s equation with Dirichlet boundary conditions on

adaptive meshes in complex geometries, such that the error in both the solution and the gradient is second

order in the mesh spacing. We have applied this to a heavy-ion fusion accelerator problem and have il-
lustrated the effectiveness of the method where the use of mesh refinement has significantly reduced the

amount of work required to reach a given resolution where it is needed. We are applying our method to

further work in PIC codes for the accelerator with particles.
Acknowledgements

This work was performed for USDOE under contracts DE-AC03-76F00098 at UC-LBNL and W-7405-
ENG-48 at UC-LLNL. Research was supported in part by the Applied Mathematical Sciences program,

56 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
the SciDAC program, and the LBNL LDRD program. We thank Alex Friedman for useful discussions

about the accelerator example, and Brian Van Straalen for helping to integrate the Warp code with the

adaptive multigrid solver.
Appendix A. Interlevel transfer operators

A.1. Averaging

The Average operator is used to average from a finer level down to a coarser level, or to construct

averaged residuals in multigrid iterations. Averaging from level l to level l� 1, we assume that the re-

finement ratio r ¼ nl�1
ref is a power of 2. To obtain the averaged value at node i 2 CrðXl

N ;intÞ of level l� 1, we

use the values at the level-l nodes ri þ q, where the components of q satisfy �r=26 qd 6 r=2 for

d ¼ 0; . . . ;D� 1.
A.1.1. On rectangular domains

For a refinement ratio of r, we define weights wq on the points in

Hr ¼ q 2 ZD :
n

� r
2
u6 q6

r
2
u
o
:

The averaging operator down to level l� 1 is defined at nodes i 2 Xl�1
N where Hr þ ri � Xl

N . These are
the interior coarse nodes of level l. Thus for i 2 CrðXl

N ;intÞ

AverageðuN ;lÞi ¼
X
q2Hr

wqu
N ;l
riþq; ðA:1Þ

where the weight at point q ¼ ðq0; . . . ; qD�1Þ 2 ZD is

wq ¼
YD�1

d¼0

1

ð1þ djqd j;r=2Þr
ðA:2Þ
1/16

1/161/16

1/8 1/8

1/8

1/8

1/4

1/16

1/16
1/32
1/32
1/32

1/64
1/32
1/32
1/32
1/64

1/64

1/64

Fig. 16. Averaging down to the center coarse node indicated by �, in two dimensions. Weights are indicated at the fine nodes, with

different shadings for different weights. Left: refinement ratio is 2. Each corner node has weight 1=16, each other node on an exterior

face has weight 1=8, and the center node has weight 1=4. Right: refinement ratio is 4. Each corner node has weight 1=64, each other

node on an exterior face has weight 1=32, and each remaining node, in the interior, has weight 1=16.

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 57
with d the Kronecker delta. In words, the weights of the nodes come from the tensor product of the weights

in the one-dimensional trapezoidal rule.

See Fig. 16 for two-dimensional examples.

A.1.2. Case of non-rectangular domains

It is possible that a non-rectangular domain might not contain some of the points needed in averaging by
the method of Section A.1.1. Then the weights will need to be adjusted so that only points in the domain are

given nonzero weights.

To simplify the procedure for non-rectangular domains, averaging is performed as a composition of

averagings with refinement ratio of 2. In the remainder of this section, we assume that the refinement ratio

is 2.

We have a separate weight array for each coarse node. The adjustment we make in (A.2) is to zero out

the weight of every fine node that is not reachable from the coarse node by a path lying entirely in the

domain, consisting of edges parallel to the axes, without backtracking. The weight of the projected coarse
node on the finer level is then increased so that the total of the fine-node weights at the coarse-node is 1.

Thus

AverageðuN ;lÞi ¼
X
q2H2

wi;qu
N ;l
2iþq; ðA:3Þ

where for 0 6¼ q 2 H2, we define the weight

wi;q ¼
QD�1

d¼0
1

1þjqd j ; if qþ 2i is reachable from 2i;

0; otherwise

ðA:4Þ

and

wi;0 ¼ 1�
X

06¼q2H2

wi;q:

As in Section 3.2, ‘‘reachable’’ here means that there is a path through the fine nodes that

avoids backtracking, where each edge in the path is parallel to one of the axes and lies entirely in
0

5/8 0

1/8

1/8

1/16

1/16 0

0

Fig. 17. Weights of fine nodes in averaging to the coarse node indicated by �. The shaded area is outside the domain. Some nodes have

weight 0, even though they are in the domain, because there is no path to them from � following edges that lie entirely in the domain,

without backtracking.

58 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
the domain. A two-dimensional domain subset is shown in Fig. 17 with the weights on the fine

nodes.

A.2. Interpolation

The Interp operator is used in multigrid iteration to interpolate the correction from the coarser level to
the next finer level. We interpolate from the neighboring coarse nodes, using a formula that is bilinear in

two dimensions, trilinear in three dimensions.

In this section, we assume we are interpolating from level l� 1 to level l, where the refinement ratio is

r ¼ nl�1
ref .

A.2.1. On rectangular domains

The interpolated value at i 2 XN ;l is a linear combination of the values at the 2D coarse nodes in XN ;l�1

that are the vertices of the box with corners at CrðiÞ ¼ ð i0=rb c; . . . ; iD�1=rb cÞ and CrðiÞ þ u. The length

fractions for each dimension d ¼ 0; . . . ;D� 1 are

edi ð1Þ ¼ id=r � id=rb c; edi ð0Þ ¼ 1� edi ð1Þ

and these are multiplied to give the weights of the coarse nodes, offset from CrðiÞ by 06 q6 u

wi;q ¼
YD�1

d¼0

edi ðqdÞ:

Then the interpolation formula is

InterpðuN ;l�1Þi ¼
X

06 q6 u

wi;q � uN ;l
CrðiÞþq:

See Figs. 18 and 19 for illustrations in two dimensions.
ε (0)ε (0) ε (1)ε (0)

ε (1)ε (1)

ε (0)

ε (1)

ε (0)ε (1)

0ε (1) ε (0)0
0

00

0 1

1 1

1

1

1

3/16 1/16

3/169/16

1/4

3/4

1/4

3/4

Fig. 18. Left: length fractions and weights of coarse nodes in bilinear interpolation in two dimensions to the fine node indicated by �.

Right: an example with refinement ratio of 4.

1 1/21/2 1/4

1/41/4

1/40

000 0

Fig. 19. Interpolation in two dimensions to a fine node indicated by �, when the refinement ratio is 2. Weights are shown on the coarse

nodes in three cases.

1 01 0

01/2

1/2

Fig. 20. Interpolation in two dimensions to a fine node indicated by �, when the refinement ratio is 2. The shaded area is outside the

domain. For three different fine nodes, weights are shown on the coarse nodes used for interpolation. Compare with Fig. 19.

P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60 59
A.2.2. Case of non-rectangular domains

When the domain is not rectangular, some of the points needed in interpolating by the method of Section

A.2.1 may be outside the domain. As we did with averaging in Section A.1.2, we assume that the refinement

ratio is a power of 2, and to simplify the procedure, we perform interpolation as a composition of inter-

polations with refinement ratio of 2. In the remainder of this section, we assume a refinement ratio of 2.
The value at i is interpolated from coarse nodes in the box with corners i=2b c and i=2d e ¼ ð i0=2d e;

. . . ; iD�1=2d eÞ. The number of such coarse nodes is 2 to the power of the number of odd components of i.
We assign equal weight to each of these coarse nodes that is reachable from the fine node in the sense

described in Section A.1.2: that is, connected by a path through fine nodes along edges parallel to the axes,

with no backtracking. See Fig. 20 for weights used in interpolating to some of the fine nodes in a sample

two-dimensional domain subset.
References

[1] M.J. Aftosmis, M.J. Berger, G. Adomavicius, A parallel multilevel method for adaptively refined cartesian grids with embedded

boundaries, in: 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 2000.

[2] Ann Stewart Almgren, A Fast Adaptive Vortex Method using Local Corrections, Ph.D. Thesis, University of California, Berkeley,

1991.

[3] W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, PA, 1987.

[4] P. Colella, Volume-of-fluid methods for partial differential equations, in: E.F. Toro (Ed.), Godunov Methods: Theory and

Applications, Kluwer Academic/Plenum Publishers, New York, 2001.

[5] Frederic Gibou, Ronald P. Fedkiw, Li-Tien Cheng, Myungjoo Kang, A second-order-accurate symmetric discretization of the

Poisson’s equation on irregular domains, J. Comput. Phys. 176 (2002) 205–227.

60 P. McCorquodale et al. / Journal of Computational Physics 201 (2004) 34–60
[6] D.P. Grote, A. Friedman, G.D. Craig, W.M. Sharp, I. Haber, Progress toward source-to-target simulation, Nuc. Instrum. Meth.

Phys. Res. A 464 (2001) 563–568.

[7] H. Johansen, P. Colella, A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput.

Phys. 147 (2) (1998) 60–85.

[8] W.P. Jones, K.R. Menzies, Analysis of the cell-centred finite volume method for the diffusion equation, J. Comput. Phys. 165

(2000) 45–68.

[9] Nami Matsunaga, Tetsuro Yamamoto, Superconvergence of the Shortley–Weller approximation for Dirichlet problems, J.

Comput. Appl. Math. 116 (2000) 263–273.

[10] P.A. Seidl, D. Baca, F.M. Bieniosek, C.M. Celata, A. Faltens, L.R. Prost, G. Sabbi, W.L. Waldron, R. Cohen, A. Friedman, S.M.

Lund, A.W. Molvik, I. Haber, The high current transport experiment for heavy-ion inertial fusion, in: Proceedings of the 2003

APS/IEEE Particle Accelerator Conference, Portland, Oregon, May 2003.

[11] G.H. Shortley, R. Weller, The numerical solution of Laplace’s equation, J. Appl. Phys. 9 (1938) 334–344.

[12] J.-L. Vay, P. Colella, P. McCorquodale, D. Serafini, B. Van Straalen, A. Friedman, D.P. Grote, Progress in the study of mesh

refinement for particle-in-cell plasma simulations and its application to heavy ion fusion, in: Seventh International Computational

Accelerator Physics Conference, East Lansing, Michigan, October 2002.

[13] J.-L. Vay, P. Colella, P. McCorquodale, B. Van Straalen, A. Friedman, D.P. Grote, Mesh refinement for particle-in-cell plasma

simulations: applications to and benefits for heavy ion fusion, Laser Part. Beams 20 (4) (2002) 569–575.

[14] D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samant, J.E. Bussoletti, A locally refined rectangular grid finite

element method: application to computational fluid dynamics and computational physics, J. Comput. Phys. 92 (1) (1991) 1–66.

	A node-centered local refinement algorithm for Poisson's equation in complex geometries
	Introduction
	Nodal discretization
	AMR spatial discretization
	Single-level Laplacian operator
	Multilevel Laplacian operator
	Coarse/fine boundary interpolation
	Two-dimensional problem: one-dimensional interface
	Three-dimensional problem: two-dimensional interface

	Computing gradients
	Truncation error of multilevel operator
	Solution error

	Generalizing to non-rectangular domains
	Operators on non-rectangular domains
	Coarse/fine boundary interpolation
	Two-dimensional problem: one-dimensional interface
	Three-dimensional problem: two-dimensional interface

	Computing gradients
	Truncation error
	Solution error

	AMR multigrid algorithm
	Convergence tests
	Solver tests on a rectangular domain
	Solver tests on a non-rectangular domain
	Accelerator example

	Conclusions
	Acknowledgements
	Interlevel transfer operators
	Averaging
	Interpolation
	References

