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We present an algorithm for solving the heat equation on irregular time-dependent
domains. It is based on the Cartesian grid embedded boundary algorithm of Johansen
and Colella (1998,J. Comput. Phys. 147, 60) for discretizing Poisson’s equation,
combined with a second-order accurate discretization of the time derivative. This
leads to a method that is second-order accurate in space and time. For the case
in which the boundary is moving, we convert the moving-boundary problem to a
sequence of fixed-boundary problems, combined with an extrapolation procedure
to initialize values that are uncovered as the boundary moves. We find that, in the
moving boundary case, the use of Crank–Nicolson time discretization is unstable,
requiring us to use theL0-stable implicit Runge–Kutta method of Twizell, Gumel,
and Arigu (1996,Adv. Comput. Math. 6, 333). c© 2001 Academic Press
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1. INTRODUCTION

In this paper we present a numerical method for solving the parabolic initial-value problem

ψt = D1ψ + f onÄ, ψ(x, 0) = ψ0(x) (1)

1 Research supported at U. C. Berkeley by the U.S. Department of Energy Mathematical, Information and
Computing Sciences Division, grants DE-FG03-94ER25205 and DE-FG03-92ER25140, and by the National
Science Foundation Graduate Fellowship Program; and at the Lawrence Berkeley National Laboratory by the
U.S. Department of Energy Mathematical, Information and Computing Sciences Division, contract DE-AC03-
76SF00098.
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with constantD > 0 on a bounded regionÄ, and boundary conditions of either Neumann
type

∂ψ

∂n
= gn(x, t) on∂Ä (2)

or Dirichlet type

ψ = gd(x, t) on∂Ä. (3)

As in previous work on elliptic problems [6], our approach uses a finite-volume dis-
cretization, which embeds the domain in a regular Cartesian grid. We treat the solution as
cell-centered on a rectangular grid, even when the cell centers are outside the domain.

For the time discretization, for the fixed-boundary problem we use either the Crank–
Nicolson method or the method of Twizell, Gumel, and Arigu (TGA) [10]. We solve the
moving-boundary problem by converting it to a sequence of fixed-boundary problems,
and applying the TGA method to each. Our algorithm is stable and achieves second-order
accuracy both on problems with fixed domainÄ and on problems with a time-dependent
domainÄ(t) with boundaries moving with constant velocities. If the ratio of time step1t
to mesh spacingh is kept constant, then the solution error isO(1t2+ h2) ash,1t → 0.

Part of this work appeared in preliminary form in [7].

2. THE HEAT EQUATION FOR FIXED BOUNDARIES

2.1. Spatial Discretization

The underlying discretization of space is given by rectangular control volumes on a
Cartesian grid:ϒi = [(i − 1

2u)h, (i + 1
2u)h], i ∈ Zd, whered is the dimensionality of the

problem,h is the mesh spacing, andu is the vector whose entries are all ones. In the case
of a fixed, irregular domainÄ, the geometry is represented by the intersection ofÄ with
the Cartesian grid. We obtain control volumesVi = ϒi ∩Ä and facesAi± 1

2 es
, that are the

intersection of∂Vi with the coordinate planes{x : xs = (i s ± 1
2)h}. Here,es is the unit

vector in thes direction. We also defineAB
i to be the intersection of the boundary of the

irregular domain with the Cartesian control volume:AB
i = ∂Ä ∩ϒi . We will assume here

that there is a one-to-one correspondence between the control volumes and faces and the cor-
responding geometric entities on the underlying Cartesian grid. The description can be
generalized to allow for boundaries whose width is less than the mesh spacing, or sharp
trailing edges.

In order to construct finite difference methods, we will need only a small number of
real-valued quantities that are derived from these geometric objects.

• The areas/volumes, expressed in dimensionless terms: volume fractionsκi = |Vi |h−d,

face aperturesαi+ 1
2 es
= |Ai+ 1

2 es
|h−(d−1), and boundary aperturesαB

i = |AB
i |h−(d−1). We

assume that we can compute estimates of the dimensionless quantities that are accurate to
O(h2).
• The locations of centroids, and the average outward normal to the boundary

xi = 1

|Vi |
∫

Vi

x dV
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xi+ 1
2 es
= 1∣∣Ai+ 1

2 es

∣∣ ∫
Ai+ 1

2 es

x d A

xB
i =

1∣∣AB
i

∣∣ ∫
AB

i

x d A

nB
i =

1∣∣AB
i

∣∣ ∫
AB

i

nB d A,

wherenB is the outward normal to∂Ä, defined for each point on∂Ä. Again, we assume
that we can compute estimates of these quantities that are accurate toO(h2).

Using just these quantities, we can define conservative discretizations for the divergence
operator. LetEF = (F1 . . . Fd) be a function ofx. Then

∇ · EF ≈ 1

|Vi |
∫

Vi

∇ · EF dV = 1

|Vi |
∫
∂Vi

EF · n d A

≈ 1

κih

( ∑
±=+,−

d∑
s=1

±αi± 1
2 es

Fs
(
xi± 1

2 es

)+ αB
i nB

i · EF
(
xB

i

))
, (4)

where (4) is obtained by replacing the integrals of the normal components of the vector
field EF with the values at the centroids.

We can use this idea to discretize the Laplacian, written as the divergence of a flux:
1ψ = ∇ · EF , where EF = ∇ψ . We follow the approach described in [6, 7]. The discretized
solution values approximate the solution to the PDE at the rectangular cell centers:Un

i ≈
ψ(ih, n1t). At first glance, this might be a cause for concern, since some of the centers
of Cartesian cellsϒi might not be contained inÄ. However, it is well known that, for any
domain with smooth boundary, a smooth function can be extended to all ofRd with a bound
on the relative increase in theCk,β norms that depends only on the domain and(k, β) [5].
We assume that the valuesUi on the covered cell centers approximate such an extension.
We define the time-dependent inhomogeneous operatorLh

I (t) as

(
Lh

I (t)U
)

i =
1

κih

( ∑
±=+,−

d∑
s=1

±αi± 1
2 es

Fs
i± 1

2 es
+ αB

i nB
i · EF

(
xB

i , t
))

. (5)

The fluxes on the cell faces are computed fromU by linearly interpolating between cen-
tered difference approximations. For example, for the first component (s= 1) in two
dimensions,

F1
i+ 1

2 , j
= η (Ui+1, j −Ui, j )

h
+ (1− η)(Ui+1, j±1−Ui, j±1)

h
(6)

η =
∣∣yi+ 1

2 , j
− jh

∣∣
h

, (7)

where± = +(−) if yi+ 1
2 , j
> jh (< jh).

Since EF = ∇ψ , then

nB · EF B = ∂ψ

∂n
; (8)
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and so with Neumann boundary conditions (2), we setnB
i · EF(xB

i , t) = gn(xB
i , t) in (5). With

Dirichlet boundary conditions as from (3), we compute an estimate of∂ψ

∂n by interpolating
from the grid values and the values at the boundaries; for details, see [6]. For both Dirichlet
and Neumann boundary conditions, these discretizations lead to linear systems with the
same asymptotic conditioning properties as those of the corresponding operators in the
absence of irregular boundaries, and they are amenable to the use of fast iterative solvers
such as multigrid. Finally, we denote byLh

H the operatorLh
I (t)with homogeneous boundary

conditions,gn = 0 or gd = 0.

2.2. TGA Temporal Discretization

We apply the method of Twizell, Gumel, and Arigu [10] to solve the initial-value problem

dU

dt
= Lh

I (t)U (t)+ f (t)
(9)

U (0) = U0,

where f is evaluated at the same cell centers asU .
We split the time step1t such that

µ1+ µ2+ µ3 = 1t

µ1+ µ2+ µ4 = 1t/2.

The update at stepn uses the boundary values at the old and new times and also at an
intermediate timetint:

Un+1 = (I − µ1Lh
I (tnew)

)−1(
I − µ2Lh

I (tint)
)−1

× [(I + µ3Lh
I (told)

)
Un + (I + µ4Lh

H

)
f (tavg)1t

]
, (10)

where

told = n1t

tnew= (n+ 1)1t = told+ µ1+ µ2+ µ3

tint = tnew− µ1 = told+ µ2+ µ3

tavg= (told+ tnew)/2= told+ µ1+ µ2+ µ4.

For a second-orderL0-stable method, following [10], we picka > 1/2 and

µ1 = a−√a2− 4a+ 2

2
1t

µ2 = a+√a2− 4a+ 2

2
1t

µ3 = (1− a)1t

µ4 =
(

1

2
− a

)
1t.
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For a method that uses real arithmetic only, the truncation error is minimized by taking
a = 2−√2− ε, whereε is machine precision. In this formulation, the Crank–Nicolson
method corresponds toa = 1/2, and henceµ1 = µ4 = 0 andµ2 = µ3 = 1t/2.

3. MOVING BOUNDARIES

We can generalize the approach for parabolic problems described above to the case of
boundaries that move. Specifically, the domainÄ is now a function of time,Ä = Ä(t),
and the various geometric quantities can also be computed in a time-dependent way:κi(t),
αi+ 1

2 es
(t), xi+ 1

2 es
(t), etc. In this paper, we restrict our study to rigid-body motions, such that

each connected component of the boundary has a motion of the form

∂Ä(t) = ∂Ä(0)+ r(t).

The time step is assumed to satisfy a CFL condition with respect to the velocityv = dr
dt :

max
1≤s≤d

|vs|1t

h
< 1.

In [7], the starting point for the moving boundary case was a quadrature formula for
the update of the solution obtained by integrating the conservation law over the region
in space-time given by{Vi(t): told ≤ t ≤ tnew}. This was combined with a hybrid tem-
poral differencing scheme, using Crank–Nicolson in regular cells, and backward-Euler
at irregular cells. The resulting method is second-order accurate, provided1t = O(h).
However, for the case of Dirichlet boundary conditions, the method exhibited oscilla-
tory behavior and was unstable to some types of forcing at the moving boundary. In
[7] this behavior was attributed to the combination of the neutral stability of Crank–
Nicolson at high wave numbers and the presence of eigenvalues ofLh

H with nontriv-
ial imaginary parts, corresponding to eigenmodes with oscillatory behavior near the bo-
undary.

In the present approach, we solve the moving-boundary problem by defining an equivalent
fixed-boundary problem for each time step. Specifically, we solve at each time step the
discretization (10) of the following fixed-boundary problem:

ψfixed
t = D1ψfixed+ f, (11)

whereψfixed = ψfixed(x, t), x ∈ Ä(tnew), told ≤ t ≤ tnew.

The boundary conditions on the fixed boundary are computed by interpolating values from
the moving boundary to the points on the fixed boundary∂Ä(tnew) at timestold and tint.
To obtain a stable algorithm, it is necessary to use theL0-stable TGA time discretization
instead of Crank–Nicolson, a fact that we will demonstrate below. This loss of stability in the
case of Crank–Nicolson is consistent with the analysis described above. The interpolation
process used to obtain initial and boundary values as the boundary moves interacts with
the marginally stable behavior of the fixed-boundary algorithm to produce an unstable
method.
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FIG. 1. Centers of cells inÄ(told) are shown with solid circles, and centers of cells inÄ(tnew) Ä(told) are
shown with unfilled circles. To estimate the value ofU n at one of these latter points, we interpolate quadratically
from values at the centers of three other cells inÄ(told) forming a line with the new cell center. We pick whichever
line is closest in direction to the normal to the boundary at timetnew.

The steps required in setting up the fixed-boundary problem (11) are:

1. Extend the domain ofUn to Ä(tnew), and define the newly uncovered values by
interpolation.

2. Compute boundary values at(xB
i (tnew), told) and(xB

i (tnew), tint).

In Step 1, to estimate the value ofUn at the centerxi(tnew) of a newly uncovered cell
in Ä(tnew)−Ä(told), we use a quadratic interpolant from three other cells inÄ(told), such
that the centers of these cells form a line withxi(tnew). We choose whichever line passing
through the centers of the new cell and one of its immediate neighbors has a direction closest
to that of the normalnB

i (tnew) (see Fig. 1).
In Step 2, we use the vector displacements

δold = r(tnew)− r(told)

δint = r(tnew)− r(tint)

(see Fig. 2).

FIG. 2. From known values at points shown with solid circles on the moving boundary, we extrapolate to find
values ofψ (Dirichlet) or ∂ψ

∂n
(Neumann) at points shown with unfilled circles, representing timestold andtint on

the boundary at timetnew.
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With Dirichlet boundary conditions, we are given the values ofψ(xB
i (t), t) = gd(xB

i (t), t)
for anyt . We interpolategd(xB

i (tnew), t) at t = told, tint by

gd
(
xB

i (tnew), told
) = gd

(
xB

i (told), told
)+ EGi · δold+ O(h2) (12)

gd
(
xB

i (tnew), tint
) = gd

(
xB

i (tint), tint
)+ EGi · δint + O(h2), (13)

where EGi = ∇ψ(xi(tnew), told)+ O(h) is an estimate of the gradient in celli, obtained
from Un. In particular, each componentGs

i is computed separately by differentiating the
quadratic interpolant throughUn

i , Un
i±es

, andUn
i±2es

, where the sign of± is chosen so that
all points are inÄ(tnew), and thereforeUn has been computed. For example, for the first
component in two dimensions,

G1
i, j = ±

1

h

(
−3

2
Un

i, j + 2Un
i±1, j −

1

2
Un

i±2, j

)
.

With a smooth boundary and smoothψ andgd, the error term in (12) isO(h1t) and in
(13) is O(hµ1). Assuming1t = O(h), then the error in both isO(h2).

With Neumann boundary conditions, we are given the values of∂ψ

∂n (x
B
i (t), t) =

gn(xB
i (t), t) for anyt . For the new problem, we use the estimates

gn
(
xB

i (tnew), told
) = gn

(
xB

i (told), told
)+ EDi · δold+ O(h2) (14)

gn
(
xB

i (tnew), tint
) = gn

(
xB

i (tint), tint
)+ EDi · δint + O(h2), (15)

where EDi has componentsDs
i = ∂

∂n (
∂ψ

∂xs
)(xi(tnew), told)+ O(h) computed as follows:

Ds
i =

d∑
r=1

(
nB

i (tnew) · er
) ∂2ψ

∂xr ∂xs
(xi(tnew), told). (16)

The second derivatives in (16) are estimated with a three-point stencil

∂2ψ

∂x2
r

(xi(tnew), told) =
Un

i−er
− 2Un

i +Un
i+er

h2
(17)

if Ui−er , Ui , and Ui+er have all been computed. Otherwise, we use an estimate of the
derivative atxi±er (tnew) by replacingi in (17) by eitheri + er or i − er , as appropriate. Cross
derivatives ∂2ψ

∂xr ∂xs
in (16) are computed with a four-point stencil. For example, if neitherUi−er

norUi−es has been computed, then we use

∂2ψ

∂xr ∂xs
(xi(tnew), told) =

Un
i+er+es

−Un
i+er
+Un

i −Un
i+es

h2
.

We use this same formula ifUn
i+er+es

has been computed but no otherUn
i±er±es

has been.
Finally, if bothUi−er andUi+er have been computed butUi−es has not, then we use

∂2ψ

∂xr ∂xs
(xi(tnew), told) =

Un
i+er+es

−Un
i+er
+Un

i−er
−Un

i−er+es

2h2
.

The error terms in (14) and (15) areO(h1t)andO(hµ1), which becomeO(h2)assuming
1t = O(h).
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4. RESULTS

Our examples of problem (1) are in two dimensions. All of the test problems have as
their solution

ψ(x, y, t) = 4 exp
(− x2+ y2

5(t + 1)

)
5π(t + 1)

(18)

satisfying

ψt = 1ψ + f,
(19)

f (x, y, t) = 4(x2+ y2− 5(t + 1))

125π(t + 1)3
exp

(
− x2+ y2

5(t + 1)

)
.

We solve (19) numerically on a rectangular domain with three elliptically shaped holes,
with boundary conditions computed using the exact solution (18). In the moving-boundary
problem, the holes move with constant velocities. With both fixed and moving boundaries,
we solve two separate problems with different boundary conditions:

• Dirichlet conditions on all boundaries;
• Dirichlet conditions on the fixed external boundaries, but Neumann conditions on the

boundaries of the ellipses.

We advance the solution in time fromt = 0 to t = 1 using a mesh spacingh and corre-
sponding time step1t such that1t/h ≈ 5/π and1t divides 1. The values used are shown
in Table I.

We compute the solution error after time stepn as the difference between the computed
solution and the exact solution at the final timen1t ,

ξn
i = Un

i − ψ(ih, n1t).

We display the max norm of the solution error

‖ξn‖∞ = max
i

∣∣ξn
i

∣∣
and the volume-weighted 1-norm

‖ξn‖1 =
∑

i

∣∣ξn
i κi

∣∣∑
i κi

.

TABLE I

Mesh Spacingh, Time step∆t, and Number

of Steps Used in Runs

h 1t steps

0.1000 0.1667 6
0.0500 0.0769 13
0.0250 0.0400 25
0.0125 0.0200 50
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TABLE II

Parameters for Ellipses in (20), Whereγ =
√

2/15 = 0.09428

i pi qi ai bi

1 −6γ −5γ 3γ 2γ
2 10γ −7γ 2γ 1γ
3 7γ 3γ 1.5γ 2γ

4.1. Fixed Boundaries

For the fixed-boundary problems, we solve on the domain

Ä = Äh −Ä◦1−Ä◦2−Ä◦3,

whereÄh = [−1.5, 1.5]× [−1, 1], andÄ◦1,Ä◦2,Ä◦3 are interiors of ellipses,

Ä◦i =
{
(x, y) :

(x − pi)
2

a2
i

+ (y− qi)
2

b2
i
≤ 1

}
, (20)

where the centers and axis lengths are set as in Table II. These are chosen as multiples of
an irrational number so as to reduce dependencies on the discretization.

The exact solution (18) to (19) att = 1 is shown as a contour plot in Fig. 3. We define
the rate of convergence between two norms,e1 ande2, with two different mesh spacings,
h1 andh2, as

r = log

(
e1

e2

)/
log

(
h1

h2

)
.

Thenr = 2 indicates a method that is second-order accurate.

FIG. 3. Contour plot of exact solution (18) to (19) att = 1 with fixed boundaries.
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FIG. 4. Solution error att = 1 using Crank–Nicolson (stars) and TGA (circles), for the Dirichlet problem
for (19) with fixed boundaries. Left-hand plot shows max norm, right-hand plot shows 1-norm. We see that both
‖ξ‖∞ = O(h2) and‖ξ‖1 = O(h2), indicating second-order accuracy.

Figure 4 shows both the max-norm and the 1-norm of the solution error att = 1 for the
Dirichlet problem. Figure 5 shows the same quantities for the Neumann problem. As these
figures show, both the Crank–Nicolson and TGA methods are second-order accurate.

The solution error att = 1 for the finest mesh spacing used (h = 1
80) is plotted in Fig. 6

for both the Crank–Nicolson and TGA methods applied to the Dirichlet problem. For the
Neumann problem, the error in these methods is plotted in Fig. 7.

FIG. 5. Solution error att = 1 using Crank–Nicolson (stars) and TGA (circles), for the Neumann problem
for (19) with fixed boundaries. Left-hand plot shows max norm, right-hand plot shows 1-norm. We see that both
‖ξ‖∞ = O(h2) and‖ξ‖1 = O(h2), indicating second-order accuracy.
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FIG. 6. Contour plots of absolute value of solution error to (19) att = 1 for fixed boundaries, Dirichlet
boundary conditions,h = 0.0125. The top figure is for Crank–Nicolson method, and the bottom figure for TGA
method.

4.2. Moving Boundaries

In the moving-boundary problems, we solve on the time-dependent domain

Ä(t) = Äh −Ä◦1(t)−Ä◦2(t)−Ä◦3(t),

whereÄh = [−1.5, 1.5]× [−1, 1], and the initial ellipse interiorsÄ◦1(0),Ä
◦
2(0), andÄ◦3(0)

are as defined in (20) and Table II. In our moving-boundary problem, the axis lengthsai
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FIG. 7. Contour plots of absolute value of solution error to (19) att = 1 for fixed boundaries, Neumann
boundary conditions,h = 0.0125. The top figure is for Crank–Nicolson method, and the bottom figure for TGA
method.

andbi do not vary, but the ellipse centers(pi,qi) move at constant velocities,

(pi(t),qi(t)) = (pi(0)+ ui t,qi(0)+ vi t),

whereui andvi are listed in Table III. Note that the timesteps1t and the mesh spacingsh
from Table I satisfy a CFL condition15 < max{|ui |, |vi |}1t/h ≤ 1

3.
A contour plot of the exact solution to (19) att = 1 is shown in Fig. 8. Figure 9 shows

both the max-norm and the 1-norm of the solution error att = 1 for the Dirichlet problem.
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TABLE III

Components of Velocities of Ellipses

i ui vi

1 −0.10 0.20
2 −0.15 0.15
3 −0.20 0.20

FIG. 8. Contour plot of exact solution to (19) att = 1 for moving-boundary problem. The dashed ellipses
indicate the boundaries att = 0.

FIG. 9. Solution error att = 1 in TGA method (circles) and Crank–Nicolson method (stars), with Dirichlet
conditions for (19) on moving boundaries. Left-hand plot shows max norm; right-hand plot shows 1-norm.
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FIG. 10. Solution error att = 1 in TGA method (circles) and Crank–Nicolson (stars), with Neumann condi-
tions for (19) on moving boundaries. Left-hand plot shows max norm; right-hand plot shows 1-norm.

Figure 10 shows the same quantities for the Neumann problem. We see that when applied
to these problems, the TGA method is second-order accurate in both norms. The Crank–
Nicolson is second-order accurate in 1-norm for the Neumann problem but is zeroth-order
in max norm, and diverges in both norms for the Dirichlet problem with moving boundaries.

The solution error att = 1 for the finest mesh spacing used (h = 1
80) in the TGA method

solving (19) is plotted in Fig. 11 for the Dirichlet problem and Fig. 12 for the Neumann
problem.

FIG. 11. Contour plot of absolute value of solution error to (19) att = 1 for moving boundaries, Dirichlet
boundary conditions,h = 0.0125 in TGA method.
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FIG. 12. Contour plot of absolute value of solution error to (19) att = 1 for moving boundaries, Neumann
boundary conditions,h = 0.0125 in TGA method.

5. FUTURE WORK

The method described here, together with that in [6] for elliptic PDEs and [8] for hy-
perbolic PDEs, provide the fundamental components required for developing second-order
accurate methods for a broad range of continuum mechanics problems in irregular ge-
ometries based on the predictor–corrector approach in [2]. Similar approaches based on
formally inconsistent discretizations at the irregular boundary have been used previously
and observed to be stable [1, 9], so we expect that the extension to the more accurate
boundary discretization should be straightforward. For embedded boundary methods to be
practical, it is necessary to use them in conjunction with block-structured adaptive mesh
refinement, particularly in three dimensions. This is routine for the case in which the embed-
ded boundary is contained in the finest level of refinement [6], but requires some additional
discretization design when the embedded boundary crosses coarse–fine interfaces.

One issue that has not been completely addressed is discrete conservation. For the case
of fixed boundaries, both the Crank–Nicolson and the TGA algorithms are in discrete
conservation form; i.e., the divided difference in time of the old and new values can be
written as a difference of fluxes of the form (4). In that case, the difference in the volume-
weighted sums of the dependent variables over any discrete subdomain is equal to the
sum of fluxes across the boundaries of the subdomain. This is not the case for the moving
boundary algorithm, since the conversion of the moving-boundary problem to a sequence
of fixed-boundary problems does not satisfy the appropriate summation-by-parts identity.
One possible way to correct this problem is to compute an estimate of the failure to conserve
based on a space–time quadrature formula, which is used to construct a conservative and
stable increment of the solution that restores overall conservation, analogous to what is
done in the hyperbolic case [3, 4]. Such an approach was proposed in [7], but the modified
update triggered the boundary instability of the hybrid Crank–Nicolson method used there.
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We expect that such a method would have no stability problems because of theL0 stability
of the TGA time discretization.
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