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We present an algorithm for solving the heat equation on irregular time-dependent
domains. Itis based on the Cartesian grid embedded boundary algorithm of Johansen
and Colella (1998). Comput. Physl47, 60) for discretizing Poisson’s equation,
combined with a second-order accurate discretization of the time derivative. This
leads to a method that is second-order accurate in space and time. For the case
in which the boundary is moving, we convert the moving-boundary problem to a
sequence of fixed-boundary problems, combined with an extrapolation procedure
to initialize values that are uncovered as the boundary moves. We find that, in the
moving boundary case, the use of Crank—Nicolson time discretization is unstable,
requiring us to use thk,-stable implicit Runge—Kutta method of Twizell, Gumel,
and Arigu (1996 Adv. Comput. Math6, 333). @ 2001 Academic Press
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1. INTRODUCTION

Inthis paper we present a numerical method for solving the parabolic initial-value proble
Yi=DAY + fonQ, ¥(x 0) = o) 1)
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with constantD > 0 on a bounded regiof?, and boundary conditions of either Neumann
type

oy

T On(X,t) 0onag2 (2)
or Dirichlet type

¥ =g4(X, 1) onaQ. ©))

As in previous work on elliptic problems [6], our approach uses a finite-volume di
cretization, which embeds the domain in a regular Cartesian grid. We treat the solutiol
cell-centered on a rectangular grid, even when the cell centers are outside the domain

For the time discretization, for the fixed-boundary problem we use either the Crar
Nicolson method or the method of Twizell, Gumel, and Arigu (TGA) [10]. We solve th
moving-boundary problem by converting it to a sequence of fixed-boundary probler
and applying the TGA method to each. Our algorithm is stable and achieves second-o
accuracy both on problems with fixed doma&nand on problems with a time-dependent
domaing (t) with boundaries moving with constant velocities. If the ratio of time g¢p
to mesh spacing is kept constant, then the solution errol$At? 4+ h?) ash, At — 0.

Part of this work appeared in preliminary form in [7].

2. THE HEAT EQUATION FOR FIXED BOUNDARIES

2.1. Spatial Discretization

The underlying discretization of space is given by rectangular control volumes or
Cartesian gridY; = [(i — %u)h, (+ %u)h], i € 29, whered is the dimensionality of the
problem,h is the mesh spacing, andis the vector whose entries are all ones. In the cas
of a fixed, irregular domai2, the geometry is represented by the intersectiof® efith
the Cartesian grid. We obtain control volumdés= Y; N Q2 and facesAii%es, that are the
intersection ofdV; with the coordinate planeg : xs = (is + %)h}. Here, e is the unit
vector in thes direction. We also definéP to be the intersection of the boundary of the
irregular domain with the Cartesian control volumk% = 9 N Y;. We will assume here
thatthere is a one-to-one correspondence between the control volumes and faces and tt
responding geometric entities on the underlying Cartesian grid. The description can
generalized to allow for boundaries whose width is less than the mesh spacing, or sl
trailing edges.

In order to construct finite difference methods, we will need only a small number
real-valued quantities that are derived from these geometric objects.

e The areas/volumes, expressed in dimensionless terms: volume fragtien¥;|h—,
face apertures;, 1o = |Ai+%es|h‘<d‘1), and boundary apertureg® = |AB|h~@-D_ We
assume that we can compute estimates of the dimensionless quantities that are accur
0O(h?).

e The locations of centroids, and the average outward normal to the boundary

1

Xi = — [ xdV
Vil Jv,



622 McCORQUODALE, COLELLA, AND JOHANSEN

1

’AH%es‘ Aile

B_L/

X = ]AiB] /%BXdA
B_i/ B
nG = ]AiB] AESn dA,

wheren® is the outward normal t6<2, defined for each point 08Q. Again, we assume
that we can compute estimates of these quantities that are accu@ie’o

X xdA

i+3e =

Using just these quantities, we can define conservative discretizations for the diverge
operator. LetF = (F...FY) be a function ok. Then

1 > 1 -
— V~FdV=—/ F.-ndA
Vil Jy, Vil Jav,

1 d
h (i;— s=

where (4) is obtained by replacing the integrals of the normal components of the vec
field F with the values at the centroids.

We can use this idea to discretize the Laplacian, written as the divergence of a fl
Ay =V- F,whereF = V. We follow the approach described in [6, 7]. The discretizec
solution values approximate the solution to the PDE at the rectangular cell céjfters:
¥ (ih, nAt). At first glance, this might be a cause for concern, since some of the cent
of Cartesian cell&j might not be contained i€2. However, it is well known that, for any
domain with smooth boundary, a smooth function can be extended tofl with a bound
on the relative increase in tI@¢# norms that depends only on the domain &kds) [5].

We assume that the valukl on the covered cell centers approximate such an extensio
We define the time-dependent inhomogeneous opet&idy as

(LT®mu), ( > Z:tozli 16 Fo eﬁ“iBniB-'f(XiB,t))- (5)

+=+4,— s=1

V.F~

:I:Otii%es FS(Xii%es) +OliBniB . IE(X|B>> , (4)
1

The fluxes on the cell faces are computed fridnby linearly interpolating between cen-
tered difference approximations. For example, for the first comporgesatl) in two
dimensions,

Uiz —Uij) (Uiyej+1 — Ui jx1)

’yi+1,j - Jh’
=z - 7
. , (7)
where+ = +(—) if y, .1 ; > jh(<jh).
SinceF = Vv, then
B.EB_ %; (8)
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and so with Neumann boundary conditions (2), waetF (xB, t) = g,(xB, t) in (5). With
Dirichlet boundary conditions as from (3), we compute an estima%%djy interpolating
from the grid values and the values at the boundaries; for details, see [6]. For both Diricl
and Neumann boundary conditions, these discretizations lead to linear systems witt
same asymptotic conditioning properties as those of the corresponding operators ir
absence of irregular boundaries, and they are amenable to the use of fast iterative sc
such as multigrid. Finally, we denote b)?' the operatOL*,‘(t) with homogeneous boundary
conditions,g, =0 orgyg = 0.

2.2. TGA Temporal Discretization

We apply the method of Twizell, Gumel, and Arigu [10] to solve the initial-value probler

ar Li®U® + f )

) (©)
U () = U°,

wheref is evaluated at the same cell center§as
We split the time stept such that

m1+ p2 + puz = At
w1+ p2 + g = At/2.

The update at step uses the boundary values at the old and new times and also at
intermediate time:

Un+1 = (| - MlLP(tnew))71(| - MzL?(tint))71
x [(1+ 1sL] o)) U™ + (1 + pal ) f (tavg AL], (10)

where

tog = NAt
thew = (N + DAt = toig + 1 + 12 + i3

tint = thew — (1 = lold + H2 + U3

tavg = (told + thew) /2 = toid + i1 + 12 + 14

For a second-orddry-stable method, following [10], we pick > 1/2 and

a—+az—4a+2
M1 = + At
2
a++vaz—4a+2
U2 = + 2 + At

uz = (L—-a)At

—1aAt
M4—2 .
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For a method that uses real arithmetic only, the truncation error is minimized by taki
a =2 — /2 — ¢, wheree is machine precision. In this formulation, the Crank—Nicolsor
method corresponds to= 1/2, and hencew; = s = 0 andu, = uz = At/2.

3. MOVING BOUNDARIES

We can generalize the approach for parabolic problems described above to the ca:s
boundaries that move. Specifically, the dom&iris now a function of timeQ = Q(t),
and the various geometric quantities can also be computed in a time-dependeqityay:
cxi+%es(t), xi+%es(t), etc. In this paper, we restrict our study to rigid-body motions, such th:
each connected component of the boundary has a motion of the form

aQ(t) = 9Q2(0) + r(t).

The time step is assumed to satisfy a CFL condition with respect to the veloeit%:

max |vg| At 1
vs|— < 1.
1<s<d' ' h

In [7], the starting point for the moving boundary case was a quadrature formula 1
the update of the solution obtained by integrating the conservation law over the reg
in space-time given byV;(t): toig <t < thew}. This was combined with a hybrid tem-
poral differencing scheme, using Crank—Nicolson in regular cells, and backward-EL
at irregular cells. The resulting method is second-order accurate, proxitied O(h).
However, for the case of Dirichlet boundary conditions, the method exhibited oscill
tory behavior and was unstable to some types of forcing at the moving boundary.
[7] this behavior was attributed to the combination of the neutral stability of Crank
Nicolson at high wave numbers and the presence of eigenvalué.ﬁ| afith nontriv-
ial imaginary parts, corresponding to eigenmodes with oscillatory behavior near the |
undary.

Inthe presentapproach, we solve the moving-boundary problem by defining an equiva
fixed-boundary problem for each time step. Specifically, we solve at each time step
discretization (10) of the following fixed-boundary problem:

IﬂtﬁXEd — DAI//ﬁXEd+ f, (11)

Wherewﬁxed = wfixed(x’ 1), XeQ(new), toig <t =< tnew

The boundary conditions on the fixed boundary are computed by interpolating values fr
the moving boundary to the points on the fixed bounda®y(t,en) at timestyy andtiy.

To obtain a stable algorithm, it is necessary to useltfistable TGA time discretization
instead of Crank—Nicolson, a fact that we will demonstrate below. This loss of stability in t
case of Crank—Nicolson is consistent with the analysis described above. The interpola
process used to obtain initial and boundary values as the boundary moves interacts
the marginally stable behavior of the fixed-boundary algorithm to produce an unsta
method.
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FIG. 1. Centers of cells if2(tyy) are shown with solid circles, and centers of celldte.) 2 (toq) are
shown with unfilled circles. To estimate the valueWdf at one of these latter points, we interpolate quadratically
from values at the centers of three other cell€itt,q) forming a line with the new cell center. We pick whichever
line is closest in direction to the normal to the boundary at time

The steps required in setting up the fixed-boundary problem (11) are:

1. Extend the domain af" to Q(tnew), and define the newly uncovered values by
interpolation.
2. Compute boundary values @ (thew), toid) and (XE (tnew), tint)-

In Step 1, to estimate the value Of" at the centek;(thew) Of a newly uncovered cell
in Q (thew) — 2 (toiq), We use a quadratic interpolant from three other celR (tyq), such
that the centers of these cells form a line witkt,e). We choose whichever line passing
through the centers of the new cell and one of its immediate neighbors has a direction clc
to that of the normah® (t,ew) (see Fig. 1).

In Step 2, we use the vector displacements

60Id = r(tnew) - r(told)
5int = r(tnew) - r(tint)

(see Fig. 2).

FIG.2. From known values at points shown with solid circles on the moving boundary, we extrapolate to fi
values ofy (Dirichlet) or % (Neumann) at points shown with unfilled circles, representing tigaeandt;,; on
the boundary at timg,ey.
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With Dirichlet boundary conditions, we are giventhe valueg 02 (t), t) = ga(xB(t), t)
for anyt. We interpolategy (X (thew), t) att = toi, tint bY

9a (%P (tnew)- toia) = Ga (X* (tola). toia) + Gi - Soia + O(h?) (12)
Jd (XiB(tnew), tint) = Oy (XiB (tint), tint) + éi < Oint + O(hz), (13)

where Gi = Vi X (thew), toid) + O(h) is an estimate of the gradient in céllobtained
from U". In particular, each componef¥’ is computed separately by differentiating the
quadratic interpolant througli, U} , andU[},, , where the sign of- is chosen so that
all points are inQ (thew), and thereforéJ" has been computed. For example, for the firsi
component in two dimensions,

1 3 1
Gly=1 <_2uiﬁj Tl - Zuinﬂ,j> .

With a smooth boundary and smoathandgg, the error term in (12) i©(hAt) and in
(13) isO(huy). AssumingAt = O(h), then the error in both i©(h?).

With Neumann boundary conditions, we are given the values%—‘r/joaxis(t), t) =
gn(XB(1), t) for anyt. For the new problem, we use the estimates

On (X (thew). toid) = Gn (XF (tola), toid) + Di - doid + O(h?) (14)
On (XiB (tnew), tint) =0n (XiB(tint)s tint) + D - Gt + o(h?), (15)

wherel5i has component®? = g’—n(g’—)‘i)(xi (thew), toig) + O(h) computed as follows:

82
(niB (tnew) - er) ﬁ(xi (thew)» toid)- (16)

D} =

M=

r=1
The second derivatives in (16) are estimated with a three-point stencil

0%y Ule —2U" + UL,
a—xrz(xi (thew) toig) = h2

17

if Ui_e, Ui, andUje have all been computed. Otherwise, we use an estimate of t
derivative aix; ¢ (thew) DY replacing in (17) by eitheii + & ori — &, as appropriate. Cross
derivativesaf:—a‘/’& in (16) are computed with a four-point stencil. For example, if neitheg

nor Ui_e, has been computed, then we use

%y Ullete, — Uite T U —Ullg
Xi (thew), Told) = .
BXr axs( |( new) old) h2

We use this same formula/l, ., has been computed but no othéf, ., has been.

Finally, if bothU;_g andUi;, have been computed bui_, has not, then we use

%y Uirlrer+es — Uir]ra + Uin—a — Uirle+es
X (t 1 = .
3%, BXS( |( new) old) oh2

The errortermsin (14) and (15) a@ghAt) andO (hu1), which becomé (h?) assuming
At = O(h).
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4. RESULTS

Our examples of problem (1) are in two dimensions. All of the test problems have
their solution

R )
YOy U= 4o
satisfying
wt = Aw + f1
402 + y? — 5(t + 1)) 24y Y
Ty = —metrns & ( S+ 1)>'

We solve (19) numerically on a rectangular domain with three elliptically shaped hols
with boundary conditions computed using the exact solution (18). In the moving-bound
problem, the holes move with constant velocities. With both fixed and moving boundari
we solve two separate problems with different boundary conditions:

e Dirichlet conditions on all boundaries;
e Dirichlet conditions on the fixed external boundaries, but Neumann conditions on
boundaries of the ellipses.

We advance the solution in time frotm= 0 tot = 1 using a mesh spacirigand corre-
sponding time steprt such thatAt/h ~ 5/7 andAt divides 1. The values used are shown
in Table I.

We compute the solution error after time steps the difference between the computec
solution and the exact solution at the final timat,

We display the max norm of the solution error
16" oo = max|£]|

and the volume-weighted 1-norm

n _ Zi |EinKi|
1571 = S
TABLE |

Mesh Spacingh, Time step At, and Number
of Steps Used in Runs

h At steps
0.1000 0.1667 6
0.0500 0.0769 13
0.0250 0.0400 25

0.0125 0.0200 50
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TABLE Il
Parameters for Ellipses in (20), Wherey = v/2/15 = 009428

[ pi G El b

1 —6y —5y 3y 2y
2 10y -7y 2y 1y
3 Ty 3y 1.5 2y

4.1. Fixed Boundaries

For the fixed-boundary problems, we solve on the domain
Q=0"—-Q - Q5 — Q3

whereQ” = [-1.5, 1.5] x [—1, 1], and2§, 23, 3 are interiors of ellipses,

_ n)2 _ )2
X —p) +(y 2q.) 51}’ (20)

Q= {(x, y) aiz b

where the centers and axis lengths are set as in Table Il. These are chosen as multipl
an irrational number so as to reduce dependencies on the discretization.

The exact solution (18) to (19) at= 1 is shown as a contour plot in Fig. 3. We define
the rate of convergence between two norssande,, with two different mesh spacings,

h; andh,, as
e h1>
r =log| — log| — |.
g<ez>/ g<h2

Thenr = 2 indicates a method that is second-order accurate.

054 /-

—0.54 %

L 1
0.095 01 0.105 o1 0.115 0.12 0,125

FIG. 3. Contour plot of exact solution (18) to (19)tat= 1 with fixed boundaries.
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10 Lrte
102 107 102 107
h h

FIG. 4. Solution error at = 1 using Crank—Nicolson (stars) and TGA (circles), for the Dirichlet problem
for (19) with fixed boundaries. Left-hand plot shows max norm, right-hand plot shows 1-norm. We see that k
€|l = O(h?) and|&||; = O(h?), indicating second-order accuracy.

Figure 4 shows both the max-norm and the 1-norm of the solution ertoedt for the
Dirichlet problem. Figure 5 shows the same quantities for the Neumann problem. As th
figures show, both the Crank—Nicolson and TGA methods are second-order accurate.

The solution error at = 1 for the finest mesh spacing uséu=£ s%) is plotted in Fig. 6
for both the Crank—Nicolson and TGA methods applied to the Dirichlet problem. For t
Neumann problem, the error in these methods is plotted in Fig. 7.

107 - 10—

Il

2 -1 .
10 10 107 10

FIG. 5. Solution error at = 1 using Crank—Nicolson (stars) and TGA (circles), for the Neumann problen
for (19) with fixed boundaries. Left-hand plot shows max norm, right-hand plot shows 1-norm. We see that k
€|l = O(h?) and|i&||; = O(h?), indicating second-order accuracy.
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FIG. 6. Contour plots of absolute value of solution error to (19} at 1 for fixed boundaries, Dirichlet
boundary conditiong) = 0.0125. The top figure is for Crank—Nicolson method, and the bottom figure for TG/
method.

4.2. Moving Boundaries
In the moving-boundary problems, we solve on the time-dependent domain
Q(t) = Q7 — Qi) — Q1) — Q3(1),

whereQ” = [-1.5, 1.5] x [—1, 1], and the initial ellipse interior€; (0), ©25(0), and<25(0)
are as defined in (20) and Table II. In our moving-boundary problem, the axis lesgths
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x 107

FIG. 7. Contour plots of absolute value of solution error to (19} at 1 for fixed boundaries, Neumann
boundary conditionsy = 0.0125. The top figure is for Crank—Nicolson method, and the bottom figure for TG/
method.

andb; do not vary, but the ellipse centep;, g)) move at constant velocities,

(P (M), gi(1) = (Pi(0) + ujt, Gi(0) + vit),

whereu; andv; are listed in Table Ill. Note that the timestefi$ and the mesh spacings
from Table | satisfy a CFL conditio§ < max|uil, [vi|}At/h < %.

A contour plot of the exact solution to (19) at= 1 is shown in Fig. 8. Figure 9 shows
both the max-norm and the 1-norm of the solution errdr=atl for the Dirichlet problem.
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TABLE 11l
Components of Velocities of Ellipses

i Ui Vi

1 -0.10 0.20
2 -0.15 0.15
3 -0.20 0.20

0.085 0.1 0.105 [RD] 0115 01z 0.125

FIG. 8. Contour plot of exact solution to (19) at= 1 for moving-boundary problem. The dashed ellipses
indicate the boundaries at= 0.

107

107 1

10* 107
IIEH,, ik
10" 10°
107 107k
10 13 = B 10-8 = R S e
10 107 107 107"

FIG. 9. Solution error at = 1 in TGA method (circles) and Crank—Nicolson method (stars), with Dirichlet
conditions for (19) on moving boundaries. Left-hand plot shows max norm; right-hand plot shows 1-norm.
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&l

FIG. 10. Solution error at = 1 in TGA method (circles) and Crank—Nicolson (stars), with Neumann condi
tions for (19) on moving boundaries. Left-hand plot shows max norm; right-hand plot shows 1-norm.

Figure 10 shows the same quantities for the Neumann problem. We see that when ap
to these problems, the TGA method is second-order accurate in both norms. The Cre
Nicolson is second-order accurate in 1-norm for the Neumann problem but is zeroth-ol
in max norm, and diverges in both norms for the Dirichlet problem with moving boundarie
The solution error at = 1 for the finest mesh spacing usdwk£ 8—10) in the TGA method

solving (19) is plotted in Fig. 11 for the Dirichlet problem and Fig. 12 for the Neumar
problem.

0541 +f - -

—-0.5+

o 0.5 1 1.5
X107

FIG. 11. Contour plot of absolute value of solution error to (19} at 1 for moving boundaries, Dirichlet
boundary conditiond) = 0.0125 in TGA method.
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054 --f--

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x107

FIG. 12. Contour plot of absolute value of solution error to (19} at 1 for moving boundaries, Neumann
boundary conditiond) = 0.0125 in TGA method.

5. FUTURE WORK

The method described here, together with that in [6] for elliptic PDEs and [8] for hy
perbolic PDEs, provide the fundamental components required for developing second-o
accurate methods for a broad range of continuum mechanics problems in irregular
ometries based on the predictor—corrector approach in [2]. Similar approaches base
formally inconsistent discretizations at the irregular boundary have been used previol
and observed to be stable [1, 9], so we expect that the extension to the more acct
boundary discretization should be straightforward. For embedded boundary methods t
practical, it is necessary to use them in conjunction with block-structured adaptive m
refinement, particularly in three dimensions. This is routine for the case in which the emb
ded boundary is contained in the finest level of refinement [6], but requires some additic
discretization design when the embedded boundary crosses coarse—fine interfaces.

One issue that has not been completely addressed is discrete conservation. For the
of fixed boundaries, both the Crank—Nicolson and the TGA algorithms are in discre
conservation form; i.e., the divided difference in time of the old and new values can
written as a difference of fluxes of the form (4). In that case, the difference in the volun
weighted sums of the dependent variables over any discrete subdomain is equal tc
sum of fluxes across the boundaries of the subdomain. This is not the case for the mo
boundary algorithm, since the conversion of the moving-boundary problem to a seque
of fixed-boundary problems does not satisfy the appropriate summation-by-parts iden
One possible way to correct this problem is to compute an estimate of the failure to conse
based on a space—time quadrature formula, which is used to construct a conservative
stable increment of the solution that restores overall conservation, analogous to whe
done in the hyperbolic case [3, 4]. Such an approach was proposed in [7], but the modi
update triggered the boundary instability of the hybrid Crank—Nicolson method used the
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We expect that such a method would have no stability problems becauselgfstability
of the TGA time discretization.
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