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Trickle bed reactors are governed by equations of flow in porous media such as
Darcy’s law and the conservation of mass. Our numerical method for solving these
equations is based on a total-velocity splitting, sequential formulation which leads
to an implicit pressure equation and a semi-implicit mass conservation equation.
We use high-resolution finite-difference methods to discretize these equations. Our
solution scheme extends previous work in modeling porous media flows in two
ways. First, we incorporate physical effects due to capillary pressure, a nonlinear
inlet boundary condition, spatial porosity variations, and inertial effects on phase
mobilities. In particular, capillary forces introduce a parabolic component into the
recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity.
Second, we introduce a modification of the slope-limiting algorithm to prevent our
numerical method from producing spurious shocks. We present a numerical algorithm
for accommodating these difficulties, show the algorithm is second-order accurate,
and demonstrate its performance on a number of simplified problems relevant to
trickle bed reactor modeling. c© 2000 Academic Press
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1. INTRODUCTION

A trickle bed reactor is a fixed bed of catalyst particles through which gas and liquid
are allowed to flow. Typically the gas and liquid flow concurrently downward through
the reactor; the liquid phase flows over the catalyst as a thin film, while the gas phase
flows continuously between the catalysts [22]. These reactors have been used mainly in the
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petroleum industry for hydrotreating processes, such as hydrodesulfurization and hydroc-
racking. However, there are applications in other fields, such as chemical processing, waste
treatment, and biochemical processing [13].

There have been a few numerical simulations of flow distribution in a trickle bed reactor.
For example, Staneket al. [24] used a radial diffusion model, while Zimmerman and Ng
[30] used a computer-generated model of randomly packed spheres. Anderson and Sapre
[2] modeled a reactor using the same general porous media equations that are typically used
in petroleum reservoir simulations (for a description of petroleum reservoir simulations,
see the book by Aziz and Settari [3] or the paper by Stevensonet al. [25]).

Although there has been relatively little effort in modeling trickle bed reactors, similar
porous media problems have been modeled extensively, mainly in the context of subsurface
flows (typically petroleum reservoirs). While the same general governing equations model
flow in a reactor and flow in a reservoir, there are a few key differences. First of all, there
are geometry and size differences. Reactors are typically cylindrical and 10–30 meters tall
[13]; on the other hand, petroleum reservoirs are typically much larger than reactors and
have a large aspect ratio. Secondly, porosities are typically larger in reactors. Finally, the
speed of the flow differs substantially. In a reactor, gas velocities typically range from 0.05
to 0.5 m/s, while liquid velocities range from 0.005 to 0.025 m/s. In a reservoir, velocities
are typically 5× 10−6 m/s [2].

The larger velocities in the reactor have a significant effect on the governing equations.
Normally, Darcy’s law is used to model the effects of phase pressure on phase velocity;
however, Darcy’s law is not accurate at higher velocities. To account for the discrepancies
at higher velocities, we modify Darcy’s law by using the Ergun equation (this is discussed
in detail in Section 2.1).

The equations governing flow in a reactor are coupled and nonlinear. We reformulate
these governing equations using the sequential method pioneered by Spillette [23]. In this
formulation, we solve a pressure equation and then compute a total velocity; this total
velocity is then used in the saturation equation instead of the individual phase velocities.
Using total velocity in the saturation equation decouples the hyperbolic and elliptic pieces
of the two-phase flow equations [27].

These equations are solved using the higher order Godunov techniques for hyperbolic
equations outlined in Bellet al.[6]. Other authors have used these techniques for modeling
porous media flow; for example, Trangenstein and Bell [26, 27] modeled mass transfer
between phases and Nelson [18] modeled time-varying porosity.

Our work focuses on two extensions of the methods in [6]. First, we introduce more
complicated physical effects into the problem and show that these effects can be modeled
with second-order accuracy. We include capillary pressure effects which introduce nonlin-
ear parabolic terms in the saturation equation. In addition, we introduce a nonlinear inlet
boundary condition where we specify physically measurable quantities—the liquid velocity
and the average gas velocity. We use a novel reformulation of a modified Ergun equation
to model the nonlinear inertial effects due to the larger velocities present in the reactor.
Second, we introduce a modification of the slope-limiting algorithm proposed by Colella
[10] to prevent our numerical method from producing spurious shocks.

The rest of this paper describes the equations used to model the reactor and the numer-
ical algorithm used to solve these equations. Section 2 describes the mathematical model
of the reactor and the reformulation of the governing equations into an elliptic equation
for pressure and an advection–diffusion equation for saturation. Section 3 describes the
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implementation of the sequential algorithm. We discuss the solution of the pressure equa-
tion using a multigrid-accelerated iterative method [8] and the saturation equation using
a Crank–Nicolson scheme and a multidimensional upwind method. Section 4 shows the
effects of the slope-limiting algorithm and demonstrates that the algorithm is second-order
accurate. In addition, simulations show the effects of the modified Ergun equation, capillary
pressure, porosity variation, and the nonlinear inlet boundary condition.

2. MATHEMATICAL FORMULATION

In this section, we specify the governing equations, auxiliary relations, and boundary
conditions for a trickle bed reactor. Then we derive a system of equations that is suitable for
a sequential solution method. We assume a basic knowledge of porous media; for a more
detailed examination of porous media, see Bear [4] or Collins [11].

2.1. Governing Equations

In this paper we use a simplified model of flow in the reactor. These assumptions are not
necessary for our numerical algorithm to work; however, they do simplify the algorithm.
We make the following assumptions about the flow:

(1) There are only two components present: component A and component B. In addition,
there are only two phases: the liquid phase and the gas phase. Component A exists only in
the liquid phase and component B exists only in the gas phase.

(2) The phase densities and phase viscosities are constant.
(3) Porosity is not a function of time, but it can be a function of space.

As a result of assumption (1), we can use the terms “phase” and “component” interchange-
ably in this paper. We will denote the liquid phase by the subscript L and the gas phase by
the subscript G.

With these assumptions, the three main equations governing the flow are conservation of
volume, conservation of mass, and Darcy’s law,

sL + sG = 1 (1)

φ
∂(sp)

∂t
+∇ · vp = 0 (2)

vp = −λp(∇Pp + γp∇z), (3)

whereγp = (ρpg/gc) is a grouping of gravity terms andsp, ρp, vp, Pp, andλp represent
the saturation, density, velocity, pressure, and mobility of phasep. In addition,g is the
acceleration due to gravity,φ is the porosity,gc is the gravity conversion factor (gc = 1 in
the metric system),t denotes time, andz is the upward-directed coordinate. These three
equations must be augmented by auxiliary correlations to make the system solvable.

The phase mobility of phasep is defined as

λp = kp
kRp

µp
, (4)

wherekp is the phase permeability,kRp is the relative permeability of phasep, andµp is
the viscosity of phasep. The expressions for permeability, relative permeability, and phase
viscosity are typically problem dependent.
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In reservoir simulations, the Kozeny–Carman equation [9] is typically used to express
permeability as

kp = d2
eφ

3gc

C1(1− φ)2 , (5)

wherede is the pore diameter, andC1 = 180. The combination of the form of phase mobility
defined in (4), the equation for permeability defined in (5), and Darcy’s law (3) imply that
the pressure gradient is linearly proportional to the velocity. However, several experimental
and theoretical investigations have shown that there is not a simple linear dependence at
larger velocities. MacDonaldet al. ran experiments and determined that a modified Ergun
equation provided a better fit to experimental data [17],

kp =
(

C1(1− φ)2
d2

eφ
3gc

+ C2(1− φ)ρp|vp|
µpdeφ3gc

)−1

, (6)

whereC1 = 180 andC2 = 1.8. We note that the first term of the equation is simply the
standard permeability as expressed in the Kozeny–Carman equation (5), while the second
term captures the nonlinear inertial effects. If we insert Ergun’s equation (6) and the defi-
nition of phase mobility (4) into Darcy’s law (3), we note thatvp appears on both sides of
the equation; we will deal with this nonlinearity in Section 3.1.4 by reformulating Ergun’s
equation.

Using available experimental data on flow in packed beds, Saez and Carbonell [21]
correlated the relative permeability functions as

kRL =
(

sL − sLirr

1.0− sLirr

)2.43

(7)

kRG = (sG)
4.8, (8)

wheresLirr is the irreducible saturation of the liquid phase. Using available data, Saez and
Carbonell [21] correlated the irreducible liquid saturation as

sLirr =
1

(20+ 0.9Eö)φ
, (9)

where Eö is the Eötvos number

Eö= ρLgd2
eφ

2

σ(1− φ)2 , (10)

andσ is the surface tension between the gas and liquid phases.
The capillary pressure between phase L and phase G,PC, is defined as

PC = PG− PL . (11)

Leverett [16] proposed the following form for capillary pressure in an arbitrary porous
media:

PC = σ J(sL)

√
φ

k
, (12)
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whereJ(sL) is a dimensionless function. Grosseret al. [14] approximated theJ function
of Leverett using

J(sL) = 0.48+ 0.036 ln

(
1− sL

sL

)
. (13)

2.2. Total Velocity Formulation

The equations of flow in porous media exhibit both elliptic and parabolic behavior. For
example, pressure effects are instantaneously felt throughout the reservoir, while saturation
fronts move at a finite speed [7]. Our numerical algorithm treats these effects separately
by splitting the system of governing equations into an elliptic pressure equation and a
hyperbolic–parabolic saturation equation.

In a manner similar to the work of Watts [29], we define a total velocity as

vT ≡ vL + vG. (14)

As a result of the simplified conservation of volume (1) and conservation of mass (2)
equations, the total velocity is divergence-free. Using the definition of total velocity and
Darcy’s law (3), we obtain the pressure equation

∇ · [(λL + λG)(∇PG)] = ∇ · [(λGγG+ λLγL)(∇z)] +∇ · (λL∇PC). (15)

We use the total velocity to eliminate the phase velocity from the conservation of mass
equation (2)

φ
∂sL

∂t
+∇ · (F(sL, vT)) = −∇ · [H(sL)∇PC], (16)

where

F(sL, vT) = λL(vT −GλG)

λL + λG

G = (γL − γG)∇z

H = λLλG

λL + λG
.

The motivation for this substitution is that in incompressible problems with no capillary
pressure, the use of total velocity splits the system into elliptic and hyperbolic pieces.

We can also expand the total velocity in terms of phase mobilities and pressures:

vT = −(λL + λG)∇PG− (λLρL + λGρG)g∇z+ λL∇PC. (17)

This reformulation has resulted in three main equations: a hyperbolic–parabolic saturation
equation (16), an elliptic pressure equation (15), and an equation for total velocity (17). We
can now apply appropriate numerical techniques to each type of equation.
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2.3. Boundary Conditions

In order to make our system solvable, we also need to specify boundary conditions. We
assume that there is an inlet at the top of the reactor and an outlet at the bottom of the
reactor; the other edges are assumed to be impermeable walls.

At the impermeable walls, the normal components of the velocities are zero. From Darcy’s
law, it follows that the pressure gradient normal to the wall is zero at vertical walls.

At the outlet, we specify the gas pressure; this condition results from the assumption
that flow exits the reactor into a region at ambient pressure. In addition, we specify that the
normal derivative of capillary pressure be zero; in effect, this means that we will have no
boundary layer at the outlet.

At the inlet, we use two different sets of boundary conditions. In the first set of boundary
conditions, we specify quantities that are easy to implement numerically in our algorithm—
liquid saturation and the pressure gradient. In the second set of boundary conditions, we
specify conditions that can be measured experimentally. In this case, we specify the average
gas velocity at the top of the reactor,vAVG

G , and the liquid velocity at each cell along the top
of the reactor,vL(x, zTOP).

3. NUMERICAL ALGORITHM

In the last section, we recast the governing equations into a system of three equations: an
elliptic pressure equation (15), an advection–diffusion equation for saturation (16), and an
equation for total velocity (17). This section discusses the solution of those three equations.

We discretize the reactor using a finite volume discretization by covering the reactor
with a mesh of grid cells. We use one of two different two-dimensional coordinate systems
for these grid cells: (1) anx–z Cartesian coordinate system and (2) anr –z cylindrical
coordinate system. In the Cartesian coordinate system, the grid cells are rectangular of
size4x by4z, and are indexed in thex-direction byi and in thez-direction by j . In the
cylindrical coordinate system, the grid cells are of size4r by 4z, and are indexed in the
r -direction byi and in thez-direction by j . We discretize in time using the indexn, such
that the time step4t is the difference between discrete timestn andtn+1.

Saturations and pressures are defined at cell centers, such that

sn
i, j ≈ s((i + 0.5)4x, ( j + 0.5)4z, tn).

Phase mobilities and the normal components of velocities are defined at cell edges and use
half indices, such thatvn

i+1/2, j represents thex-velocity at the “right edge” of cell(i, j )
andvn

i, j+1/2 represents thez-velocity at the “top edge” of cell(i, j ). Phase mobilities are
computed at cell centers and averaged to cell edges. Typically we use arithmetic averaging
to compute phase mobilities; however, when the equation itself implies harmonic averaging
(such as theH term in (16)), then harmonic averaging is used.

The equations are discretized using standard block-centered finite difference operators.
We define the discrete gradient operatorG as taking a cell-centered scalar and mapping it
into an edge-centered vector field. If we consider a cell-centered scalarφ, then we define
thex-component andz-component of the gradient field as

Gx(φ)|i+1/2, j = φi+1, j − φi, j

4x
, Gz(φ)|i, j+1/2 = φi, j+1− φi, j

4z
. (18)
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We define the discrete divergence operator,D, as taking an edge-centered vector field
and mapping it into a cell-centered scalar. We define the divergence operator acting on an
edge-centered vectorf as

D(f )|i, j =
f x
i+1/2, j − f x

i−1/2, j

1x
+ f z

i, j+1/2− f z
i, j−1/2

1z
. (19)

These discrete operators are used to discretize all of the gradients and divergences in all of
the governing equations—the pressure equation (15), the saturation equation (16), and the
equation for total velocity (17). As a result, there is a mathematical consistency between
the equations.

3.1. Algorithm Overview

The sequential algorithm advances the liquid saturation from timetn to timetn+1 using a
combination of hyperbolic–parabolic and elliptic equations. The multidimensional upwind
method used to solve the hyperbolic equation was developed in [10]. This work was later
extended to problems that combined hyperbolic and elliptic equations in [6] and to problems
with viscous terms in [5].

We denote variables at the current time by the superscriptn and variables at the new time
by the superscriptn+ 1. In addition, we denote temporary predicted variables at timen+ 1
by the superscript ˜. With this notation, we can express the predictor–corrector scheme to
advance the saturation fromn to n+ 1 through the following steps.

Step 1. Compute the gas pressure and total velocity at the current time step. We compute
the gas pressure at the current time,Pn

G, by solving the pressure equation:

−∇ · [( λn
G+ λn

L

)(∇Pn
G

)] = −∇ · [( λn
GγG+ λn

LγL
)
(∇z)

]−∇ · ( λn
L∇Pn

C

)
.

Next, we compute the total velocity at the current time,vn
T:

vn
T = −

(
λn

L + λn
G

)∇Pn
G −

(
λn

LγL + λn
GγG

)∇z+ λn
L∇Pn

C.

Step 2. Trace the liquid saturation to cell edges at the half time step. We utilize the
total velocity and saturation at the current time in Godunov’s method to compute liquid
saturation at the half time step at cell edges,sn+1/2

EDGE (this will be discussed in Section 3.1.2).

Step 3. Approximate the total velocity at the half time step. First, we predict the total
velocity at the next time step,ṽT; then, we average it with the total velocity at the current
time step,vn

T, in order to approximate the total velocity at the half time step,vn+1/2
T .

The first step in predicting̃vT is to predict the saturation at the next time step,s̃L, such
that

φ
s̃L − sn

L

4t
= −∇ · F(sn+1/2

EDGE, v
n
T

)− 1

2
∇ · [H̃∇ P̃C

]− 1

2
∇ · [Hn∇Pn

C

]
,

whereF is an approximation to the flux at cell edges. The ˜ superscript on the variablesH̃
and P̃C indicates that they are computed using the predicted saturations̃. In addition, we
note that this equation’s nonlinear dependence on saturation makes it difficult to solve; as
a result, we actually solve anO(4t2) approximation to this equation. This approximation
is discussed in Section 3.1.1.
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Next, we use this predicted saturation to predict the pressure at the next time step,P̃G:

−∇ · [(λ̃G+ λ̃L)(∇ P̃G)] = −∇ · [(λ̃GγG+ λ̃LγL)(∇z)] −∇ · (λ̃L∇ P̃C).

Again, the ˜ superscript on the phase mobilities indicates that they are computed using the
predicted saturatioñs. Finally, we predict the total velocity at the next time step,ṽT:

ṽT = −(λ̃L + λ̃G)∇ P̃G− (λ̃LγL + λ̃GγG)∇z+ λ̃L∇ P̃C.

Then, we average the predicted velocity and the current velocity to obtain the velocity at
the half time step,vn+1/2

T :

vn+1/2
T = 1

2

(
vn

T + ṽT
)
.

Step 4. Compute the liquid saturation at the next time step. Now that we have both a
saturation and a velocity at the half time step, we can compute a second-order accurate
saturation at the next time step,sn+1

L :

φ
sn+1

L − sn
L

4t
= −∇ · F(sn+1/2

EDGE, v
n+1/2
T

)− 1

2
∇ · [Hn∇Pn

C

]− 1

2
∇ · [Hn+1∇Pn+1

C

]
.

As in Step 3, we only solve an approximation to this equation. We will now describe specific
pieces of the algorithm in greater detail.

3.1.1. Saturation Equation

In Section 2.2, we derived the saturation equation (16):

φ
∂sL

∂t
+∇ · (F(sL)) = −∇ · [H(sL)∇PC]. (20)

Dropping the L subscript fromsL for notational simplicity and using a Crank–Nicolson
discretization of (20), we obtain

sn+1+∇ ·
[

1

2

4t

φ
Hn+1∇Pn+1

C

]
= sn − 4t

φ
(∇ · F)n+1/2−∇ ·

[
1

2

4t

φ
Hn∇Pn

C

]
.

We use a fixed-point iteration method to linearize the discretized equation around iteration
k,

δsk+1+ 1

2
∇ ·
[4t

φ

(
Hn+1,k+1∇Pn+1,k+1

C − Hn+1,k∇Pn+1,k
C

)]
= rhsn − rhsn+1,k − 4t

φ
(∇ · F)n+1/2,

where

δsk+1 = sn+1,k+1− sn+1,k

rhsn = sn −∇ ·
[

1

2

4t

φ
Hn∇Pn

C

]
rhsn+1,k = sn+1,k −∇ ·

[
1

2

4t

φ
Hn+1,k∇Pn+1,k

C

]
.
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We lagHn+1,k+1; i.e., we useHn+1,k+1 ≈ Hn+1,k. In addition, we rewrite the capillary
pressure difference in terms ofδsk+1. We obtain

δsk+1+∇ ·
[

1

2

4t

φ
Hn+1,k

(
∂PC

∂s

)n+1,k

∇δsk+1

]
= rhsn − rhsn+1,k − 4t

φ
(∇ · F)n+1/2.

(21)

This saturation equation is discretized using the discrete divergence operator (19) and
gradient operator (18). We solve this linear equation forδsk+1 with multigrid-accelerated
Gauss–Seidel with Red–Black ordering.

We choose the time step using the Courant–Friedrichs–Lewy (CFL) condition [12],

4t < σ
4x

max(v)
,

whereσ is the CFL number and max(v) indicates the maximum wave speed in the domain.
For our conservation law, the wave speedv is

v = 1

φ

∂F
∂s
.

3.1.2. Godunov’s Method

We compute the(∇ · F)n+1/2 term in the saturation advection equation using a second-
order extension of Godunov’s method. Godunov’s method is a two-step process: (1) a Taylor
series extrapolation of saturations from cell centers to cell edges at the half time step and
(2) the solution of a Riemann problem using the extrapolated saturations to choose the
correct edge-centered flux.

Taylor extrapolation. We denote thex-component of the total velocity byu and the
z-component byv. We extrapolate saturations to cell edges at the half time step using a
Taylor series extrapolation and use the saturation equation (16) to replace the temporal
derivative. For example, if we extrapolate from cell(i, j ) to edge(i + 1

2, j ) in Cartesian
coordinates, we obtain

sn+1/2
i+1/2, j,L = sn + 4x

2

∂s

∂x
+ 4t

2

∂s

∂t

= sn + 4x

2

∂s

∂x
− 4t

2

1

φ
(∇ · F)− 4t

2

1

φ
(∇ · H∇PC).

By expanding∇ · F, using the chain rule onF(vT, φ, s) in thex-direction, and utilizing the
velocity equation (14), we obtain

sn+1/2
i+1/2,L = sn + 1

2

[
1− 4t

4x

1

φ
max

(
0,
∂F X

∂s

)]
4x

∂s

∂x
− 4t

2φ

[
∇ ·
(

λLλG

λL + λG
∇PC

)]

+ 4t

2φ

[
−∂F X

∂φ

∂φ

∂x
+ ∂F X

∂u

∂v

∂z
− ∂F Z

∂z

]
. (22)

Since we are extrapolating from cell(i, j ) to edge(i + (1/2), j ), we only wish to consider
information (saturations, eigenvalues, etc.) from cell(i, j ). We enforce this condition by
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using the max term in (22); this ensures that we only use positive characteristic wave speeds.
We will use (22) to extrapolate the saturations to cell edges from the left.

SinceF(vT, φ, s) is a known function, we can derive analytical expressions for∂F X/∂s
and∂F X/∂u. The computation of the phase mobilities, capillary pressure, and porosity is
also straightforward.

We approximate∂F X/∂φ by

∂F

∂φ
≈ F X(φ + ε)− F X(φ − ε)

2ε
,

whereε = 0.001. In addition, we can approximate∂u/∂x and∂F Z/∂z as

∂u

∂x
≈ ui+1/2, j − ui−1/2, j

4x

∂F Z

∂z
≈ F Z,TOP− F Z,BOT

4z
,

whereF Z,TOP andF Z,BOT are the fluxes obtained from solving the Riemann problem at the
top and bottom edges of cell(i, j ). We defineF Z,TOP andF Z,BOT as

F Z,TOP= FRP(si, j , si, j+1)

F Z,BOT = FRP(si, j−1, si, j ),

whereFRP indicates the solution to the Riemann problem. The solution to the Riemann
problem will be discussed later in this section.

We approximate∂s/∂x and∂φ/∂x as

∂s

∂x
≈ 4sVL ,M

4x

∂φ

∂x
≈ 4φ

VL

4x

where4φVL are second-order van Leer slopes [28] and4sVL ,M are modified second-order
van Leer slopes. van Leer slopes are defined as

4sVL =
{

sign(4SC)min(2|4SL |, |4SC|, 2|4SR|), if 4SL4SR > 0

0.0, if 4SL4SR ≤ 0

and the undivided differences are defined as

4SC = Si+1, j − Si−1, j

2
4SL = Si, j − Si−1, j

4SR = Si+1, j − Si, j .

Several authors [1, 6] have suggested that in the presence of non-convexity, the second-
order Godunov method can produce shocks that violate the entropy condition (see Section 4.1
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for an example). To prevent these entropy-violating shocks from occurring in this work, we
use a variation of the approach in [6] to modify the algorithm in [10] slightly and apply it
to our problem to handle regions around saturation fronts. We only modify the van Leer
slopes for saturation; the porosity slope calculation remains the same.

For a given cell, we first determine if additional slope limiting is necessary. The two
criteria necessary for additional limiting are (1)∂2F X/∂s2 changes sign in the region
around the cell and (2) a saturation front is present. We determine the presence of a front
by computingξi, j as

ξi, j = |si+1, j − si−1, j |
max(|si+1, j − si−1, j |, |si+2, j − si−2, j |, ε) .

We assert that a front is present in any region whereξ > ξH and that a smooth region occurs
whenξ < ξL. In a smooth region, we expectξ ≈ 1

2; in the presence of a front, we expect
ξ → 1. Using these values as a guideline, we performed experiments and choseξH = 0.75
andξL = 0.65. Also based on experiments, we choseε = 0.0001 to prevent division by
zero.

To implement the additional limiting, we compute a linearly varying smoothing function,
χ̃i, j as

χ̃i, j =


1.0, if ξ < ξL

1.0− ξ−ξL

ξH−ξL , if ξL < ξ < ξH

0.0, if ξ > ξH.

Then, we multiply the standard van Leer slopes byχi, j , where

χi, j = min(χ̃i−1, j , χ̃i, j , χ̃i+1, j ).

So, in summary, the extrapolation formula for the left edge in the Cartesian coordinate
system is

sn+1/2
i+1/2,L = sn + 1

2

[
1− 4t

4x

1

φ
max

(
0,
∂F X

∂s

)]
4sVL ,M − 4t

2φ
[∇ · (H∇PC)]

+ 4t

2φ

[
−∂F X

∂φ

4φVL

4x
+ ∂F X

∂u

4v
4z
− 4F Z

4z

]
.

Extrapolation to the right edge is handled analogously, except that we will use informa-
tion from cell (i + 1, j ) instead of(i, j ); as a result, we will use min(0, ∂F X

∂s ) instead of
max(0, ∂F X

∂s ) to ensure that information is traveling in the correct direction.
For our purposes, the main difference between cylindrical and Cartesian coordinates is

that the divergence operator looks different. Using the same techniques as in Cartesian
coordinates, the extrapolation equation in ther -direction is

sn+1/2
i+1/2, j,L = sn + 1

2

[
1− 4t

4r

1

φ

∂F R

∂s

]
4sVL ,M − 4t

2φ
[∇ · (H∇PC)]

+ 4t

2φ

[
−∂F R

∂φ

4φVL

4r
− F R

r
− ∂F Z

∂z
+ ∂F R

∂u

(
∂v

∂z
+ u

r

)]
.
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In thez-direction, we obtain

sn+1/2
i, j+1/2,L = sn + 1

2

[
1− 4t

4z

1

φ

∂F Z

∂s

]
4sVL ,M − 4t

2φ
[∇ · (H∇PC)]

+ 4t

2φ

[
−∂F Z

∂φ

4φVL

4z
− F R

r
− ∂F R

∂r
+ ∂F Z

∂v

(
∂u

∂r
+ u

r

)]
.

We computeu/r as

u

r
= 1

2

(
ui+1/2, j + ui−1/2, j

)/
r,

wherer is the radius computed at the center of cell(i, j ). We computeF R/r by calculating
F R at the center of cell(i, j ). In addition, we note that if the flux function is a linear
function of velocity, then the extrapolation formulas in cylindrical coordinates and Cartesian
coordinates are the same.

Riemann problem. The Taylor series extrapolation produces two saturations at each
edge—one extrapolated from the left and one extrapolated from the right. We choose the
correct edge-centered value by solving the Riemann problem. Solving the Riemann problem
is central to Godunov’s method; as a result, it has been widely studied in the literature. Allen
et al. [1] and LeVeque [15] provide a general description of Riemann problems for scalar
conservation laws.

Stated in general terms, the Riemann problem is the initial value problem

∂s

∂t
+ ∂F(s)

∂x
= 0, (23)

with initial conditions

s(x, 0) =
{

sL, x < 0
sR, x > 0.

(24)

Osher [20] states that the solution to this problem is to choose thes that produces a global
extremum of the flux function. Specifically, ifsL < sR, then choose the value ofsbetweensL

andsR that produces the minimum flux. IfsL > sR, then choose the value ofs that produces
the maximum flux. This solution method requires the computation of critical states,sC,
such that (∂F/∂s)(sC) = 0. In this work, the critical states are computed using Newton’s
method.

3.1.3. Pressure Equation

In Section 2.2, we derived a pressure equation (15):

∇ · [(λG+ λL)(∇PG)] = ∇ · [(λGγG+ λLγL)(∇z)] +∇ · (λL∇PC). (25)

If we use the Ergun equation, then this pressure equation is nonlinear because the phase
mobilities depend on the pressure. We linearize the gas pressure around iterationk,

∇ · [(λk
G+ λk

L

)∇δpk+1
] = ∇ · [(λk

GγG+ λk
LγL
)∇z

]+∇ · [λk
L∇PC−

(
λk

G+ λk
L

)∇Pk
G

]
,

(26)
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where

δpk+1 = Pk+1
G − Pk

G.

This pressure equation is discretized using the discrete divergence operator (19) and gradient
operator (18). We solve forδpk+1 using multigrid-accelerated Gauss–Seidel with Red–Black
ordering; each iteration is a multigrid V-cycle. Due to the nonlinearity of the problem, we
must recalculate the coefficients between iterations.

3.1.4. Darcy’s Law

In Section 2.2, we derived an expression for total velocity (17):

vT = −(λL + λG)∇PG− (λLρL + λGρG)g∇z+ λL∇PC.

This equation is also discretized using the discrete gradient operator (18). The numerical
implementation of Ergun’s equation is difficult because of the nonlinearity of the phase
velocity. Using the Ergun equation, Darcy’s law takes the form

vp = −λp(sp, |vp|, µp)(∇Pp + γp∇z). (27)

If we examine this equation, we notice thatvp appears on both sides of the equation; this
makes solving the equation difficult as neither laggingvp nor iterating onλp andvp works
very well. Laggingvp effectively ignores the velocity’s dependence on phase mobility
which can be a significant effect. Iterating onλp andvp frequently does not converge to a
solution.

However, it is possible to manipulate equation (27) into a form where we can solve for
vp explicitly. Using the Kozeny–Carman correlation for permeability (5), we defineAp and
Bp as

Ap ≡ µp

k

Bp ≡
(

1.8(1− φ)ρp

µpdeφ3gc

)
µp.

In addition, we define a force vector,2p, which includes the effects of the pressure gradient
and the gravity term:

2p ≡ (∇Pp + γp∇z). (28)

With these definitions, we can rewrite Darcy’s law as

vp = −λp2p. (29)

If we expand the phase mobility term in (29), replace all thevp terms using (28), and
solve the resulting quadratic equation, we obtain

λp(sp, |2p|, µp) = 2kRp

Ap

(
1+

√
1+ 4Bp|2p|kR p

Ap ∗ Ap

) . (30)
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This equation expresses phase mobility in a form that is not dependent on phase velocity.
If we use (30) to express the phase mobility, then the phase velocity no longer appears on
both sides of (27):

vp = −λp(sp, |2p|, µp)(∇Pp + γp∇z). (31)

As a result, Darcy’s law is much easier to solve.

3.1.5. State Update

For this problem, there is a specific order in which the phase properties are computed. The
first step is to compute the capillary pressure as a function of saturation using the Leverett
capillary pressure correlation (12) with Grosser’s correlation (13). Next, we compute the
liquid pressure using the definition of capillary pressure (11). Then, we compute the phase
mobilities. If we are using the Ergun equation, we must utilize the reformulation of the
Ergun equation (30) to avoid the dependence of mobility on phase velocity; otherwise,
we may use the more standard form of phase mobilities (4). Finally, we calculate phase
velocities using Darcy’s law (3).

3.1.6. Implementation of Boundary Conditions

The boundary conditions for this problem were specified in Section 2.3. Since the two
main equations that we solve are an equation for gas pressure and an equation for liquid
saturation, the specified boundary conditions must be translated into boundary conditions
on gas pressure and liquid saturation.

At the impermeable walls, the physical boundary condition is that the normal component
of the phase velocity is zero. Using Darcy’s law, this implies

∂PG

∂n
= −ρGg∇z,

wheren is the direction normal to the wall. For the saturation equation, we specify that the
flux of saturation,F , through the wall is zero. In addition, we also specify that the saturation
gradient normal to the wall is zero.

At the outlet, we specify the gas pressure and that the normal derivative of capillary
pressure is zero. Assuming that the outlet is oriented in thez-direction, and using the chain
rule onPC(φ, s), we obtain

∂s

∂z
= −

∂PC
∂φ

∂PC
∂s

∂φ

∂z
.

All three terms on the right-hand side of the equation can be calculated analytically at cell
edges. If we are not including capillary pressure effects, then we specify that the saturation
gradient in thez-direction is zero.

There are two cases to consider for inlet boundary conditions. In the first case, we
specify the liquid saturation and gas pressure gradient. Since these are the variables we
need specified, there is no need to translate the boundary conditions.

In the second case, we attempt to specify physical quantities that are easier to measure
experimentally: the average gas velocity at the inlet,vAVG

G , and the liquid velocity at each
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cell along the inlet,vL(x, zTOP). These velocity boundary conditions must be translated into
boundary conditions forsL andPG.

We index each of theN inlet cells with the superscripti . We denote the component of the
liquid velocity normal to the inlet by the scalarvL and the component of the force vector
(as defined in (28)) for the liquid phase that is normal to the inlet by the scalarθL. With this
notation, we can write theN equations for liquid velocity as

vi
L Ai = −λi

Lθ
i
L Ai , i = 1, N,

whereAi is the cross-sectional area at the inlet of celli . In addition, we write the constraint
equation for gas velocity as:

vAVG
G ∗ ATOP= −

N∑
i=1

Aiλi
Gθ

i
G,

where ATOP is the cross-sectional area at the inlet for the entire reactor andθ i
G is the

component of the force vector for the gas phase that is normal to the inlet.
Using theseN + 1 equations, we can solve forN + 1 unknowns at the inlet, that is, the

N liquid saturations,si , and the gas pressure at the top,PTOP. To determine these values
we write the equations in residual form and then solve forsi and PTOP using a Newton
iteration scheme. We repeat the Newton iterations until the sum of the squared residuals is
less than our specified tolerance.

The Newton iteration equations can be written in matrix form as

0=
[

fi

fN+1

]
+
[

∂ fi
∂si

∂ fi
∂PTOP

∂ fN+1

∂si
∂ fN+1

∂PTOP

] [
δsi

δPTOP

]
,

where f i is the residual for thei th equation. These residuals are defined as

f i = Ai vi
L + Aiλi

Lθ
i
L, i = 1, N

f N+1 =
N∑

i=1

(
Ai vAVG

G + Aiλi
Gθ

i
G

)
,

and their derivatives with respect tosi andPTOP are

∂ f i

∂si
= Ai ∂λ

i
L

∂si
θ i

L , i = 1, N

∂ f i

∂PTOP
= Ai

(
∂λi

L

∂θ i
L

θ i
L + λi

L

)
∂θ i

L

∂PTOP
, i = 1, N

∂ f N+1

∂si
= Ai ∂λ

i
G

∂si
θ i

G, i = 1, N

∂ f N+1

∂PTOP
=

N∑
i=1

Ai

(
∂λi

G

∂θ i
G

θ i
G+ λi

G

)
∂θ i

G

∂PTOP
.

This linear system can be solved to give closed-form solutions forδsi andδPTOP.
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4. RESULTS

In this section, we describe the results from three series of test problems. The first test
problem is a simple one-dimensional problem, for which we can construct an exact solution;
here we examine the effects of the slope-limiting algorithm. The second problem is the
advection of a smooth Gaussian distribution of saturation, which we use to demonstrate the
second-order accuracy of the algorithm. The final problem explores the effects of capillary
pressure, the Ergun equation, and variable porosity. In this section, saturation always refers
to liquid saturation; the value of the gas saturation can be computed from (1).

4.1. Problem 1: Comparison with an Exact Solution

There are very few experimental or computational results in the open literature that are
suitable for comparison with the model in this paper. As a result, we define a one-dimensional
problem with an exact solution in order to validate the model for a simple case; in addition,
we will use this simple problem to examine the effects of the slope-limiting algorithm.

In this problem, we use Cartesian coordinates and neglect the effects of gravity, capillary
pressure, and the Ergun equation. We initialize the reactor as a Riemann problem centered
at x = 0.5 with a left state of 1.0 and a right state of 0.0. We impose Dirichlet boundary
conditions on saturation atx = 0 andx = 1. As a result of these boundary conditions, the
total velocity is constant and the pressure equation does not need to be solved; we simply
specify that the total velocity is 2.0.

The exact solution is constructed using Oleinik’s solution to the Riemann problem [19].
For this problem (sR > sL), Oleinik’s solution is to replace any convex portions of the
flux function with straight lines. Any parts of the modified flux function that are straight
lines are shocks, while any smoothly varying regions are rarefactions. Figure 1 shows the

FIG. 1. Flux function and its modified convex hull. The straight line from 0 to 0.4468 indicates the presence
of a shock.
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FIG. 2. Saturation profiles for the 1D problem.

flux function and its convex hull for this problem. The straight line from 0.0 to 0.4468
indicates that we expect a shock between these two saturations. In addition, we expect a
rarefaction between 0.4468 and 1.0. The shock speed, in this case 3.241, follows from the
Rankine–Hugoniot condition.

We run two one-dimensional simulations; one uses normal van Leer slopes, while the
other uses theχ correction to the van Leer slopes. Both of these simulations are run for
350 time steps with a CFL number of 0.9 on a grid with 500 grid points. The results of
these two simulations, along with the exact solution, are shown in Fig. 2. As expected, both
simulations correctly predict the gross features of the exact solution.

Figure 3 shows an enlarged view of these solutions around the shock. Here we can see
that the simulation using van Leer slopes predicts an incorrect location of the rarefaction
and the shock (this problem is alluded to in [1, 6]). On the other hand, the simulation using
modified van Leer slopes (i.e., the van Leer slopes with theχ correction) more accurately
predicts the location of the rarefaction and the shock.

4.2. Problem 2: Gaussian Distribution

In this problem, we advect a Gaussian distribution of saturation in order to demonstrate
the second-order accuracy of the method for smooth data. In the first case, we neglect
the effects of capillary pressure and the Ergun equation, and use the Cartesian coordinate
system. The reactor has a uniform porosity of 0.35. We run the simulations to the same time
at four different grid resolutions—32× 32, 64× 64, 128× 128, and 256× 256.

We determined the error in the solution by comparing the saturation on a particular grid
with the saturation on the next finer grid. Then, by comparing errors on successive grids, we
computed convergence rates. In Table I we present the error and rates of convergence for
this test problem. Due to the slope limiter in the advection algorithm, we see second-order
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FIG. 3. A closeup of the solution for the 1D problem. The solution using normal van Leer slopes incorrectly
predicts the rarefaction and the location of the shock. The solution using theχ correction, denoted as modified
slopes, predicts the rarefaction and shock location more accurately.

convergence in theL1 norm only; theL2 andL∞ norms are within the expected ranges for
a slope-limited, second-order algorithm.

In the second case, the effects of capillary pressure and the Ergun equation are included,
and the calculation is done in cylindrical coordinates. As in the first case, the reactor has
a uniform porosity of 0.35 and the simulations are run to the same time on four different
grid resolutions—32× 32, 64× 64, 128× 128, and 256× 256. The convergence results
for these simulations are shown in Table II; again, we obtain second-order convergence for
our algorithm.

4.3. Problem 3: Physical Effects

In this problem, we first demonstrate that the algorithm is second-order accurate for more
complicated problems and then explore some of the more complicated physical effects
present in the reactor. All of the simulations in this subsection use cylindrical coordinates
and the nonlinear inlet boundary condition described in Section 3.1.6. In these simulations,
we usevAVG

G = −0.01 andvL(r, zTOP) = −0.005. In addition, we specify that the reactor

TABLE I

Convergence Rate of Saturation inx–z Coordinates Without Capillary Pressure

and Without the Ergun Equation

Norms 32–64 Rate 64–128 Rate 128–256

L1 3.593e-5 2.05 8.662e-6 2.07 2.068e-6
L2 1.210e-4 1.79 3.508e-5 1.79 1.011e-5
L∞ 8.957e-4 1.29 3.664e-4 1.44 1.347e-4



TABLE II

Convergence Rate of Saturation inr–z Coordinates with Capillary Pressure and

with the Ergun Equation for Smooth Initial Conditions

Norms 32–64 Rate 64–128 Rate 128–256

L1 1.006e-5 1.93 2.646e-6 2.01 6.548e-7
L2 4.437e-5 1.69 1.371e-5 1.87 3.763e-6
L∞ 4.734e-4 1.23 2.018e-4 1.20 8.782e-5

TABLE III

Convergence Rate of Saturation inr–z Coordinates with Capillary Pressure

and with the Ergun Equation

Norms 32–64 Rate 64–128 Rate 128–256

L1 1.235e-0 1.42 1.847e-0 2.32 1.479e-0
L2 1.048e-1 1.05 1.011e-1 1.64 6.489e-2
L∞ 1.579e-2 0.37 1.219e-2 0.93 6,399e-3

FIG. 4. Error in solution on 128× 128 grid. The error is concentrated around the shock.

FIG. 5. Saturation at timet = 2.0 with no porosity variation using 12 equally spaced contours.

329
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TABLE IV

Summary of Simulations of the Effects of Capillary Pressure and the Ergun Equation

Figure Ergun effects Capillary pressure effects Porosity Maximum saturation Minimum saturation

5 no no 0.35 0.46513 0.25000
6(a) no no Eq. (32) 0.46848 0.25000
6(b) yes no Eq. (32) 0.49578 0.25000
7(a) no yes Eq. (32) 0.50618 0.13844
7(b) yes yes Eq. (32) 0.53530 0.13865

has a radius of 0.14605 and a height of 0.2286; initially it contains fluid with a saturation
of 0.25.

We performed a convergence study on the problem with capillary pressure, the Ergun
equation, and variable porosity (this corresponds to the case shown later in Fig. 7b). The
results, presented in Table III, show that even though we have added more complicated
physics, we still obtain second-order convergence. Figure 4 shows that the error on the
128× 128 grid is concentrated around the shock.

Next, we examine the effects of the Ergun equation, capillary pressure, and variable
porosity by running five different simulations to timet = 2.0 on a 128× 128 grid. In the
first simulation, we neglect the effects of capillary pressure and the Ergun equation. In
addition, the reactor has a uniform porosity of 0.35. As shown in Fig. 5, this simulation
produces a one-dimensional saturation profile. In the next four simulations the porosity
profile varies in ther -direction; the profile is uniform through most of the domain, but
increases rapidly near the outer wall such that

φ(r ) = 0.35+ 0.07

(
e50r

e50R

)
, (32)

whereR is the radius of the reactor.

FIG. 6. Saturation with porosity variation at timet = 2.0 using 12 equally spaced contours: (a) without
capillary pressure and without the Ergun equation; (b) without capillary pressure and with the Ergun equation.
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FIG. 7. Saturation with porosity variation at timet = 2.0 using 12 equally spaced contours: (a) with capillary
pressure and without the Ergun equation; (b) with capillary pressure and with the Ergun equation.

Table IV summarizes the five simulations; in this table, “yes/no” signifies whether capil-
lary pressure effects and Ergun effects are or are not included in the simulation. The results
of these simulations are shown in Figs. 6 and 7. All of these figures use the same scale and
contour interval so they can be easily compared.

By examining Figs. 6 and 7, we observe two effects of the Ergun equation: (1) it decreases
the speed of the front and (2) it increases the saturation of the front. Thus, the Ergun equation
appears to change the magnitude of various properties of the solution, but does not change
the qualitative character of the solution.

On the other hand, capillary pressure tends to change the character of the solution. It is
well known that capillary pressure acts as a diffusive force [1]; in these simulations, we
note that capillary pressure causes the saturation front to “smear.” In addition, in the region
downstream from the front, the capillary pressure causes the liquid phase to diffuse from
the high-porosity region to the low-porosity region.

5. CONCLUSIONS

This paper describes an algorithm for solving a simplified flow problem in a trickle bed
reactor. Flow in a trickle bed reactor is governed by equations of flow in porous media, such
as Darcy’s law and conservation of mass for each component. By using a total-velocity
formulation, we transformed these governing equations into a system of equations suitable
for a sequential algorithm. This transformation split the problem into an elliptic pressure
equation, an advection–diffusion equation that describes conservation of mass, and an
equation for total velocity.

The elliptic pressure equation was solved using a multigrid-accelerated iterative method.
The saturation equation was solved using a combination of Godunov’s method and the
multigrid-accelerated iterative method. The equation for total velocity used a reformulation
of the Ergun equation that eliminated the nonlinear dependence on phase velocity. These
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three equations formed the basis for the sequential predictor–corrector algorithm that we
implemented.

We applied this algorithm to several test problems. For a simple one-dimensional problem,
the algorithm converged to the exact solution and the modified slope limiting algorithm
placed the shock and the rarefaction more accurately than standard van Leer slopes. The
algorithm was shown to be second-order accurate. Finally, the code was used to explore the
effects of capillary pressure, spatial porosity variations, the Ergun equation, and a nonlinear
inlet boundary condition.

This work is meant as an initial step toward the design of a more complicated simulator
of flow in a trickle bed reactor; several other improvements are necessary to handle the
complicated physics inside a trickle bed reactor. These improvements include using a com-
pressible gas phase, using multiple phases and components, and including heat and mass
transfer and chemical reactions. Most of these changes simply involve reformulating the
governing equations to include the appropriate physical effects; then the same numerical
framework can be used to solve them. For example, Trangenstein and Bell [26, 17] modeled
petroleum reservoir flow with multiple phases and components and a compressible gas phase
by casting the governing equations in terms of component masses instead of saturations.
Other potential improvements to this work are extending it to a more realistic geometry,
such as a three-dimensional coordinate system, and using adaptive mesh refinement to focus
the computational effort where it is needed in the problem domain.
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