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Trickle bed reactors are governed by equations of flow in porous media such as
Darcy’s law and the conservation of mass. Our numerical method for solving these
equations is based on a total-velocity splitting, sequential formulation which leads
to an implicit pressure equation and a semi-implicit mass conservation equation.
We use high-resolution finite-difference methods to discretize these equations. Our
solution scheme extends previous work in modeling porous media flows in two
ways. First, we incorporate physical effects due to capillary pressure, a nonlinear
inlet boundary condition, spatial porosity variations, and inertial effects on phase
mobilities. In particular, capillary forces introduce a parabolic component into the
recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity.
Second, we introduce a modification of the slope-limiting algorithm to prevent our
numerical method from producing spurious shocks. We presenta numerical algorithm
for accommodating these difficulties, show the algorithm is second-order accurate,
and demonstrate its performance on a number of simplified problems relevant to
trickle bed reactor modeling. © 2000 Academic Press
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1. INTRODUCTION

A trickle bed reactor is a fixed bed of catalyst particles through which gas and liqu
are allowed to flow. Typically the gas and liquid flow concurrently downward throug!
the reactor; the liquid phase flows over the catalyst as a thin film, while the gas ph:
flows continuously between the catalysts [22]. These reactors have been used mainly ir
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petroleum industry for hydrotreating processes, such as hydrodesulfurization and hydr
racking. However, there are applications in other fields, such as chemical processing, wi
treatment, and biochemical processing [13].

There have been a few numerical simulations of flow distribution in a trickle bed reactc
For example, Staneét al. [24] used a radial diffusion model, while Zimmerman and Ng
[30] used a computer-generated model of randomly packed spheres. Anderson and S
[2] modeled areactor using the same general porous media equations that are typically t
in petroleum reservoir simulations (for a description of petroleum reservoir simulation
see the book by Aziz and Settari [3] or the paper by Steveasah[25]).

Although there has been relatively little effort in modeling trickle bed reactors, simile
porous media problems have been modeled extensively, mainly in the context of subsuri
flows (typically petroleum reservoirs). While the same general governing equations mo
flow in a reactor and flow in a reservoir, there are a few key differences. First of all, the
are geometry and size differences. Reactors are typically cylindrical and 10—30 meters
[13]; on the other hand, petroleum reservoirs are typically much larger than reactors ¢
have a large aspect ratio. Secondly, porosities are typically larger in reactors. Finally,
speed of the flow differs substantially. In a reactor, gas velocities typically range from 0.
to 0.5 m/s, while liquid velocities range from 0.005 to 0.025 m/s. In a reservoir, velocitie
are typically 5x 107® m/s [2].

The larger velocities in the reactor have a significant effect on the governing equatio
Normally, Darcy’s law is used to model the effects of phase pressure on phase veloc
however, Darcy’s law is not accurate at higher velocities. To account for the discrepanc
at higher velocities, we modify Darcy’s law by using the Ergun equation (this is discuss
in detail in Section 2.1).

The equations governing flow in a reactor are coupled and nonlinear. We reformul:
these governing equations using the sequential method pioneered by Spillette [23]. In’
formulation, we solve a pressure equation and then compute a total velocity; this tc
velocity is then used in the saturation equation instead of the individual phase velociti
Using total velocity in the saturation equation decouples the hyperbolic and elliptic piec
of the two-phase flow equations [27].

These equations are solved using the higher order Godunov techniques for hyperb
equations outlined in Beét al.[6]. Other authors have used these techniques for modelin
porous media flow; for example, Trangenstein and Bell [26, 27] modeled mass trans
between phases and Nelson [18] modeled time-varying porosity.

Our work focuses on two extensions of the methods in [6]. First, we introduce mo
complicated physical effects into the problem and show that these effects can be mode
with second-order accuracy. We include capillary pressure effects which introduce nonl
ear parabolic terms in the saturation equation. In addition, we introduce a nonlinear in
boundary condition where we specify physically measurable quantities—the liquid veloci
and the average gas velocity. We use a novel reformulation of a modified Ergun equat
to model the nonlinear inertial effects due to the larger velocities present in the react
Second, we introduce a modification of the slope-limiting algorithm proposed by Colel
[10] to prevent our numerical method from producing spurious shocks.

The rest of this paper describes the equations used to model the reactor and the nu
ical algorithm used to solve these equations. Section 2 describes the mathematical m
of the reactor and the reformulation of the governing equations into an elliptic equatit
for pressure and an advection—diffusion equation for saturation. Section 3 describes
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implementation of the sequential algorithm. We discuss the solution of the pressure ec
tion using a multigrid-accelerated iterative method [8] and the saturation equation usi
a Crank—Nicolson scheme and a multidimensional upwind method. Section 4 shows
effects of the slope-limiting algorithm and demonstrates that the algorithm is second-or
accurate. In addition, simulations show the effects of the modified Ergun equation, capill
pressure, porosity variation, and the nonlinear inlet boundary condition.

2. MATHEMATICAL FORMULATION

In this section, we specify the governing equations, auxiliary relations, and bounds
conditions for a trickle bed reactor. Then we derive a system of equations that is suitable
a sequential solution method. We assume a basic knowledge of porous media; for a n
detailed examination of porous media, see Bear [4] or Collins [11].

2.1. Governing Equations

In this paper we use a simplified model of flow in the reactor. These assumptions are
necessary for our numerical algorithm to work; however, they do simplify the algorithr
We make the following assumptions about the flow:

(1) There are only two components present: component A and component B. In additi
there are only two phases: the liquid phase and the gas phase. Component A exists on
the liquid phase and component B exists only in the gas phase.

(2) The phase densities and phase viscosities are constant.

(3) Porosity is not a function of time, but it can be a function of space.

As a result of assumption (1), we can use the terms “phase” and “component” interchan
ably in this paper. We will denote the liquid phase by the subscript L and the gas phase
the subscript G.

With these assumptions, the three main equations governing the flow are conservatio
volume, conservation of mass, and Darcy’s law,

3(Sp)
¢ Ttp +V-vp=0 2

wherey, = (ppd/9c) is a grouping of gravity terms ars}, pp, Vp, Pp, andi, represent

the saturation, density, velocity, pressure, and mobility of pt@ade addition, g is the

acceleration due to gravity, is the porosityg, is the gravity conversion factog{ = 1 in

the metric system), denotes time, and is the upward-directed coordinate. These three

equations must be augmented by auxiliary correlations to make the system solvable.
The phase mobility of phageis defined as

kRp
rp = ko 2. 4
PR 4)

wherek, is the phase permeabilitgz, is the relative permeability of phage and, is
the viscosity of phase. The expressions for permeability, relative permeability, and phas
viscosity are typically problem dependent.
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In reservoir simulations, the Kozeny—Carman equation [9] is typically used to expre

permeability as
243
kp — de¢ gC , (5)
Ci(1—-¢)?

whered, is the pore diameter, ar@@} = 180. The combination of the form of phase mobility
defined in (4), the equation for permeability defined in (5), and Darcy’s law (3) imply the
the pressure gradient is linearly proportional to the velocity. However, several experimer
and theoretical investigations have shown that there is not a simple linear dependenc
larger velocities. MacDonalet al. ran experiments and determined that a modified Ergur
equation provided a better fit to experimental data [17],

— 2 — -1
kp=(cl(l 9 G0 ¢)pp|vp|> ’ ©6)

dg¢3gc Mpde¢3gc

whereC; = 180 andC, = 1.8. We note that the first term of the equation is simply the
standard permeability as expressed in the Kozeny—Carman equation (5), while the sec
term captures the nonlinear inertial effects. If we insert Ergun’s equation (6) and the de
nition of phase mobility (4) into Darcy’s law (3), we note thgtappears on both sides of
the equation; we will deal with this nonlinearity in Section 3.1.4 by reformulating Ergun’
equation.

Using available experimental data on flow in packed beds, Saez and Carbonell [:
correlated the relative permeability functions as

243

s— - S'—irr
KrL = (m) (7)
kre = (s6)*%, 8

wheres,,, is the irreducible saturation of the liquid phase. Using available data, Saez a
Carbonell [21] correlated the irreducible liquid saturation as

S = ot 055 ©)
where B'is the E5tvos number
242
E6 = %, (10)
ando is the surface tension between the gas and liquid phases.
The capillary pressure between phase L and phad® Qs defined as
Pc = Ps — PL. (11)

Leverett [16] proposed the following form for capillary pressure in an arbitrary porou

media:
Pc ZGJ(SL)\/E (12)
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whereJ(s.) is a dimensionless function. Grossral. [14] approximated the function
of Leverett using

J(s) = 048+ o.osam(lgf). (13)

2.2. Total Velocity Formulation

The equations of flow in porous media exhibit both elliptic and parabolic behavior. F
example, pressure effects are instantaneously felt throughout the reservoir, while sature
fronts move at a finite speed [7]. Our numerical algorithm treats these effects separa
by splitting the system of governing equations into an elliptic pressure equation anc
hyperbolic—parabolic saturation equation.

In a manner similar to the work of Watts [29], we define a total velocity as

VT =V + VG. (14)

As a result of the simplified conservation of volume (1) and conservation of mass (
equations, the total velocity is divergence-free. Using the definition of total velocity ar
Darcy’s law (3), we obtain the pressure equation

V[ +26)(VPe)] = V- [(Aeys + ALy) (VD] + V- (AL V). (15)

We use the total velocity to eliminate the phase velocity from the conservation of me
equation (2)

s,
¢ TV (Fs,vn) ==V - [HE)VP], (16)
where
AL(vT — GAg)
F(sL.vr) = — >
(S, V1) Lt o
G=(L—re)Vz
_ A AG
C AtAc

The motivation for this substitution is that in incompressible problems with no capillar
pressure, the use of total velocity splits the system into elliptic and hyperbolic pieces.
We can also expand the total velocity in terms of phase mobilities and pressures:

Vi =—(L +Ac)VPs — (ALpL + Aepcs)dVZ+ AL VP, (17)

This reformulation has resulted in three main equations: a hyperbolic—parabolic saturat
equation (16), an elliptic pressure equation (15), and an equation for total velocity (17). \
can now apply appropriate numerical techniques to each type of equation.
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2.3. Boundary Conditions

In order to make our system solvable, we also need to specify boundary conditions.
assume that there is an inlet at the top of the reactor and an outlet at the bottom of
reactor; the other edges are assumed to be impermeable walls.

Atthe impermeable walls, the normal components of the velocities are zero. From Darc
law, it follows that the pressure gradient normal to the wall is zero at vertical walls.

At the outlet, we specify the gas pressure; this condition results from the assumpti
that flow exits the reactor into a region at ambient pressure. In addition, we specify that:
normal derivative of capillary pressure be zero; in effect, this means that we will have |
boundary layer at the outlet.

At the inlet, we use two different sets of boundary conditions. In the first set of bounda
conditions, we specify quantities that are easy to implement numerically in our algorithm:
liquid saturation and the pressure gradient. In the second set of boundary conditions,
specify conditions that can be measured experimentally. In this case, we specify the avel
gas velocity at the top of the reactof®, and the liquid velocity at each cell along the top
of the reactory, (X, zrop).

3. NUMERICAL ALGORITHM

In the last section, we recast the governing equations into a system of three equations
elliptic pressure equation (15), an advection—diffusion equation for saturation (16), and
equation for total velocity (17). This section discusses the solution of those three equatic

We discretize the reactor using a finite volume discretization by covering the react
with a mesh of grid cells. We use one of two different two-dimensional coordinate systel
for these grid cells: (1) am—z Cartesian coordinate system and (2)raiz cylindrical
coordinate system. In the Cartesian coordinate system, the grid cells are rectangula
size Ax by Az, and are indexed in the-direction byi and in thez-direction byj. In the
cylindrical coordinate system, the grid cells are of siaeby Az, and are indexed in the
r-direction byi and in thez-direction by j. We discretize in time using the index such
that the time stept is the difference between discrete tint@sndt"*+*,

Saturations and pressures are defined at cell centers, such that

', ~ s((i +0.5Ax, (j +05)Az,t".

Phase mobilities and the normal components of velocities are defined at cell edges and
half indices, such that?,; , ; represents the-velocity at the “right edge” of celli, j)
andv/;, 1/, represents the-velocity at the “top edge” of celli, j). Phase mobilities are
computed at cell centers and averaged to cell edges. Typically we use arithmetic avera
to compute phase mobilities; however, when the equation itself implies harmonic averag
(such as thed term in (16)), then harmonic averaging is used.

The equations are discretized using standard block-centered finite difference operat
We define the discrete gradient operd®as taking a cell-centered scalar and mapping it
into an edge-centered vector field. If we consider a cell-centered ggalaen we define
the x-component and-component of the gradient field as

div1j — dij
AX

G (@)ir1/2) = . GH@)ijra2 = % (18)
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We define the discrete divergence operafdr,as taking an edge-centered vector field
and mapping it into a cell-centered scalar. We define the divergence operator acting or
edge-centered vectbas

fi)flrl/Z' - fi)i1/2' fiz'+1/2 - fiz'fl/z
D) = *‘AX el 5 A= (19)

These discrete operators are used to discretize all of the gradients and divergences in
the governing equations—the pressure equation (15), the saturation equation (16), anc
equation for total velocity (17). As a result, there is a mathematical consistency betwe
the equations.

3.1. Algorithm Overview

The sequential algorithm advances the liquid saturation fromtirteetimet™** using a
combination of hyperbolic—parabolic and elliptic equations. The multidimensional upwir
method used to solve the hyperbolic equation was developed in [10]. This work was Iz
extended to problems that combined hyperbolic and elliptic equations in [6] and to proble
with viscous terms in [5].

We denote variables at the current time by the superstapt variables at the new time
by the superscript + 1. In addition, we denote temporary predicted variables atiirrel
by the superscript ~. With this notation, we can express the predictor—corrector schem
advance the saturation fromto n + 1 through the following steps.

Step 1. Compute the gas pressure and total velocity at the current time step. We comp
the gas pressure at the current tirfg, by solving the pressure equation:

V- [(38+20)(VPR)] = =V [(38ye + A1) (VD] = V- ([ VPY).
Next, we compute the total velocity at the current timg,
Vi =—(A' + 138 )VPE — (AlvL + Agye) VZ+ A{ VR

Step 2. Trace the liquid saturation to cell edges at the half time step. We utilize th
total velocity and saturation at the current time in Godunov’s method to compute liqu
saturation at the half time step at cell ed@éé/é (this will be discussed in Section 3.1.2).

Step 3. Approximate the total velocity at the half time step. First, we predict the tote
velocity at the next time stefr; then, we average it with the total velocity at the current
time stepy, in order to approximate the total velocity at the half time su-.grﬁ,l/z.

The first step in predictingit is to predict the saturation at the next time s&p,such
that
8§ -9 n+1/2

“S o v R ) - 1y [Ave - %v. CRCAE

¢ 2

whereF is an approximation to the flux at cell edges. The ~ superscript on the varidbles
and B¢ indicates that they are computed using the predicted satufatioraddition, we
note that this equation’s nonlinear dependence on saturation makes it difficult to solve
a result, we actually solve ad(At?) approximation to this equation. This approximation
is discussed in Section 3.1.1.
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Next, we use this predicted saturation to predict the pressure at the next timBstep,
~V  [(Ge +A)(VPG)] = =V - [Gieys + ALy)(VD)] = V- (L VPo).

Again, the ~ superscript on the phase mobilities indicates that they are computed using
predicted saturatiof. Finally, we predict the total velocity at the next time steg,

U1 = —(h +46)VPs — Gyl + Aeye)VZ + i VPe.

Then, we average the predicted velocity and the current velocity to obtain the velocity
the half time stepy}™/*:

viry2 — ! (V] + 7).

2

Step 4. Compute the liquid saturation at the next time step. Now that we have both
saturation and a velocity at the half time step, we can compute a second-order accu
saturation at the next time steg3,:

_an
9 =V F(SSEE V) - %v- [H"VPg] — %v. [HM+iy P+

As in Step 3, we only solve an approximation to this equation. We will now describe speci
pieces of the algorithm in greater detail.

3.1.1. Saturation Equation

In Section 2.2, we derived the saturation equation (16):

0
¢>a—stL +V - (F(8) = —V - [H(s) VP, (20)

Dropping the L subscript frons. for notational simplicity and using a Crank—Nicolson
discretization of (20), we obtain

sn+l+v'[ 1At }

1At At
Hn+lvp(r:‘l+1 —S ——(V~F)"+l/2—V ——H VP
2¢ ¢ 29

We use a fixed-point iteration method to linearize the discretized equation around iterat
ky

1 At

83k+1+*v- |:¢ (

5 Hlk+ly Pn+1 k+1 H”“-kvp(’:‘“'k)}
At
= rhg" — rhad"t1k — g(v . F)”H/Z,

where

85k+1 — Sn+l,k+1 _ SnJrl,k

1At
rh§=sn—V |:§?H VPC:|

1At

rh§1+1.k — Sn+l,k —-Vv. [
2¢

—H n+1, kv Pn+l k:|
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We lagH™1k+1: je., we useH"t1k+l ~ H™LK |n addition, we rewrite the capillary
pressure difference in terms 86<*1. We obtain

n+1,k
53k+1 +Vv. }g Hn+1,k & VSSHl = rhd — rhSnJrl,k _ E(V . F)n+1/2'
2 ¢ s ¢

(21)

This saturation equation is discretized using the discrete divergence operator (19)
gradient operator (18). We solve this linear equations&t* with multigrid-accelerated
Gauss—Seidel with Red—Black ordering.

We choose the time step using the Courant—Friedrichs—Lewy (CFL) condition [12],

AX
max(v)’

whereo is the CFL number and m&x) indicates the maximum wave speed in the domain.
For our conservation law, the wave speed

At <o

3.1.2. Godunov’s Method

We compute thgV - F)"*%/2 term in the saturation advection equation using a seconc
order extension of Godunov’s method. Godunov’s method is a two-step process: (1) a Ta!
series extrapolation of saturations from cell centers to cell edges at the half time step
(2) the solution of a Riemann problem using the extrapolated saturations to choose
correct edge-centered flux.

Taylor extrapolation. We denote thex-component of the total velocity by and the
z-component byw. We extrapolate saturations to cell edges at the half time step using
Taylor series extrapolation and use the saturation equation (16) to replace the temp
derivative. For example, if we extrapolate from cgllj) to edge(i + % j) in Cartesian
coordinates, we obtain

AX 3s At 9s
n+1/2 _
SvajziL =S+ 2 9x +7 at
Ax s Atl At 1
="+~ - _—_(V.-F)— —=(V-HVP).
+23X 2¢( )2¢( c)

By expandingV - F, using the chain rule oR(vT, ¢, S) in thex-direction, and utilizing the
velocity equation (14), we obtain

1 At 1 IF* s At ALA
n+1/2 n L7e
="+ -|1—-—-max{0, — | [AX ——— |V VP
S+1/2L +2{ AX ¢ < 9s )] X 2(15[ ()»L-l-)»G c)]
N At 9FX a¢+ IF* 9v  9F“
20| d¢ 9x ou 3z 9z |

Since we are extrapolating from céll j) to edge(i + (1/2), j), we only wish to consider
information (saturations, eigenvalues, etc.) from ¢ellj). We enforce this condition by

(22)
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using the max termin (22); this ensures that we only use positive characteristic wave spe:
We will use (22) to extrapolate the saturations to cell edges from the left.

SinceF(vr, ¢, s) is a known function, we can derive analytical expressions fof /ds
anddF*/3u. The computation of the phase mobilities, capillary pressure, and porosity
also straightforward.

We approximat@® F* /3¢ by

IF FX¢o+e—F @—¢
3o 2¢ ’

wheree = 0.001. In addition, we can approximaie/dx anddF%/dz as

AU Uiyrzj — Uiz

X AX
8FZ FZ,TOP_ FZ.BOT
az Az ’

whereF 2 TOP andF Z-BOT gre the fluxes obtained from solving the Riemann problem at th:
top and bottom edges of c€ll, j). We defineF 2 T°P and F %-B9T as

F&T0% = FR%(s ). 8 j40)
where FRP indicates the solution to the Riemann problem. The solution to the Riemar

problem will be discussed later in this section.
We approximat&s/dx andd¢/dx as

9s _ AsVEM
X AX
06 ApVL
X AX

whereA¢V- are second-order van Leer slopes [28] @si--M are modified second-order
van Leer slopes. van Leer slopes are defined as

A _ {sigrmsc) MinRIAS |, AS], 248D, f ASAS >0
0.0, if ASASKR <0

and the undivided differences are defined as

AS = Si1j ;S—l,j
AS =8 —S-1j
AR =SS,

Several authors [1, 6] have suggested that in the presence of non-convexity, the sec
order Godunov method can produce shocks that violate the entropy condition (see Sectiol
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for an example). To prevent these entropy-violating shocks from occurring in this work, v
use a variation of the approach in [6] to modify the algorithm in [10] slightly and apply i
to our problem to handle regions around saturation fronts. We only modify the van Le
slopes for saturation; the porosity slope calculation remains the same.

For a given cell, we first determine if additional slope limiting is necessary. The tw
criteria necessary for additional limiting are (QJF*/3s® changes sign in the region
around the cell and (2) a saturation front is present. We determine the presence of a f
by computing; ; as

IS41j —S-1,l
max(|S+1,j —S-1jl, IS+2,j —S—2jl,€)

&=

We assert that a front is present in any region wiese&H and that a smooth region occurs
wheng < £-. In a smooth region, we expegt~ %; in the presence of a front, we expect
£ — 1. Using these values as a guideline, we performed experiments andthese. 75
and&t = 0.65. Also based on experiments, we chese 0.0001 to prevent division by
zero.

To implement the additional limiting, we compute a linearly varying smoothing functior
Xi.j as

1.0, if £ <&b
Xi,jz 10 SH i;Lv IfSL<$<$H
0.0, if £ > gH.

Then, we multiply the standard van Leer slopesgby, where
Xi.j = MiN(Xi-1.j, Xi.j» Xi+1j)-

So, in summary, the extrapolation formula for the left edge in the Cartesian coordin:
system is

1 At 1 aFX At
n+1/2 VL,M
=s"+ 21— —Zmax{0, — | [Aas""M — —[V.(HVP,
S+1/2L +2[ AX ( 35 )} 2¢[ ( o)l
aFXAq)VL +3FXAU AF?
9 AX ou Az Az |

Extrapolation to the right edge is handled analogously, except that we will use inform
tion from ceII(l +1, j) instead of(i, j); as a result, we will use min, ‘*,F ) instead of
max(0, B[F ) to ensure that information is traveling in the correct dlrect|on

For our purposes, the main difference between cylindrical and Cartesian coordinate
that the divergence operator looks different. Using the same techniques as in Carte
coordinates, the extrapolation equation inthdirection is

n+1/2 n, 1 {1 At 1 9FR :|ASVL,M

S+1/2jL =S T3 T Arg ds

At] dFRAgV-  FR aFZ+aFR v u
dp Ar r 0z au \ 9z ’

At
- %[V -(HVPc)]
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In the z-direction, we obtain

1 At 19FZ
n+1/2  _ n
Firt2L =S +2{1_Az¢as

At[ IFZ ApY-  ER  HFR aFZ(au u)}

At
}ASVL'M — ﬁ[v ~(HVPo)]

p Az r 8r+8vﬁr

We computeau/r as

1
rE = E(ui+1/z,j +Uisy25) /T,

wherer is the radius computed at the center of ¢ellj). We compute=R/r by calculating

FR at the center of celli, j). In addition, we note that if the flux function is a linear
function of velocity, then the extrapolation formulas in cylindrical coordinates and Cartesi:
coordinates are the same.

Riemann problem. The Taylor series extrapolation produces two saturations at eac
edge—one extrapolated from the left and one extrapolated from the right. We choose
correct edge-centered value by solving the Riemann problem. Solving the Riemann prob
is central to Godunov’s method; as aresult, it has been widely studied in the literature. All
et al.[1] and LeVeque [15] provide a general description of Riemann problems for scal
conservation laws.

Stated in general terms, the Riemann problem is the initial value problem

0s 0dF(s)
— =0, 23
ot + aX (23)
with initial conditions
_Js, x<0O
s(x,0) = {SR’ <> 0. (24)

Osher [20] states that the solution to this problem is to choosgttm& produces a global
extremum of the flux function. Specificallyf < sg, then choose the value sbetweers.
andsg that produces the minimum flux.4f > sg, then choose the value sthat produces
the maximum flux. This solution method requires the computation of critical steies,
such that § F /3s)(sc) = 0. In this work, the critical states are computed using Newton'’s
method.

3.1.3. Pressure Equation

In Section 2.2, we derived a pressure equation (15):
V- [(he +A)(VPe)] =V - [(Aeye + ALYL)(VD)] + V - (ALVPC). (25)

If we use the Ergun equation, then this pressure equation is nonlinear because the p
mobilities depend on the pressure. We linearize the gas pressure around iteration

V(A& + M) VP = V- [(Aye + M) VZ] + V- [M VP — (A + Af) VPE].
(26)
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where
8pk+1 — Pé-‘rl _ Plé

This pressure equation is discretized using the discrete divergence operator (19) and gra
operator (18). We solve fép*+! using multigrid-accelerated Gauss—Seidel with Red—Blacl
ordering; each iteration is a multigrid V-cycle. Due to the nonlinearity of the problem, w
must recalculate the coefficients between iterations.

3.1.4. Darcy’'s Law

In Section 2.2, we derived an expression for total velocity (17):
Vr = —(AL +Ac)VPs — (ALpL + Aepe)9VZ+ AL VPc.

This equation is also discretized using the discrete gradient operator (18). The numer
implementation of Ergun’s equation is difficult because of the nonlinearity of the pha
velocity. Using the Ergun equation, Darcy’s law takes the form

If we examine this equation, we notice thgtappears on both sides of the equation; this
makes solving the equation difficult as neither laggiganor iterating om., andv, works
very well. Laggingv, effectively ignores the velocity’s dependence on phase mobility
which can be a significant effect. Iterating bp andv,, frequently does not converge to a
solution.

However, it is possible to manipulate equation (27) into a form where we can solve f
vp explicitly. Using the Kozeny—Carman correlation for permeability (5), we definand
Bp as

_ HMp
Ap =7

(181 —9¢)pp
sz( I pde®de )Mp'

In addition, we define a force vect@,,, which includes the effects of the pressure gradien
and the gravity term:

Op = (VPp + 1, V2). (28)
With these definitions, we can rewrite Darcy’s law as
Vp = —Ap0Op. (29)

If we expand the phase mobility term in (29), replace all thdgerms using (28), and
solve the resulting quadratic equation, we obtain

g

4B,Oplkrp \
Ap(L+ 1+ o)

)Lp(sp, |®p|vﬂp) = (30)



324 PROPP ET AL.

This equation expresses phase mobility in a form that is not dependent on phase velo
If we use (30) to express the phase mobility, then the phase velocity no longer appears
both sides of (27):

Vp = —Ap(Sp, [Opl, up)(VPp + ypV2). (31)

As a result, Darcy’s law is much easier to solve.

3.1.5. State Update

For this problem, there is a specific order in which the phase properties are computed.
first step is to compute the capillary pressure as a function of saturation using the Leve
capillary pressure correlation (12) with Grosser’s correlation (13). Next, we compute t
liquid pressure using the definition of capillary pressure (11). Then, we compute the ph:
mobilities. If we are using the Ergun equation, we must utilize the reformulation of th
Ergun equation (30) to avoid the dependence of mobility on phase velocity; otherwi:
we may use the more standard form of phase mobilities (4). Finally, we calculate phz
velocities using Darcy’s law (3).

3.1.6. Implementation of Boundary Conditions

The boundary conditions for this problem were specified in Section 2.3. Since the t
main equations that we solve are an equation for gas pressure and an equation for lic
saturation, the specified boundary conditions must be translated into boundary conditi
on gas pressure and liquid saturation.

At the impermeable walls, the physical boundary condition is that the normal compone
of the phase velocity is zero. Using Darcy’s law, this implies

0Pg
— = —pcgVz,

an
wheren is the direction normal to the wall. For the saturation equation, we specify that tt
flux of saturationF, through the wall is zero. In addition, we also specify that the saturatio|
gradient normal to the wall is zero.
At the outlet, we specify the gas pressure and that the normal derivative of capills
pressure is zero. Assuming that the outlet is oriented iz-theection, and using the chain
rule onPc(¢, s), we obtain

s 5E ag

0z~ % gz
S
All three terms on the right-hand side of the equation can be calculated analytically at ¢
edges. If we are not including capillary pressure effects, then we specify that the saturat
gradient in thez-direction is zero.

There are two cases to consider for inlet boundary conditions. In the first case,
specify the liquid saturation and gas pressure gradient. Since these are the variable:
need specified, there is no need to translate the boundary conditions.

In the second case, we attempt to specify physical quantities that are easier to mea
experimentally: the average gas velocity at the inl§®, and the liquid velocity at each



NUMERICAL MODEL FOR TRICKLE BED REACTOR 325

cell along the inlety, (X, zrop). These velocity boundary conditions must be translated int
boundary conditions fog. and Pg.

We index each of th&\ inlet cells with the superscript We denote the component of the
liquid velocity normal to the inlet by the scalar and the component of the force vector
(as defined in (28)) for the liquid phase that is normal to the inlet by the sgaldith this
notation, we can write thdl equations for liquid velocity as

WA =M A, i=1N,

whereAl is the cross-sectional area at the inlet of celih addition, we write the constraint
equation for gas velocity as:

N
AVG * ATop = Z AI )\.IGQG,
i=1

where Arop is the cross-sectional area at the inlet for the entire reactorggrid the
component of the force vector for the gas phase that is normal to the inlet.

Using theseN + 1 equations, we can solve fof + 1 unknowns at the inlet, that is, the
N liquid saturationss', and the gas pressure at the t®J°F. To determine these values
we write the equations in residual form and then solvesfaand PTOP using a Newton
iteration scheme. We repeat the Newton iterations until the sum of the squared residua
less than our specified tolerance.

The Newton iteration equations can be written in matrix form as

afi af
O—|: fi ]+ el JpToP [ 8S :|
fnt1 Mvaa Bingy | [ 8Prop ’

as'

where f' is the residual for theth equation. These residuals are defined as

fl=Av + A, i=1N
N
fN+l — Z (AiVéVG + AI)‘-IGQIG)v
i=1

and their derivatives with respectsband PTO are

af! A
= AL 9,_, i=1N
3s as'
af LA o 86 .
fN+1 . )“I
if—zNiﬁ', i=1N
3s as ©

afN+t N any .\ 06
E: 0L + Ay | —==.
HPTOP 0% JPTOP

This linear system can be solved to give closed-form solutionssfoands PTOP.
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4. RESULTS

In this section, we describe the results from three series of test problems. The first 1
problem is a simple one-dimensional problem, for which we can construct an exact solutit
here we examine the effects of the slope-limiting algorithm. The second problem is t
advection of a smooth Gaussian distribution of saturation, which we use to demonstrate
second-order accuracy of the algorithm. The final problem explores the effects of capill:
pressure, the Ergun equation, and variable porosity. In this section, saturation always re
to liquid saturation; the value of the gas saturation can be computed from (1).

4.1. Problem 1: Comparison with an Exact Solution

There are very few experimental or computational results in the open literature that :
suitable for comparison with the modelin this paper. As aresult, we define a one-dimensic
problem with an exact solution in order to validate the model for a simple case; in additic
we will use this simple problem to examine the effects of the slope-limiting algorithm.

In this problem, we use Cartesian coordinates and neglect the effects of gravity, capill
pressure, and the Ergun equation. We initialize the reactor as a Riemann problem cent
atx = 0.5 with a left state of 1.0 and a right state of 0.0. We impose Dirichlet boundar
conditions on saturation at= 0 andx = 1. As a result of these boundary conditions, the
total velocity is constant and the pressure equation does not need to be solved; we sin
specify that the total velocity is 2.0.

The exact solution is constructed using Oleinik’s solution to the Riemann problem [1¢
For this problem & > 5.), Oleinik’s solution is to replace any convex portions of the
flux function with straight lines. Any parts of the modified flux function that are straigh
lines are shocks, while any smoothly varying regions are rarefactions. Figure 1 shows

flux
convex hull -------

flux

0.8 1

saturation

FIG. 1. Flux function and its modified convex hull. The straight line from 0 to 0.4468 indicates the presenc
of a shock.
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FIG. 2. Saturation profiles for the 1D problem.

flux function and its convex hull for this problem. The straight line from 0.0 to 0.446
indicates that we expect a shock between these two saturations. In addition, we expe
rarefaction between 0.4468 and 1.0. The shock speed, in this case 3.241, follows from
Rankine—Hugoniot condition.

We run two one-dimensional simulations; one uses normal van Leer slopes, while
other uses thg correction to the van Leer slopes. Both of these simulations are run ft
350 time steps with a CFL number of 0.9 on a grid with 500 grid points. The results
these two simulations, along with the exact solution, are shown in Fig. 2. As expected, b
simulations correctly predict the gross features of the exact solution.

Figure 3 shows an enlarged view of these solutions around the shock. Here we can
that the simulation using van Leer slopes predicts an incorrect location of the rarefact
and the shock (this problem is alluded to in [1, 6]). On the other hand, the simulation usi
modified van Leer slopes (i.e., the van Leer slopes withytleerrection) more accurately
predicts the location of the rarefaction and the shock.

4.2. Problem 2: Gaussian Distribution

In this problem, we advect a Gaussian distribution of saturation in order to demonstr
the second-order accuracy of the method for smooth data. In the first case, we neg
the effects of capillary pressure and the Ergun equation, and use the Cartesian coordi
system. The reactor has a uniform porosity of 0.35. We run the simulations to the same t
at four different grid resolutions—38 32, 64 x 64, 128x 128, and 256« 256.

We determined the error in the solution by comparing the saturation on a particular g
with the saturation on the next finer grid. Then, by comparing errors on successive grids,
computed convergence rates. In Table | we present the error and rates of convergenc
this test problem. Due to the slope limiter in the advection algorithm, we see second-or
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FIG. 3. Acloseup of the solution for the 1D problem. The solution using normal van Leer slopes incorrect
predicts the rarefaction and the location of the shock. The solution using tioerection, denoted as modified
slopes, predicts the rarefaction and shock location more accurately.

convergence in the; norm only; thel , andL ., norms are within the expected ranges for
a slope-limited, second-order algorithm.

In the second case, the effects of capillary pressure and the Ergun equation are inclu
and the calculation is done in cylindrical coordinates. As in the first case, the reactor |
a uniform porosity of 0.35 and the simulations are run to the same time on four differe
grid resolutions—32 32, 64 x 64, 128x 128, and 256x 256. The convergence results
for these simulations are shown in Table II; again, we obtain second-order convergence
our algorithm.

4.3. Problem 3: Physical Effects

In this problem, we first demonstrate that the algorithm is second-order accurate for m
complicated problems and then explore some of the more complicated physical effe
present in the reactor. All of the simulations in this subsection use cylindrical coordinat
and the nonlinear inlet boundary condition described in Section 3.1.6. In these simulatio
we usevi’® = —0.01 andv, (r, zrop) = —0.005. In addition, we specify that the reactor

TABLE |
Convergence Rate of Saturation irx—z Coordinates Without Capillary Pressure
and Without the Ergun Equation

Norms 32-64 Rate 64-128 Rate 128-256
L, 3.593e-5 2.05 8.662e-6 2.07 2.068e-6
L, 1.210e-4 1.79 3.508e-5 1.79 1.011e-5

L 8.957e-4 1.29 3.664e-4 1.44 1.347e-4




TABLE Il
Convergence Rate of Saturation ir—z Coordinates with Capillary Pressure and
with the Ergun Equation for Smooth Initial Conditions

Norms 32-64 Rate 64-128 Rate 128-256
L, 1.006e-5 1.93 2.646e-6 2.01 6.548e-7
L, 4.437e-5 1.69 1.371e-5 1.87 3.763e-6
Lo 4.734e-4 1.23 2.018e-4 1.20 8.782e-5

TABLE Il

Convergence Rate of Saturation irmr—z Coordinates with Capillary Pressure
and with the Ergun Equation

Norms 32-64 Rate 64-128 Rate 128-256
Ly 1.235e-0 1.42 1.847e-0 2.32 1.479e-0
L, 1.048e-1 1.05 1.011e-1 1.64 6.489e-2
Ly 1.579e-2 0.37 1.219e-2 0.93 6,399e-3

FIG. 4. Errorin solution on 128« 128 grid. The error is concentrated around the shock.

0.563530

0.46915

0.40300
0.33685
0.27070
0.20455
0.13840

FIG. 5. Saturation at timé = 2.0 with no porosity variation using 12 equally spaced contours.
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TABLE IV
Summary of Simulations of the Effects of Capillary Pressure and the Ergun Equation

Figure Ergun effects Capillary pressure effects  Porosity Maximum saturation ~ Minimum saturatic

5 no no 0.35 0.46513 0.25000
6(a) no no Eq. (32) 0.46848 0.25000
6(b) yes no Eq. (32) 0.49578 0.25000
7(a) no yes Eq. (32) 0.50618 0.13844
7(b) yes yes Eqg. (32) 0.53530 0.13865

has a radius of 0.14605 and a height of 0.2286; initially it contains fluid with a saturatic
of 0.25.

We performed a convergence study on the problem with capillary pressure, the Erg
equation, and variable porosity (this corresponds to the case shown later in Fig. 7b). -
results, presented in Table I, show that even though we have added more complice
physics, we still obtain second-order convergence. Figure 4 shows that the error on
128x 128 grid is concentrated around the shock.

Next, we examine the effects of the Ergun equation, capillary pressure, and varia
porosity by running five different simulations to tinhe= 2.0 on a 128x 128 grid. In the
first simulation, we neglect the effects of capillary pressure and the Ergun equation.
addition, the reactor has a uniform porosity of 0.35. As shown in Fig. 5, this simulatic
produces a one-dimensional saturation profile. In the next four simulations the poros
profile varies in the -direction; the profile is uniform through most of the domain, but
increases rapidly near the outer wall such that

850'
#(r) =0.35+ 0.07(ﬁ>, (32)

whereR is the radius of the reactor.

0.53530
0.46915
0.40300
0.33685
0.27070

0.20455

0.13840
(a) (b)

FIG. 6. Saturation with porosity variation at time= 2.0 using 12 equally spaced contours: (a) without
capillary pressure and without the Ergun equation; (b) without capillary pressure and with the Ergun equatior
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0.53530

0.46915

0.40300

0.33685

0.27070

0.20455

0.13840

(a) (b)

FIG. 7. Saturation with porosity variation at time= 2.0 using 12 equally spaced contours: (a) with capillary
pressure and without the Ergun equation; (b) with capillary pressure and with the Ergun equation.

Table IV summarizes the five simulations; in this table, “yes/no” signifies whether cap
lary pressure effects and Ergun effects are or are not included in the simulation. The res
of these simulations are shown in Figs. 6 and 7. All of these figures use the same scale
contour interval so they can be easily compared.

By examining Figs. 6 and 7, we observe two effects of the Ergun equation: (1) it decrea
the speed of the front and (2) itincreases the saturation of the front. Thus, the Ergun equa
appears to change the magnitude of various properties of the solution, but does not che
the qualitative character of the solution.

On the other hand, capillary pressure tends to change the character of the solution.
well known that capillary pressure acts as a diffusive force [1]; in these simulations, \
note that capillary pressure causes the saturation front to “smear.” In addition, in the reg
downstream from the front, the capillary pressure causes the liquid phase to diffuse fr
the high-porosity region to the low-porosity region.

5. CONCLUSIONS

This paper describes an algorithm for solving a simplified flow problem in a trickle be
reactor. Flow in a trickle bed reactor is governed by equations of flow in porous media, st
as Darcy’s law and conservation of mass for each component. By using a total-veloc
formulation, we transformed these governing equations into a system of equations suitz
for a sequential algorithm. This transformation split the problem into an elliptic pressu
equation, an advection—diffusion equation that describes conservation of mass, anc
equation for total velocity.

The elliptic pressure equation was solved using a multigrid-accelerated iterative meth
The saturation equation was solved using a combination of Godunov’s method and
multigrid-accelerated iterative method. The equation for total velocity used a reformulati
of the Ergun equation that eliminated the nonlinear dependence on phase velocity. Tt
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three equations formed the basis for the sequential predictor—corrector algorithm that
implemented.

We applied this algorithm to several test problems. For a simple one-dimensional proble
the algorithm converged to the exact solution and the modified slope limiting algorith
placed the shock and the rarefaction more accurately than standard van Leer slopes.
algorithm was shown to be second-order accurate. Finally, the code was used to explore
effects of capillary pressure, spatial porosity variations, the Ergun equation, and a nonlin
inlet boundary condition.

This work is meant as an initial step toward the design of a more complicated simula
of flow in a trickle bed reactor; several other improvements are necessary to handle
complicated physics inside a trickle bed reactor. These improvements include using a c
pressible gas phase, using multiple phases and components, and including heat and
transfer and chemical reactions. Most of these changes simply involve reformulating
governing equations to include the appropriate physical effects; then the same numer
framework can be used to solve them. For example, Trangenstein and Bell [26, 17] mode
petroleum reservoir flow with multiple phases and components and a compressible gas pl
by casting the governing equations in terms of component masses instead of saturati
Other potential improvements to this work are extending it to a more realistic geomet
such as athree-dimensional coordinate system, and using adaptive mesh refinementtof
the computational effort where it is needed in the problem domain.
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