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We present an algorithm to compute adaptive solutions for incompressible flows
using block-structured local refinement in both space and time. This method uses a
projection formulation based on a cell-centered approximate projection, which allows
the use of a single set of cell-centered solvers. Because of refinement in time, addi-
tional steps are taken to accurately discretize the advection and projection operators
at grid refinement boundaries using composite operators which span the coarse and
refined grids. This ensures that the method is approximately freestream preserving
and satisfies an appropriate form of the divergence constrairooo Academic Press
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1. INTRODUCTION

We present a local refinement algorithm for finite-difference solutions to the tim
dependent incompressible Euler equations. Our approach is based on that of Bergel
Oliger [11] and Berger and Colella [10], in which refined regions are organized into unio
of a relatively small number of nested rectangular blocks. Refinement is performed in ti
as well as in space so that the ratio of the time step to the grid spacing is kept fixed. Ca
lations are organized around updating the data on the union of rectangles correspondi
a given level of refinement, combined with steps to enforce consistency among the da
different levels.
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272 MARTIN AND COLELLA

This adaptive mesh refinement (AMR) algorithm has been used extensively to solv
variety of problems in hyperbolic conservation laws and more recently has been exten
to incompressible flow in [3]. The incompressible flow case is essentially more difficult f
local refinement methods, particularly in the presence of refinement in time. In that cas
is not entirely obvious how to represent the divergence-free constraint. One set of de:
choices for dealing with this problem was made in [3]; this paper investigates an alterna
set of choices for this issue that are simpler, particularly in light of anticipated requireme
of representing complex geometry using Cartesian grids.

Our underlying single-grid discretization method is a second-order extension of Chori
projection method [15] of a type first introduced by Bell, Colella, and Glaz (BCG) [8]. Ii
this approach, a time-centered estimate of the right-hand side of the advective and diffu
terms in the momentum equation is used to compute a provisional update of the velo
This velocity is then projected onto the space of divergence-free fields. The velocities
co-located at the centers of rectangular control volumes. Advective terms are compt
using time-centered velocity fields centered at the edges using a second-order Godt
method, combined with an intermediate staggered-grid projection step [9, 18]. This chc
of a single-grid method leads to an adaptive grid method which is second order in sp
and time asAt, Ax — 0, with £L held fixed.

In extending this algorithm to be adaptive, we addressed the following major desi
choices.

Choice of Projection Discretization

We use a cell-centered approximate projection similar to that developed independe
by Lai and co-workers [23, 24] and Zarg al. [36]. This has the advantage of using the
same cell-centered elliptic solvers that are used in the intermediate staggered-grid proje
step and that are also required for the viscous solvers. Starting from this single-grid al
rithm, we apply the projection at two different points in the Berger—Oliger time-steppir
procedure. At the end of each time step on a given level of refinement, we apply the
jection to the velocity field at that level, using appropriate boundary conditions for t
pressure and velocity interpolated from the next coarser level. Second, we apply a mi
level projection similar to that used in [27, 28] to the velocity data at multiple levels
refinement at times when data at two or more levels of refinement have been advar
to the same time. This projection has the effect of imposing the correct matching c
ditions on the velocity field at the boundaries between different levels of refinement.
the approximate projection formulation of the BCG algorithm, there are four options tf
have the same truncation error. Either the velocity or the update to the velocity may
projected, and the projection may solve for either the pressure or the update to the p
sure over the course of the time step [7, 33]. We have found that, to obtain a robust a
rithm, it was necessary to use the project-velocity/solve-for-pressure formulation in the le
projection.

Freestream Preservation for Advective Transport

It is often necessary to compute the advective transport of conserved scalars usil
conservative finite-difference formulation. In a single-level calculation, advective transp
of additional conserved scalars is computed using intermediate edge-centered veloc
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that are discretely divergence-free, leading to an algorithm that is freestream-preserv
The straightforward application of the algorithm in [10] to maintain conservation in tt
presence of refinement in time fails to be freestream-preserving in the neighborhoo
the boundary between grids at different levels of refinement. The face-centered advec
velocities on the coarse and fine grids are computed independently, and there is nothit
guarantee that the composite, time-averaged velocity field is discretely divergence-fre
the boundary between coarse and fine grids. Our approach to this problem is based o
volume discrepancy method in [1, 30, 35]. We carry an auxiliary advectively transport
guantity that is initialized to be identically equal to a constant. The deviation of this quant
from the constant is an integrated measure of the extent of the violation of the freestre
condition. We use this auxiliary quantity to form the right-hand side of a Poisson equat
for a potential flow field which, when added to the advection velocity, tends to restore loce
constant advected quantities to their freestream state. We find that this procedure rec
the maximum deviation from freestream conditions by one order in the mesh spacing
addition, the deviation from freestream conditions is negligible away from the cells adjac
to boundaries between levels.

To test these ideas, we present the algorithm in the simplest possible setting: the
compressible Euler equations with an additional conserved scalar. Despite the simpli
of the equations, this is a stringent test for the ideas presented here. The extension t
Navier—Stokes equations will follow in a later paper.

2. AMR NOTATION

Following [10], we perform our adaptive mesh calculations on a hierarchy of nest
cell-centered grids (Fig. 1). At each AMR level= 0, ..., £nax the problem domain is
discretized by a uniform grid'* with grid spacingh,. Level 0 is the coarsest level, while
each level + 1 is a factom!,; = h,/h,.1 finer than levek; the refinement ratio’; is an
integer. Because refined grids overlie coarser ones, cells on different levels will repre:
the same geometric region in space. We identify cells at different levels which occupy
same geometric regions by means of the coarsening op€faiof) = (LL—J, L}J). In that

X

FIG. 1. Block-structured local refinement. Note that refinement is by an integer factor and is organized i
rectangular patches.
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case,{C })7H{(, j)} is the set of all cells in a grid times finer that represent the same
geometric region (in a finite volume sense) as the @ell).

In the present work, we assume that the problem domain is a rectangle and that
refinement ratios are powers of 2. Calculations are performed on a hierarchy of mes
Qf I, withQ* > Cy (2+1). Q" is the union of rectangular patches (grids) with spacing
h,; the block-structured nature of refinement is used in the implementation to simpl
computations on the hierarchy of meshes. On the coarsestdgel,I'°. A cell on a level
either is completely covered by cells at the next finer level or is not refined at all. Sin
we assume the solution on finer grids is more accurate, we distinguish betrelekand
invalid regions on each level. The valid region on a level is not covered by finer grid cel
Qlaia = QF — cnfef(sz“l). The grids on each level satisfypsoper nestingcondition [10]:
no cell at levell + 1 represents a geometric region adjacent to one represented by a v
cell at level¢ — 1.

Likewise, 2¢* denotes the cell edges of levietells, whileQ, refers to the cell edges
on level¢ not covered by levet + 1 edges. Note that the coarse—fine interfage*®*
between levelg and¢ + 1 is considered to be valid on leveh- 1, but not on level. The
coarsening operator also extends to edg@rg(sz”l’*) is the set of level edges overlain
by level?¢ 4 1 edges.

A composite variablés defined on the union of valid regions of all levels. Since we
organize computation on a level-by-level basis, the invalid regions of each level also ¢
tain data, usually an approximation to the valid solutionledel variableis defined on
the entire levelQ® (not just the valid region). For a cell-centered variablethe level
variableg?’ is defined on all ok2¢; the composite variablg®™ is defined on the union
of valid regions over all levels. We also define composite and level-basetdr fields
which are defined at normal cell edges. Like other edge-centered variables, a compc
vector fieldu®99ec°mp s valid on all edges not overlain by finer edges (Fig. 2). Likewise, wi
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FIG.2. Sample coarse—fine interface with an edge-centered vector fieldi Jgl{open circle) is to the right
of the coarse—fine interface.
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define composite and level operators which operate on composite and level variables, |
ectively.

It is also necessary to transfer information from finer grids to coarser ones. We def
(¢“T) to be the appropriate cell-centered or edge-centered arithmetic average 6Helel
datag*! to the underlying coarser cells in level

Divergence, Flux Registers, and Reflux Divergence

The basic multilevel divergence is a cell-centered divergence of an edge-centered ve
field. If none of the edges of cell, j) are coarse—fine interfaces, we use a centeret
difference divergence:

U, U, — i,
(Dcomplzuedg%i,j _ 412 . i-1/2,j + i.j+1/ - i.j-1/ ) (1)
14 14

On the fine side of a coarse—fine interface, the stencil is unchanged, since the coarse
interface with the coarser level- 1 is a valid edge in level. For cells on the coarse side of
a coarse—fine interface, the coarse-grid vector on the coarse—fine interface is the avere
the fine-grid vectors on that edge. For the coarse-grid cell in Fig. 2, the divergence oper
is

edgel <uedgeg+1> edge! edge!

(Dcompzuedg%i [ = Uit12j — i-1/2,] i Vi,j+1/2 — Ui,j—l/2'

hg hZ

)

The level-operator divergend®’ of a level variableu®®9¢‘ is defined by ignoring any
finer levels and computing? everywhere inQ¢ using (1). Since the composite diver-
gence on levek depends on both level and level¢ + 1 data, it may be written as
DeomRe (yedget edgel+1y- the |evel operator only depends on levelata: D (ue99¢¢).

Assume that the vector field®@%¢¢ can be extended to all edges §f*, including
those covered by the coarse—fine interface édgfe*. The composite divergenda°m?
uedgecomp on QOF may then be expressed as the level-operator divergbficdong with a
correction for the effects of the finer level + 1). To do this efficiently, we define fiux
registersu‘*+?, defined orCnfef(aQ“l*), which stores the difference in the edge-centere
quantityu®d9®on the coarse—fine interface between levasmd¢ + 1. Notationally,su‘**
belongs to the fine levek (+ 1) because it represents informationam‘*%*. However, it
has coarse-level] grid spacing and indexing.

We define theeflux divergence Rto be theD* stencil as applied to the edge-centerec
vectors on the coarse—fine interface with leet 1; the general composite operator can
then be expressed as

(Dcompeuedge)i’j — (Deuedgeé)i’j + Dg(aut’-&-l)i’j, (3)
Sutt = (UedOEH) — y*99 onC, (9QTH). @)

For the levek cell (i, j), Dg can be defined as

1
DUty = n PBEICITRrS (5)
p
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where the sum is over the set of all edges of @el] ) which are also coarse—fine interfaces
with level? + 1, and thet is + if the edgep is on the high side of celii, j) and—if pis

on the low side. Note thaD% only affects the set of level cells immediately adjacent to
the coarse—fine interface with leveh- 1.

Gradient and Coarse—Fine Interpolation

The gradient is an edge-centered, centered-difference gradient of a cell-centered var
¢. The fieldG°™Pp is a composite vector field, defined on all valid edges in the multileve
domain. On edges which are not coarse—fine interfaces,

it1j — Pij
Gcompe(qb)ierl/z,j — i+ Jh(Z 1]
(6)
compé y _ ¢i’j+1_¢i,1
G (@) 112 = 7he .

To computeG®™Py at a coarse—fine interface, we interpolate valuespforsing both
coarse- and fine-level values. For the example shown in Fig. 3, to compuytetreponent
of the gradient across the horizontal coarse—fine interface we first interpolate values
ghost cells around the fine grid (circled X’s in Fig. 3); we then use these interpolated value
(6). We use a quadratic interpolation similar to that used in [27] and adopted by [3, 25, :
to computeg'. First, a quadratic interpolation is performed parallel to the coarse—fir
interface using nearby coarse cells (open circles in Fig. 3) to get values at intermed
points (solid circles). These intermediate values are used along with two fine grid ce
(X’s) in a second quadratic interpolation normal to the interface to get the appropriate gt
cell values. We denote this quadratic coarse—fine interpolation operatagpasp’=1).

FIG. 3. Interpolation at a coarse—fine interface. Left stencil is the usual stencil. Right stencil is the modifi
interpolation stencil; since the upper coarse cell is covered by a fine grid, use a shifted coarse grid stencil (
circles) to get intermediate values (solid circles) and then perform final interpolation as before to get “ghost c
values (circled X's). Note that to perform interpolation for the horizontal coarse—fine interface, we need to s
the coarse stencil left.
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Hence
¢ ¢ -1 ¢
¢ =1(¢",¢""") onaQ (7)

means that ghost cell values fbon level¢ along the coarse—fine interface with legel 1
are computed using this interpolation.

As in [25], if a coarse-grid cell used in the interpolation stencil is covered by a fin
grid, we then shift the stencil so that only uncovered coarse-grid cells are used in
interpolation (Fig. 3). This is done for accuracy reasons—we want the flux @(b#) to
obtain a formally consistent method. The alternative is to use an averaging procedure w
is O(h%), a process which increases the complication of the algorithm and leads to lar
buffer regions between levels, reducing the efficiency of the method. If a suitable coa
grid quadratic stencil does not exist, we drop the order of interpolation and use whiche
coarse cells are available, with a corresponding local loss of accuracy.

The level-operator gradie@’ is defined by extendinG°™P (which is only defined on
Qf'a’jid) to all edges inQ%*. Away from 9Q%* we use the grid-interior stencil (6), while
on interfaces with a coarser level- 1, we use the interpolation operatofp’, ¢*=1) to
compute ghost cell values to be used in (6).

The composite gradient on leve] G®°™R¢ is dependent on level and coarse-level
(¢ — 1) data: GeoMRL(p¢, p*~1). Likewise, the level-operator gradient can be written

G( (¢Z’ ¢Z71).

Laplacian

The Laplacian is defined as the divergence of the gradient:

Lcomp¢comp — Dcomchomp¢comp (8)

L€¢€ — DZG(¢Z‘ (9)

On the interiors of grids, (8) and (9) reduce to the normal five-point second-order discr
Laplacian. On the fine side of a coarse—fine interface, the interpolation opéréttsr
ghost-cell values which are used in the five-point stencil. On the coarse side of a coa
fine interface, (8) becomes

Lcompf(p — LZ¢Z + DKR(56¢E+1) (10)
8G¢Z+l — <G5+1¢> _ Gﬁ(b(' (11)

On grid interiors,L %™ has a truncation error dd(h?) owing to cancellation of error
terms in the centered-difference stencil. At coarse—fine interfaces, this drogkxowing
to division of theO (h®) interpolant byh? and the loss of centered-difference cancellations
However, if the discrete equatidrf®™Pp = p is solved using these operators, the resulting
solution¢ is second-order accurate, because this loss of accuracy occurs on a set of ¢
mension one [22]. The dependencies of the Laplacian operators may again be expre
explicitly: LOMPE (gl oL oty andLé(gf, p¢71).
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3. ADAPTIVE ALGORITHM DESCRIPTION

3.1. Formulation of the Problem

The simplest example of inviscid incompressible fluid flows is the incompressib
constant-density Euler equations

0

8—? =—Uu-V)u—-vVp, (12)
V.u=0, (13)
u-n=0 onJs, (14)

whereu(x, t) is the fluid velocity vectoKu, v)T, t is the time, andp(x, t) is the pressure.
The evolution equation for a passively transported scdtart) in incompressible flow is

9s +V.(us)=0. (15)
ot

We transform the constrained dynamics problem of Egs. (12) and (13) into an initial va
problem through the use of the Hodge—Helmholtz decomposition. An arbitrary vector fit
w can be uniquely decomposed into two orthogonal components, one of which is diverget
free, with the other being the gradient of a scalar:

W =Wwqg + V¢ (16)
V-wg=0 a7
Ap=V-w ong (18)

d¢
Wg-n=0, —=w-n onaR (29)

an
/Wd~V¢dx:0. (20)

JQ

This decomposition can be expressed in terms of an orthogonal projéttiBow) =
wq, computed by solving (18) foV¢ and subtracting to obtain the divergence-free part
Formally,

P=1—-vV()tv. (21)

Using the projection operator, we can transform the constrained system (12), (13) int
pure evolution equation, with the constraint applied to the initial data:

au
5 =PCu-vw (22)
(V-u(,t=0) =0. (23)

Chorin [15] used this formulation as the starting point for a discretization of the incor
pressible flow equations. Following [8], we use for our algorithm a predictor—correct
formulation in which we first compute an intermediate velocity field and project it ont
the space of vectors which satisfy the divergence constraint. Updates to thessaedar
computed using a conservative update.
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On a uniform grid with grid spacinl, the velocityu(x, t) is approximated by; ; (t) ~
u(ih, jh,t). The scalar field(x, t) is likewise approximated as; (t) ~ s(ih, jh,t). Then,

uct + At) = P(u(t) — At(u - vu)™ (24)
vpH = %(I —P)(u(t) — At(u- vu)) (25)
S(t + At) = s(t) — AtV - (us)™, (26)

where the superscript indicates centering at the intermediate tithe- %At). Following
[16], we computgu - Vu)™ and(V - (us))" using a second-order upwind method. Details
of the advection scheme can be found in the Appendix. Equation (24) can also be expre
in terms of the pressure gradig®p); ; ~ Vp(h, jh,t + %), whereV pH is computed
using (25):

u(t 4+ At) = u(t) — Atu- vt — at(vp". (27)

We extend the algorithm developed by Berger and Colella [10] for hyperbolic cons
vation laws to the incompressible Euler equations. The algorithm in [10] refined in tir
as well as space and maintained conservation at coarse—fine interfaces. This algorithn
be extended to general first-order hyperbolic PDEs such as the momentum equation fc
compressible flow. For context, we first outline the hyperbolic algorithm before describi
its extension to incompressible flow.

3.2. Hyperbolic Algorithm

In [10], hyperbolic conservation laws of the form
U+ f(Wx+gUy =0 (28)

are solved using local refinement in both time and space.

The multilevel hyperbolic algorithm can be generalized for any number of levels |
defining it as a series of recursive single-level advances. The pseudocode in Fig. 4 adve
the level¢ discrete solutiot ¢ from timet* tot* + At‘. Because this function is recursive,
all finer levels (initially also at®) are also advanced to the new time. The entire solutio
is advanced from timé® to t° + At® by advancing the coarsest level, which advances th
composite solution through a series of recursive level advances.

In the initial update tdJ ¢, an explicit conservative finite-difference method is usee:

(F, G)T is the numerical approximation to the flux functibe: (f, g)T. Data needed for
the stencil of this method which lie outsig¥ are interpolated in time and space using leve
¢ — 1 data. The recursive finer-level advances are subcycled Mithh® = At¢+1/ht+L,
Discussions of the benefits of subcycling can be found in [3, 10, 11]. The time{gté{ds
can only be changed at the end of the level 0 time step.

Once the fine levelg+ 1) has been advanced to tirtfe+ At?, levels¢ and¢ + 1 are
synchronizedSynchronization forces the update of the multilevel solution to be in discre
conservation form by replacing the flux acr@sg‘+1* into the valid level cells with the
sum of the fine-level fluxes. Since these coarse cells have already been updated in the i
update, this is achieved in the synchronization step by a reflux divergence of the differe
between the coarse flux and the sum of the fine-level fluxes. Also, the sdllftith+ At¢)
on invalid regions of levet is replaced with the averaged finer soluti@h 1 (t¢ + At?)).
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LevelAdvance(, t¢, At%)

Initial update ofU ¢:

Uttt 4+ AtYi ;) = UL(tYij — AtDY(FY)
Initialize/update flux registers:

if (£ < ma) SFEFL = —FC . nGE" onCy (9Q1%)

if (¢ > 0) 8F¢ := 8F* + T}(F‘Z “Ngg) ONCor(9Q4%)
Recursive calls to LevelAdvance for next finer level:

if (£ < £may) then

— 12
forn=0,n—1

At = LAt

nre
tlJrl — t(i _{_antKle
LevelAdvance( + 1, t“+1, At¢+1)

end for
Synchronize levet with level ¢ + 1:

Ut + Ath = (UHLE + AtY) on Cnfef(sz”l).
Uts + ALY = U(th + At) — AtDER(SFY
end if
end LevelAdvance

FIG. 4. Pseudocode for recursive timestep used for hyperbolic conservation laws.

3.3. Extension to the Incompressible Euler Equations

In the incompressible algorithm, we maintain the essential structure of the hyperhc
algorithm. Once again, the algorithm is structured as a series of recursive updates on a |
The basic steps when updating levelre:

1. Perform single-level update on levegincluding application of a leved projection to
the velocities to ensure that they are approximately divergenceffégthe approximation
to the pressure computed using the level projection),

2. Initialize/update flux registers with coarse—fine interface information.

3. Make recursive calls to update finer levelg times withAt“+1 = At‘/nfy.

4. Synchronize composite multilevel solution.

The single-level update is based on the single-grid projection algorithm outlined in t
Appendix. In addition to conservation, additional issues are raised by solving the equati
of incompressible flow on a multilevel hierarchy of grids.

Toillustrate these issues, consider a straightforward extension of the hyperbolic algoril
to a projection method for incompressible flow, illustrated in pseudocode form in Fig.
(HereuM@f ands"@ are staggered-grid approximationsit@nds at the intermediate time
(t* + 2AtY), computed as described in the Appendix.) In this algorithm, the velocity fiel
is updated using a projection based on cell-centered level operators, described below. |
though the momentum equation is not in conservative form, a refluxing correction is appl
at the coarse—fine interface, as was done in [3]. This results in a consistent and stable <
boundary conditions for the velocity advection operator.
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EulerAdvanceq, t*, At?)
Initial update ofs’, u’:
SZ(tZ + At") — Si(té) _ At[ Df(uhalf,fshalf,ﬂ)
ul(tl + Atz) — Pi(ué(tl) _ Até(uhalf,é . Vuhalf,i))
7ttt + %Atf) _ (| _ Pe)(uz(te) — Atf(uhalte . yyhaifieyy
Initialize/update flux registers:

if (¢ < lmay)
§stHl = —ghateyhalfe  pett
SV = _yhalteyhalte | ptl
if (¢ > 0)

§st = §st 4 (shafteyhaltey  nt
SV = V¢ 4 (uhafeghalfey nt
Recursive calls for finer level:
if (¢ < €may) then
forn=0,nfy—1
At = At
t+l — tf 4 pnAttte
EulerAdvance{ + 1, t“+1, At
end for
Synchronization:
sf(t! + AtY) = si(th + AtY) — AtYDE(8sY
ul(t? + At 1= uf(tt + AtY) — AtY DLV
end if
end EulerAdvance

FIG. 5. Straightforward extension of hyperbolic algorithm to incompressible flow.

This algorithm suffers from two deficiencies, both of which were identified in [3].

1. While the level projectio’ ensures that the velocity field satisfidéu® = 0, there
is nothing to guarantee than’va'd — (ut+1vaidyy . nfEL — 0 to the appropriate order of
accuracy along the coarse—fine interfagg+*. This is equivalent to the elliptic match-
ing condition described in [25, 26]. To maintain accuracy, solutions to elliptic equatio
must satisfy both Dirichleand Neumann matching conditions across coarse—fine inte
faces. The pressure field computed in this algorithm only satisfies a Dirichlet match
condition across coarse—fine interfaces. Also, we increment the coarse-level velocity 1
in the velocity-refluxing step, but we do not guarantee that this increment is divergen
free.

2. Refluxing is not freestream preserving: initially constant scalar fields may not rem:
constant at coarse—fine interfaces. Consider a scalar field which has a constaigg.vall
In this case, the level fluxes are equal, and the single-level update produces the corr
updated valuey. For freestream preservation, the flux correction in the synchronizatic
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step should be zero. For scalar advection we have

SS(H-:L — ((FS$€+1> _ FS,(Z) . nél';l

half,e+1¢+1 half,ecly . ¢+1
= (UM —u™ S - nek

— ((uha",erl) _ uha|f,(f)&) A né—&'-:l (29)

To preserve the uniform solution, the leweland averaged¢(+ 1) advection velocities
u@ would have to be equal along the coarse—fine interface. Howett, anduhalf.¢+1

are computed independently on each level, with nonlocal dependence on the data \
solution to an elliptic pressure equation, so there is no reason to expect this to be
case. As a result, errors in advection occur at coarse—fine interfaces; these errors are
advected through the flow. The essential problem is that incompressibility of the advect
velocities is enforced using single-level operators rather than composite operators, sc
advection velocities are not divergence-free across coarse—fine interfaces. While it woul
possible to implement a composite multilevel projection for the advection velocities at
subcycled time steps (as done by Hornung and Trangenstein [20] in the context of pot
media flow), this would substantially increase the computational expense of the method
would reduce the benefits of refinement in time.

In the following, we discuss the cell-centered discretization and its extension to mu
ple levels used to impose an appropriate form of the divergence constraint on multile
velocity data. We also describe the volume discrepancy method used to maintain freestt
preservation, at least approximately.

3.4. Composite Projection

The multilevel divergence, gradient, and Laplacian operators defined in Section 2 co
spond to an idempotent projection based on a staggered-grid velocity field, similar to th
used in the composite staggered-grid projection in [28]. However, velocity and pressur:
this work are cell-centered; so a cell-centered projection discretization is required.

In earlier versions of the projection method [8, 9, 1Bk | — G(DG) 1D, whereD
andG are difference approximations to the divergence and gradientBvith—GT. This
discretization of the projection is idempoteRE(= P); however, decoupling of the stencils
causes badly behaved linear algebra, which greatly increases the difficulty of implemen
local refinement [21]. It was first proposed in [2] to deal with this problem by the intrc
duction of a stable but nonidempotent discretization of the projection with well-behav
numerical linear algebra. The starting point for the discretizatida a$ed in this work is
the approximate projection developed by Lai [24], which uses only cell-centered solver

P=1-G*(LHDCC. (30)

Here DCC andGC¢ are cell-centered centered-difference approximations to the diverger
and gradient operators, ahds the standard five-point discrete Laplacian operator.

The cell-centered divergence and gradient operators are constructed from staggered
operators through the use of appropriate cell-to-edge and edge-to-cell averagfefisf
a staggered-grid vector field, defined @h*, then AvE~C(ued9% is

edge edge edge edge T
— Ui 12,'+u'712,' Vi 12+v','712
(AUE Cuedgﬁhj — ( i+1/2,] 5 i-1/2,j . i,j+1/ 5 i,j-1/ ) (31)
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If uis a cell-centered vector field defined €4, then

Uit1,j + Ui j

(AvS~BU)i11n ) = onQb* — HQb*

(32)
Vi,j+1 + Ui,

(AVCE0)i 12 = 5

OonaQt*, (Av®Eu) is obtained by second-order extrapolation, including solid wall phys
ical boundaries, but not including periodic boundaries—the latter are computed using
interior formulas (32) and ghost cells.

We can use these operators to define cell-centered divergence and gradient operatc
Qb

DCC,ZUCC — D(ﬁ AUC—>EUCC,Z, (33)

GCC,(Z(pZ — AUE*)CGK(Z)Z. (34)

The composite operato3CC oM and GCC.coMP gre defined similarly:
DCC,comp — DcompAvCeEuCC,comp, (35)

GCC,comp¢comp — AanCGcomp‘Pcomp. (36)

Typically, the gradient field being computed in the projection is discontinuous at coar
fine interfaces, since it is correcting the mismatch in the normal component of the veloc
across the interface. For the correction field shown in Fig. 6, computing staggered-grid
dients usingG®°™P and then averaging to produce a cell-centered gradient washes out
structure of the gradient field near the interface because the positive and negative grad
cancel. For this reason, the derivative normal to the interface is computed using one-s
differencing from the coarse side of the coarse—fine interface; this one-sided gradientis

phi

-1.50 -

C/F interface
-2.00 - -

-2.50 - B
-3.00 - B
-3.50 T
-4.00 B
-4.50 - B
-5.00 - T
-5.50 - B

-6.00
-6.50
-7.00

-10.00

!

-5.00

0.00

5.00

FIG. 6. Typical synchronization correctiog, Fine grid is to the left of the coarse—fine interface.
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for the coarse cell immediately adjacent to the coarse—fine interface, which is sufficien
preserve the structure of the correction. The composite cell-centered gradient can be wr
asGCeeomnl (st 4t=1) "while the level-operator cell-centered gradient can be express:
GCCL (!, ¢~ 1. Likewise, the composite and level-operator cell-centered divergence c
erators can be writte@CC.compe (yCC.l (CC.L+1y gnd DCC.compe (yCC.H) respectively.

Discretization of the Composite Projection

Our composite projection is based on the composite cell-centered opeBtofa™?,
DCC.comp and LM, Since the composite Laplacian is already a cell-centered operator
is used without modification. Similar operators were used in the nonsubcycled algorit|
in [27, 28]. This projection is applied to a multilevel velocity field for all levels finer thar
and includinglpase

Pcomp= (| _ GCC,comp(Lcomp)—lDCC,comp) on U QK (37)

valid*
£>Lpase

We first solve for a correction field,

LCOMPpcomMP — DCCCOMBYy  for £ > fpace

(38)
(pgbase — | (¢€base7 ¢[base_1)7
with appropriate physical boundary conditions; we then apply the correction
U:i=u — GEOCOMPHCOMP  for ¢ > ¢ ce
(39)

(bebase — | ((bebase, ¢ebase—1).

Note that coarse—fine boundary conditions have been given for the casedgdiere0.
The discrete composite projection operator we use is

pcomp _ | _ AUE—>CGcomp(Lcomp)—chompAvC—>E. (40)

For a uniform single grid with periodic boundary conditions, Lai [24] demonstrate
using Fourier analysis that this projection discretization is stable, irj|Bjak 1, and that
repeated application of the projection drives the divergence to zero,

D¢¢PNu) — 0,

asN — oo, wherePN (u) represents the repeated application of the projeditimes to the

velocity fieldu. To demonstrate the effectiveness and stability of this composite projectic
we repeatedly applied the composite projection to a sample problem and evaluated
results. This was performed on a three-vortex test case. Each vortex has the initial cond

T (gsr®— 23+ 29r) ifr <R,
Ug(r) = X ]
r(#) ifr >R,

whereuy is the azimuthal velocity component around the vortex centés, the radial
distance from the vortex centé€xo, Yp), R is the radius of the vortex patch, amdis
the vortex strength. For this problem, there are three vortices with equal strength

(41)
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Max(div) Max(G(phi))
T T T2 Levels

2 Levels

_|4Levels
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(a)

# Projections # Projections

FIG. 7. (a) Max(divergence) and (b) magf°™"(e)) vs number of repeated projection applications.

radiusI" = 0.50 andR = 0.75 which are centered at (0.68, 0.5), (0.455, 0.65588457), at
(0.455, 0.34411543).

Figure 7a showsD®™u|,, vs N. The composite divergence does go to zero as the pr
jection is applied repeatedly. Adding more levels of refinement affects the rate at which
divergence decreases, but does not appear to affect the general behavior. (While the r
mum divergence may seem high, it is not unreasonably so—M@yj is an expression of
the local truncation error and will tend to exaggerate isolated values along the coarse-
interface, which will have only a minor effect on the solution accuracy.) A better indicat
is the amount that each application of the projection changes the soliRlba; R"+1) is
equal to(I — P)P", which is GE“comPe" . We expect each successive projection to have
smaller effect on the solution, as the velocity field converges toward one which is discre
divergence-free. Figure 7b shoy@““°MP(g) |, the maximum that the solution is changed
in a given application of the projection (note that the maximum velocity for this problem
about 10). This value decreases monotonically as the projection is repeatedly applied.
magnitude of the correction is much larger in the first application of the projection becal
the physical boundary condition (solid walls, in this case) is being enforced; the veloc
field is initialized as if it were in infinite space and then the initial projection enforces tt
no-flow boundary conditions. After a few iteration&“°™P(e)|, has decreased by three
orders of magnitude, as the error in the velocity field decreases.

3.5. Freestream Preservation

The starting point for our approach to freestream preservation is the introduction of
auxiliary advected scalar field whose purpose is to provide a time-integrated measure
the extent to which freestream preservation has been violated:

% +V-(UA) =0, (42)
AX,t=0) = 1. (43)

SinceA should remain one everywhet#,# 1 is an indicator of freestream preservation
errors. We usé to compute a correction velocity fielgl, which is added to future advection
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velocities and works to driva back to one. Conserved scalarsatisfying (15) (including
A) are then evolved using the equation

st + At = s (1Y) — AtD(UAPSY), (44)
UAD — half.e +Uf) _ (45)
The fielduy, is a potential flow field computed by solving an elliptic equation,
u, = Gey (46)
Lex = ¢(A—1),¢ > 0. (47)

Like the projection operator, the physical boundary conditiongfarede, /dan = up - n.
The fieldu, is computed during the synchronization step for all levels £pase SinceA
is updated using a conservative scheme, (47) is solvable.

If A=1,thenV -u, s 0. This leads to the evolution equation far

ALt + ALY = A — ALY DY UAPA) (48)
= A'(t) — AtYUAP . GA)®" — At A'D U, (49)

whereA ! and(u”P - G A)ce"are obtained by using a discrete Leibniz rule. So, the qualitativ
behavior of this correction is to driv& back to one.

For dimensional consistency, must have units of AT. Since (47) is solved during a
synchronization operation, we usgAltY™, We also include a scaling factor, to adjust
the strength of the correction. The equation we solve is

LoMPe, = Atsyncn for £ > fpase
(50)
ef\base = | (ef\ba\se7 ef\base—l) ,
up = G*MPe,. (51)

The parametey in this formulation is the number df;sctime steps it will take forA to be
returned to one. We have found that < 1/2 is a sufficient condition for stability, wheee

is the CFL numberly At/AX). For the problems examined in this work, we have generall
usedo = 0.5 andn = 0.9.

To demonstrate the behavior of the freestream preservation correction, we compt
solutions from an initial condition which is a pair of counterrotating vortices. Each vorte
has an initial condition described by (41). For this problem, there are two counterrotat
vortices, one withl" = 0.35, R = 0.15, and centered aig, o) = (0.3, 0.65), and the
second withlI' = —0.35, R = 0.15, and (X, Yo) = (0.3, 0.35). The domain is the unit
square, with solid-wall boundary conditions. The result of this initial condition is that tf
vortex pair translates to the right. For this problem, we usexa 32 base grid with one level
of refinement with,es = 4. Grids are placed dynamically and follow the vortices; regridding
is done every two coarse-grid time steps. Figure 8 shows the vorticity distribution at tir
t = 0.36.

Figure 9 shows the distribution of thiefield after 2 and 100 time steps if no correction is
applied, while Fig. 10 showa when the freestream preservation correction is applied. T
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(a) t=0

(b) t=0.36

FIG. 8. Two-vortex solution (a) at initial time and (b) after 100 time steps.

isolate the effect of the freestream preservation correction, the synchronization projec
is applied in both cases. Note that the scales are different for the two figures.

Recall that(A — 1) is the error inA caused by failures of freestream preservation
Without the correction (Fig. 9), freestream preservation errors are generated at coarse
interfaces as the solution evolves. Furthermore, as the grids move with the vortices, each
coarse—fine interface results in the creation of a new set of errors, which is left behind o
the refined grids have moved. These errors are then advected throughout the flow, qui
becoming nonlocal. In contrast, even with moving grids, Figure 10 shows that the correct
tends to confine errors to the cells immediately adjacent to the coarse—fine interfaces
limits them to approximately the error generated in one time step. Since the correction
lagged one, this is what is expected. Although this one-cell-wide error is left behind wt
the coarse—fine interface moves, it is quickly removed by the action of the correction.

To further examine the advection errors for this case, we ran a series of cases
32x 32, 64x 64, and 128x 128 base grids, each with one level of refinement. To judg
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(b)

FIG. 9. A (without volume-discrepancy correction) after (a) 2 and (b) 100 time steps.
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FIG. 10. A (with volume-discrepancy correction) after (a) 2 and (b) 100 time steps.
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FIG.11. Max(A — 1) vstime for the traveling vortex pair case: (a) without freestream preservation correctic
and (b) with correction. Once again, note that (a) and (b) have different scales.

the effects of refinement ratio on the advection errors, each case was run withbpet?
andnes = 4. |A — 1| is plotted vs time for these cases in Fig. 11. Without the correctio
(Figure 11a), the advection errors are to first approximation a function of the coarse-¢
spacing; the effect of the refinement ratio is only secondary. Also, without the freestre
preservation correction, the errors converge at rou@hlly.), whereh is the coarse-grid
spacing.

Comparison of the scales of Figs. 11a and 11b demonstrates that the volume discrep
correction drastically reduces the maximum error. Because of regridding, the\jrfad(l
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in the corrected case is much more oscillatory than the uncorrected case; as the
move, the correction field must adjust to the new grid configuration. Since we obse
that the correction restricts the error to something less than the error made in one |
step, and we expect this error to be no worse tdh;) At®, where At€ is the coarse-
grid time step (which i€0(h)), this restores second-order accuracy to this aspect of t
method.

We have also found that the freestream preservation correction does not corrupt s
fields which are nonconstant in the vicinity of coarse—fine interfaces. To demonstrate t
we take the case of a single vortex in a unit square domain with solid walls, Eq. (41) w
' =1.0, R=0.3, and(xo, Yo) = (0.5, 0.5). We initialize an advected scalarto have a
Gaussian distribution:

s(x,y,0) = e_rgmb/R’

(52)
réop = (X — 0.35% + (y — 0.3572
For this test case, we refined the lower-left quadrant of the grid and computed the solutic
timet = 6.4. As in the previous case, a 10241024 uniform-grid solution was used as the
“exact” solution. Errors irs both with and without the freestream preservation correctio
are tabulated in Table I.

If a scalar fields is non-constant, the errors in freestream preservation are small
comparison to the variations in the solution, so the effect due to the freestream preserve
correction is small; the freestream preservation violations which are so appareraran
not significant fors, since they are overwhelmed by variations in the solution. While th
freestream preservation correction does not improve the accuracy of advected scalars i
case, neither does it corrupt the solution. In contrast, a constant scalar near a coarse
interface mirrors the behavior of; the use of the freestream preservation correction i
this case drastically reduces the solution errors and increases the convergence rates,

TABLE |
L, and L., Norms of Errors in Advected Scalar s for the Single-Vortex
Test Problem at Time 6.4

Base Grid Sizén

1/32 1/64 1/128 1/256
L,: Uniform Grid 1.248e-2 4.247e-3 1.606e-3 5.458e-4
Nief = 2: With correction 1.133e-2 3.800e-3 1.389e-3 —
without correction 1.122e-2 3.781e-3 1.386e-3 —
Nef = 4: with correction 1.119e-2 3.730e-3 — —
without correction 1.104e-2 3.705e-3 — —
L. Uniform Grid 1.143e-1 4.965e-2 2.391e-2 9.432e-3
Nt = 2: With correction 9.888e-2 4.178e-2 2.057e-2 —
without correction 9.720e-2 4.181e-2 2.059e-2 —

Nef = 4: with correction 9.712e-2 4.046e-2 — —
without correction 9.505e-2 4.050e-2 — —
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5.261e-03
3.940e-03
2.618e-03
1.296e-03
—2 .bhYe-0b
-1.347e-03
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-1.906e-04
—-2.612e-04

(b)

FIG. 18. Error in freestream preservation indicatbrat timet = 0.75: (a) without freestream preservation
correction; (b) with correction. Note the different scales in the figures. Base grid sizei§8&4with one level of
refinementn, = 4.

demonstrates the importance of the freestream preservation correction when solution:
constant-valued at coarse—fine interfaces.

3.6. Multilevel Algorithm

In this section, we describe the complete recursive algorithm used to advance the |
¢ solution from timet to timet® + At¢. Implicit in this recursive algorithm is the subcy-
cled advance of all finer levels to timié + At¢, including all necessary synchronization
operations. A pseudocode description appears in Fig. 12.
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EulerLevelAdvance, t¢, At%)

Compute advection velocitiegP-¢
Compute advective fluxdgs>¢, FA:¢
Compute advective updates:
S+ AtY) = 57, (t") — AtDE(F); |
Af [+ At = Af (1Y) — AUDEFNY
Predictuhaf

url = ul;th — At[u- vyul 2

Update advective and velocity flux registers:
if (¢ < €may) then

st = —F>t.ngtt onCy Q")

SATE = —FMEngE onCy (9QTH)

SVl — _(UAD.Z . n&l)uhalf,z on Cnfef(aQZH’*)
end if

if (¢ > 0) then
st =8s' + ni;1<':s’£ “NGg) ONCye1(3Q2°%)
SAL =8A" + n&(FA’f “NGg) oNCo1(3R°)
SVE =68V + T}((u‘\f”‘Z g utE) onCoa (39257)
end if
Projectu®? — uf(t’ + At%):
SolvelL‘r! = & DCCly**
ué(ti + Atf) — u*,é _ AtZGCC,EnK
if (€ < Cmax)
At(i+l — iAtﬁ
nﬁef
forn=0,nfy—1
EulerLevelAdvance(+ 1, t* + nAtéH) Attt
end for
if ((t° 4+ At < 1 4+ At“Y)) Synchronizeg, t* + At¢, t¢)
end if

end EulerLevelAdvance

FIG. 12. Recursive level time step for the incompressible Euler equations.

Variables

We start the level advance with the solution at tinté, which includes the velocity
field u(x, t%) = (u¢, v)T, an advected scalaf (x, t¢), the freestream preservation scalar
A'(x, t%), and the staggered-grid freestream preservation corragtivom the most recent
synchronization step, which has been extended to the invalid regions o#é Wirbl(uf,“).

We also need flux registers to contain coarse—fine matching information. The flux regi:
sV* contains the normal and tangential (to the coarse—fine interface) momentum flu
across the coarse—fine interface between léwaid the coarser levél— 1. The registers
sst ands A contain the fluxes of the advected scagendA.
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Level Advance

The basic update on a level is structured in a way similar to that of the single-g|
algorithm described in the Appendix. Because most of the algorithm is the same, only
differences due to the adaptive algorithm are highlighted here.

1. Compute advection velocitieskirst, a set of staggered-grid advection velocities
u”P-¢ is computed. Before the tracing and upwinding steps described in Appendix £
are performed, we fill a ring of ghost cells around each grid which is wide enough to co
plete the tracing stencil for all interior cells with appropriate solution valueadd. If a
level £ ghost cell lies in the interior of another levegrid, solution values are copied from
the other grid. If the ghost cell lies over a coarser grid’s valid region, the coarse-grid solut
u‘~1is interpolated in time and space, using conservative linear interpolation. Once gr
cells have been filled, computation of the staggered«d¥i* can be carried out as detailed
in the Appendix.

Then,uM@"¢ js projected using a staggered-grid projection to ensure that the advect
velocities are divergence-free:

L(Z¢Z — DZuha”,l

Atf
¢z = (d)e’ _nZ—l).
2

The coarse—fine boundary condition ¢ris designed to ensure matching betweérand
the coarse-level pressure field. Then, the velocity field is corrected:

(53)

ghalte — ghaite _ e gt

54
¢z:|¢eitznz71 &9
- .
Finally, u, from the most recent synchronization is added:
UAD,Z — uha|f,[ + up (55)

2. Update scalars. Once advection velocities®P-* have been computed, the scalars
st and A¢ can be updated. As in the previous step, a ring of ghost cells around each ¢
is filled by either copying values from other levegrids or by performing a conservative
linear interpolation in time and space of coarse-level data. Then, the advectiveRfixes
andF**, as well as the updated scala(s’ + AtY) and A‘(t* + At?), can be computed
on a grid-by-grid basis using the conservative scalar advection algorithm detailed in
Appendix. The update equation used is

{s, AY(tE + At = {s, A} (1Y) — At DY (UAP{s, A}"ARE), (56)

3. Predictu™andu*‘. Using the advection velocitiag*®-¢, the transverse compo-
nents of the staggered-grid velocity fieltf ¢ are computed as in Section A.3, using the
same coarse—fine boundary conditions with the lévell solution as in the original tracing
step. The intermediate velocity fielt¢ is then computed,

u*,l — u(ﬁ(tl) _ AtZ[AUE_)C(UAD’Z) . (quhalf,z)]’ (57)
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using the same discretization as Eq. (A.22) in the Appendix. Note the distinction in (*
betweeru”P, theadvectingvelocity, andu"@', theadvectedrelocity.

4. Initialize/update momentum and advective flux registe@nce the updates have been
completed, the appropriate flux registers are updated to contain the mismatches bet
coarse and fine advective and momentum fluxes, as shown in Fig. 12.

5. Projectu®? — u‘(t* + At%). To complete the single-level portion of the level up-
date, the intermediate velocity field*¢ is projected using a level projection. First,
solve

Lért — iDcc,eu*,e
At (58)

14

at =14

wherer =1 in the coarse—fine boundary condition is the most regént, which is treated
as piecewise constant in time throughout the subcycled letigle steps. The correction
is then applied to the velocity field:

u‘(t® + AtY = u™t — AtG'nt

(59)
7t = I(ne, T

Z—l)'

6. Recursively update finer leveldf a finer level¢ + 1 exists, it is then updatenf,
times with a time step oAt‘*! = (1/n{y) At*. This brings all levels finer than levélto
timet + At*.

7. Synchronize. If a finer level? + 1 exists, we now synchronize levelith all finer
levels. We denote the time at which this synchronization takes plagéas t* + At‘. The
coarsest level which has reacht€d“is denoted agyasg all levels finer than and including
fpase@re synchronized at once. In practice, we check to see if the current level has rea
the new time of the coarser levet‘~! + At‘~1). If so, we drop down to the coarser level.
We also denotetv=e as AtSY"C, the time interval over which the synchronization is taking
place. A pseudocode description of the synchronization step appears in Fig. 13. First
finer level solutions are averaged down to underlying coarse grids and a refluxing opera
is performed to correct coarse-level fluxes. Then, a multilevel sychronization project
is applied, which solves for the synchronization correcigii. The appropriate physi-
cal boundary conditions fogync are the homogeneous form of the boundary condition
applied to the level pressurein the level projection. For solid walls, this is a homoge-
neous Neumann boundary condition. Finally, the freestream preservation cortggcison
computed.

3.7. Initialization

After a new grid configuration is defined, either at the initial time or after a regriddin
operation, the solution must be initialized, as described in pseudocode form in Fig.
Before the initial time step, the velocity field must be projected to ensure that it satisf
the composite divergence constraint, so the composite projection defined in Section 3
applied to the entire composite velocity field.

After a new grid configuration is defined for a leveduring a regridding operation,
solution values foru!, s, and A* are either copied from the old levél grids where
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Synchronizefpase t5Y7, AtSY9)
Average finer solution onto coarser levels:
for £ = £max— 1, €pase —1
ue(tsyng — <u€+1(tsyn<5> on Cnﬁef(Qe+1)
sE(EYM9) = (s"FH(tH"9) on Cnfef(Q“l)
ALY = (AL(EM9) on Cnfef(Q”l)
end for
Reflux for conservation:
for £ = €max— 1, lbase —1
uf (") = uf(t") — At DLV
SHAYNY 1= s(EYNY — AtEDE(8sHHY
ALY 1= ALY — AtEDR(SATY)
end for
Apply Synchronization Projection:
SolveL®mPg, = __L_ DCC.ompy (Y% for ¢ > fpace

Atsync
eébase =] (eﬁbase’ eﬁbase—l)
U = Ut — AtYNCGCCCOMBe. for ¢ > fpase
Freestream Preservation Solve:
SolvelL®MPe, = %7} for £ > Lpase
ef\base — I (ef\base’ ef\t)asrl)

end Synchronize

FIG. 13. Synchronization for incompressible Euler equations.

EulerInit(¢pase t™)
Project initial data
SolveLMPe = DCCCOMY for £ > fpase
glvase = | (glo=se, 0)
U= u— GCCcompg
Compute initialu p:
SolvelL®MPe, = (Afl)ﬂ for £ > £pase

—  At'base
ef\base = (eﬁbase’ ef\basrl)
Up = GComPg,
end Eulerlnit

FIG. 14. Initialization algorithm for the incompressible Euler equations.
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available or interpolated from the finest level available using conservative interpolat
in time and space. This new velocity is then projected using a composite projection, wit
coarse—fine boundary condition f6yaseOf €f=e = | (e’=s 0). For initialization purposes,
lhaselS defined as the finesthchangedevel in the grid hierarchy.

Also, after aregridding operation, there are existing freestream preservation errors wi
must be corrected in future time steps. The advection correafjas computed using the
currentA field to correct for these errors.

3.8. Comparison with Earlier Work

There have been a number of earlier works which apply block-structured AMR to |
compressible flow. Thompson and Ferziger [34] constructed an algorithm for steady fl
The algorithms of Howell and Bell [21] and Minion [27, 28] are also based on cell-center
discretizations of the projection, but they do not refine in time.

The main earlier work relevant to this paper is that of Almgeeal. [3], which is also
second orderin space and time, refines in time as well as space, and is freestream-prese
The discretization of the projection employed in [3] is based on that of Aimgrah [2],
which uses a discrete Galerkin formulation. This discretization has the advantage of prc
stability (|P]| < 1) and accuracy. However, it is node-centered: pressures are centere
the corners of cells. Since a set of cell-centered solvers must be used to compute adve
velocities and for viscous solves, this means that two sets of solvers must be develc
and maintained, which can substantially increase the effort involved in extension to r
problems and more complicated geometries. One of the ultimate goals of this work is
combine the AMR algorithms for incompressible flow with the Cartesian grid embedd
boundary methods for representing complex boundary geometries [4, 5, 22, 29]. In"
approach, conservative cell-centered discretizations can all be implemented using a corr
software framework [17]. The introduction of node-centered discretizations and solv
required for the approximate projection in [2, 3] would considerably enlarge and complic
the software support required.

Also, note that in this algorithm the projection is applied to an approximation of the u
dated velocity field at the new tima*). Other implementations of the projection, including
those in [3, 27], project the right-hand-side of the velocity update; for example,

ul’H-l _ un
A = P v yprie) (60)
VP2 = v 2 4 (1 — P)((u- VU2 4 v pY2), (61)

While the two discretizations are equivalent for a projection which is idempotent, for a
proximate projections (in which # DG and soP # P?), these temporal discretizations
are no longer equivalent. We were unable to construct a stable multilevel projection al
rithm for (60) and (61) using a cell-centered approximate projection; however, our algorit|
appears to be well behaved. This is consistent with the findings of Rider [32] and Almg
et al.[7] who have observed that projecting an approximation to the velocity field is mo
robustthan projecting the update to the velocity field. However, the non-subcycled algorit
in [27] successfully used the formulation in (24)—(25) with a cell-centered spatial discreti:
tion similar to the one used in this work, which tends to indicate that our difficulties in th
case are due to refinement in time.
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In [3], freestream preservation is maintained exactly by computing a correction to t
advection velocity field, performing a correction advection step, and then interpolating 1
corrections to finer levels. This method has been used successfully in a variety of ap
cations. However, it introduces an interpolated coarse-grid approximation of the advect
operator at all the finer levels, which could conceivably lead to an unacceptable loss of
curacy. In the present approach, we avoid such errors by the use of the volume discrep
approach, at the cost of satisfying the freestream condition only approximately.

The algorithm in this work also differs from both the hyperbolic algorithm in [10] anc
the incompressible flow algorithm in [3] in the structure of the synchronization. In plac
where the synchronization operations require the solution of elliptic equations, we so
at once for all levels which have reached the same tifi&% rather than solving a series
of two-level pairs. As a result, the composite projection and freestream correction sol
are multilevel solutions for all levels finer than and including the coarsest level which h
reachedsY"". There is some evidence [26] that a multilevel elliptic solve is more accura
than solving a series of coarse—fine pairs.

3.9. Solvers

The algorithm used in this work uses two elliptic solvers. The firstis a single-level solv
which solves an elliptic equation using single-level operatdfs G¢, L¢, etc.) on the union
of rectangular grids which comprise an AMR level. If the level does not cover the enti
domain, boundary conditions are taken from the next coarser level using the coarse-
interpolation operatot. We use a straightforward multigrid approach with Gauss—Sieds
with red—black ordering to relax on each multigrid level. For a general union of grid
there will be a point beyond which the grids cannot be coarsened without changing
shape of the grids; at that point, we cease coarsening and use a conjugate gradient ¢
as a bottom solver. Multilevel solutions of elliptic equations are found using the AMF
multigrid algorithm described in [6, 34] and also used in [13, 25, 26, 31]. For a typic
two-level problem, witn,es = 2 or 4, it takes our multilevel solver eight V-cycles to reduce
the composite residual by 10 orders of magnitude.

4. RESULTS

We will demonstrate that this method is second-order accurate, that local refinemer
effective at increasing the accuracy of the solution, and that the freestream-preserve
correction is effective in more complicated situations. Also, we will demonstrate that tt
algorithm can result in significant savings in computational costs through the use of lo
refinement.

We use two test problems. First, we use the three-vortex problem described in Section
which is a good demonstration of the effectiveness of local refinement, since the are
interest (the vortices) is a small part of the entire domain.

We also use the doubly periodic shear layer in a unit square domain from [8], with t
initial conditions

tanh(ps(y — 7)) ify <3,

tanh(ps(2 —y)) ify>3 (62)
v(X,Y,t =0) = §ssin(2rx),

u(x,y,t:O):{
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(a) (b)

FIG. 15. Evolution of doubly periodic shear layer. Vorticity at times {ay 0 and (b)t = 0.75. The base
grid is 64x 64, and the refined grids represent a factor of 4 refinement. All contour plots use the same sc
Max(w) = 40.20, Min(w) = —40.20.

with ps = 42.0 andss = 0.05. As this solution evolves, the shear layers roll up into two larg
vortices. Figure 15 shows the evolution of the vorticity and the adaptive nature of the refi
ment for a 64x 64 base grid with a single level of refinement with; = 4. This problem is
not well suited for adaptivity, since a large portion of the domain must be refined; howey
we believe it to be a more stringent test of the accuracy of the algorithm than the three-vo
problem, owing to the larger and more complicated coarse—fine interfaces generated.

These runs were done with fixed time steps so that the results could be directly c
pared, with a CFL number of 0.5. Since no analytic solution exists for these probler
uniform-grid 1024x 1024 solutions were computed and used as the “exact” solution. F
the AMR cases, grids were placed dynamically, based on vorticity. Cells with a vortici
higher thare|w|, Were tagged for refinement, with= 0.25 for the problems examined
here. Refined grids were then generated from the tagged cells using the clustering algor
of Berger and Rigoutsos [12]. Regridding intervals varied to ensure that regridding was d
at the same times in all cases. For example, the 32 base-grid cases used a regridding
interval of three level 0 time steps, the &464 base-grid cases used a regridding interval o
six time steps, and so on. To judge the effects of adaptivity, a series of adaptive calculat
were run with one level of refinement witif,; equal to 2 and 4. For comparison, a series
of uniform grid computations was also carried out.

4.1. Accuracy and Convergence

If the adaptive algorithm is effective, we expect that the accuracy of the adaptive cc
putations should approach that of the uniform-grid computation of equivalent resoluti
we expect that a computation with a 6464 base grid and one level of; = 4 refinement
should attain the same accuracy as a 23856 uniform-grid computation. Figure 16 shows
the errors inx-velocity for the three-vortex solution at tinte= 0.128 and for the shear
layer problem at timé = 0.75 (y-velocities are similar). In both cases, the adaptive solu
tions attain the accuracy of the single-grid solution with equivalent resolution, indicati



300 MARTIN AND COLELLA
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FIG. 16. Errors inx-velocity vs base grid size for (a) the three-vortex solution-at0.128 and (b) the shear
layer problem at = 0.75.

that local refinement is effective at increasing the accuracy of the solution. Also, the sc
tion errors converge at second-order ratekinexcept in the coarsest uniform-grid cases,
where the solutions are under-resolved and so are not expected to be in the asymg
regime. (Brown and Minion [14] found similar behavior in their study of the shear-laye

problem.)

4.2. Freestream Preservation

To evaluate the performance of the freestream preservation correction for the shear-I
problem,L, and L., horms of A are shown in Fig. 17 for timé = 0.75. The effects of
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FIG. 17. Convergence ofA — 1 for shear layer problem in (&), and (b)L., norms. Adaptive cases were
run with 32x 32, 64x 64, and 128« 128 base grids, with one level of refinememt; = 2 and 4. In all cases,
the higher pair of lines is without the freestream preservation correction; lower sets of lines are with correctic

the correction are much more dramatic in this case than for the two-vortex case prese
in Section 3.5, probably due to the more complicated refined-grid configurations gener:
for this flow. Without the volume-discrepancy correction, errorstirdue to failures of
freestream preservation are about an order of magnitude higherandL ., norms. Also,
the errors im display markedly slower convergence without the correction. Figure 18 sho
(A — 1) attimet = 0.75 both with and without the correction. As in the two-vortex case
without correction, errors i\ are generated at coarse—fine interfaces and then advec
throughout the flow, contaminating the entire solution. With the correction, however, t
errors are primarily confined to cells immediately adjacent to coarse—fine interfaces. (N
the difference in scales in Fig. 18 between the two cases.)
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4.3. Synchronization Projection

To determine the effect of the synchronization projection for this algorithm, these ca:
were also run without the synchronization projection, where the no-synchronization
gorithm is the algorithm presented in Fig. 5. Comparison showed no noticeable accur
difference as a result of the synchronization projection. This is in marked contrast to |
results presented in [3], in which the synchronization projection was shown to be neces:
to maintain the accuracy of the method. This behavior was found to be consistent ac
all problems on which we tested this algorithm—we were unable to find a test case
which the synchronization projection was necessary for accuracy or stability. We beli
this to be a result of our projecting an approximation to the velocity field (as in (24) al
(25)) instead of using the approximationup ((60) and (61)), which is projected in [3].
For theP(u;) formulation, any non-divergence-free components of the velocity field whic
are not eliminated by the projection persist and accumulate, corrupting the solution, wi
for the P(u) formulation, these components are reduced or eliminated by subsequent
plications of the projection [32, 33]. So, the projection formulation used in this work |
more forgiving of errors made at coarse—fine interfaces, because during every time step
velocity field is resubjected to at least a coarse approximation of the composite diverge
constraint [7].

The obvious question is then whether the synchronization projection is really necess
for this algorithm. Performance data indicate that our code spends about 15% of its exectL
time performing the synchronization projection. Although the synchronization projecti
does not seem to have any effect on the accuracy of the method, it does have an im
on how well the solution satisfies the divergence constraint (13). Table Il tabulates
L, and L, norms of D™P(u). It is notable that while the no-synchronization results
show higher divergences and slower convergence in all norms, the difference betweer
synchronization and no-synchronization cases is much less dramatic than in the re:
presented in [3]. The exception to this is in thg, norm withn,s = 4, where it appears
that convergence stalls and actually begins to diverge. This is due to a single point (a cor
corner in the refined-grid configuration) where the divergence remains large in thé44
base grid computation. THe, norms are not as affected.

TABLE Il
L, and L., Norms of Composite Divergence with and without Synchronization Projection
for the Shear Layer Problem at Time =075

Base Grid Sizén
1/32 Rate 164 Rate 1128 Rate 1256

L,: Uniform Grid 1.545e-1 1.65 4.925e-2 1.65 1.569e-2 2.14 3.558e-3
N = 2: With sync 2.761e-2 1.72 8.364e-3 2.05 2.026e-3 — —
without sync 5.868e-2 1.14 2.661e-2 1.45 9.715e-3 — —
Ny = 4: with sync 1.237e-2 1.52 4.310e-3 1.60 1.423e-3 — —
without sync 6.931e-2 1.18 3.053e-2 1.30 1.244e-2 — —

L ..: Uniform Grid 8.874e-1 1.15 3.990e-1 0.803 2.286e-1 1.25 9.617e-2
Nyt = 2: With sync 2.619e-1 0.827 1.477e-1 1.59 4.899e-2 — —
without sync 3.998e-1 0.636 2.572e-1 0.956 1.326e-1 — —

Nyt = 4: with sync 1.708e-1 1.33 6.805e-2 0.129 6.221e-2 — —
without sync 4.529e-1 0.780 2.637e-1 —0.169 2.965e-1 — —
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Another way to judge the effect of the synchronization projection is to examine the me
nitude of the correction to the flow field made as a result of the synchronization projecti
Figure 19 shows thé, and L., norms of (1/AtSY"©)G™Pg; in the x-direction, which
is the correction applied to the velocity field as a result of the synchronization projectic
For the no-synchronization cases, the algorithm was run with the synchronization projec
turned off, and then the compaosite projection was applied to the resulting velocity field—
these casesgl/At®MP)GMPg; represents the correction needed to return the velocity fiel
to compliance with the composite divergence constraint. These corrections are notewc
mostly for their magnitude; for comparison, the solution errors are also included in Fig. :

10
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FIG.19. (a)L,and (b)L. norms ofx-direction correction due to synchronization projection, compared with
solution error. The synchronization corrections are marked with broken lines, while the solution errors are s
lines. Adaptive cases were run with 3232, 64x 64, and 128« 128 base grids, with one level of refinement.
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As can be seen, both with and without synchronization, the corrections are about an ords
magnitude smaller than the solution error. Also, the difference between the cases with
without synchronization is quite small. We have observed similar behavior in all other t
problems we have examined. As mentioned before, we believe that because we are prc
ing the velocity field, the level-projected velocity field does not stray far from the compos
divergence constraint, since the level projections provide a reasonable approximation tc
composite constraint.

10° T
— Single Grid
----1 2Ref
— — - 4Ref
el
Q
[
c -
©
=
<
K]
©
[¢]
._“_, -
L
1/h (finest)
(a)
10° : 3
— Single Grid
----] 2Ref
——-| 4Ret
10° | E
oy
[+
@
,g i0° | E
,_
o
o
[&]
10° £ E
1

1/h (finest)
(b)

FIG. 20. Performance of the adaptive algorithm for the three-vortex problem. (a) Total cells advance
(b) CPU time.
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4.4. Adaptive Algorithm Performance

Almgren et al. [3] demonstrated that using a locally adaptive algorithm can produt
substantial savings in the computational time and memory necessary to achieve a de
solution accuracy.

It should be noted that performance data for locally adaptive methods such as this
are highly problem dependent; results will depend on the fraction of the domain whict
refined, and on the grid configurations chosen. It is felt by the authors that the example
here is representative of “typical” problems where adaptivity will be beneficial.

Figure 20 shows the total number of cells advanced and the total CPU time used
the three-vortex problem with a single uniform grid, one with = 2 levels of refinement
and one wite; = 4 levels of refinement. Note that these results are indexed by the fin
resolution of the solution, rather than that of the base grid, to represent the cost of achie
a given accuracy. Also worth noting is that as the size of the problem increases, the sir
grid code becomes less efficient (CPU time per cell rises) owing to decreased efficienc
a result of worsened cache performance. While the benefits of adaptivity are marginal
smaller cases, they become more pronounced at higher resolutions.

To illustrate the effects of adaptivity on a single problem, Fig. 21 shows the CPU tir
and cell counts for three cases, each with an equivalent resolutign.gf= ﬁ. Results
are normalized by the single-grid values. In this case, botimthe- 2 andn,¢; = 4 cases
show significant savings, both in memory and in CPU time. The difference between the:
lines in the figure represents the overhead due to adaptivity, which comes primarily from
synchronization and intergrid transfer operations. Itis expected that with some optimizat
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FIG. 21. Normalized timings and cell counts for adaptive code for equivalent 302@24 resolution. Cell
counts and timings are normalized by the cost of the single-grid calculation.
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this overhead could be substantially reduced, which would enable the execution time
better follow the cell counts.

5. CONCLUSIONS

We have presented an algorithm for computing solutions to the equations of inco
pressible flow on locally refined grids using a multilevel projection algorithm based on
cell-centered approximate projection. Use of a cell-centered discretization for the project
enables the use of only one set of cell-centered solvers to implement this algorithm, wt
will simplify the extension of this work to more complex situations and geometries. Tt
algorithm refines in time as well as space and uses an approximate volume-discrep:
approach to correct for errors in freestream preservation at interfaces between coarse
fine grids.

We have demonstrated that the algorithm is second-order accurate in space and time
displays the same convergence properties as the uniform-grid algorithm upon which |
based. Also, we demonstrate that, with appropriate choice of local refinement, multile
solutions computed with this algorithm can attain the accuracy of the equivalent unifo
fine grid at less computational cost.

The approach to freestream preservation was shown to drastically reduce deviat
from freestream conditions in advected quantities, both by reducing their magnitude
by confining freestream errors primarily to the set of coarse cells immediately adjacen
coarse—fine interfaces.

Although we include a composite synchronization projection to enforce the diverger
constraint, we have been unable to find a case in which the synchronization projectio
necessary for accuracy or stability. We believe that to be due to the projection formulat
employed in this work, which appears to be more robust than the technique of projecting
velocity update. The natural conclusion is that the synchronization projectionis unneces:
for this particular algorithm. However, it may still be necessary for problems with mol
complicated models, such as viscous flow, a topic which will be explored in future extensic
of this algorithm.

APPENDIX: SINGLE-GRID ALGORITHM

The single-grid version of the algorithm advances the solutiamds from timet" to
timet"+1. At time t" we have the current solutia ands". Our discretization of (12) is

u™t = u" — At[(u- V)u]™Y? — AtV "2, (A1)

wherer"+1/2 is our approximation of the pressure at titfe %At. The scalar advection
equation (15) is discretized as

s = g" — At[V - (us)]"™2, (A.2)

which is our evolution equation f:

We use a predictor—corrector scheme based on that in [8] as extended in [9]. We !
predict an approximation to the new velocity field, which does not, in general, satisfy
the divergence constraint (13). We then correct the velocity field by projeatiogto the
space of vector fields which approximately satisfy the divergence constraint.
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A.1. Computing Advection Velocities

307

First, we compute approximate edge-centered advection velaafi®by averaging the

cell-centeredi” to edges:

uedge — AUC—> Eun.

Next, we use a Taylor expansion to extrapolate normal velocities to cell edges at ti

(A.3)

t" 4+ At/2, using (12) to replace the time derivative. For the- % j) edges, this is

1
norm __ edge edge
U™ = S (U2 + UiT )

3 1 At 1 At _
UiLJ}'1/+21,/12 =ulj + mm[i (1 - Uin,?rmT)’ E} (Uxi.j = %(uy)i,jv

whereuy is the undivided centered-difference in the normal direction,

1
(Ux)i,j = é(uin-q-l,j - uin—l.,j)’

anduy is the undivided upwinded transverse difference,

Utan _ 1( edge edge )

i = 5 Wijt12 T -2

n n i tan
(J) {Ui,j — Uiﬁj_l if Ui,j > 0,
Vi =

n n i tan
Ut —uly if oy <0

Computing the right state is similar and we get

At 1

~R.N+1/2

1 At _
Gitap| = Ulyej + max{z <_1 - uin,?rmh>’ _2] (Uit — %(Uy)ﬂrl»

Then, we choose the upwind state:

~L.,n+1/2 edge

Uita2] if u'y12; >0,
n+1/2 ~R.n+1/2 . edge
iv12) =\ Y12 ifu'ip; <0,
1/~L,n+1/2 ~R,n+1/2 ¢ edge
(O] 055 fulds; =0.

The pressure term is not included in the extrapolation because these velocities are
jected with an edge-centered projection. Also, unlike previous implementations of simi

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

algorithms [3, 8, 24] we do not employ slope limiters when computingnduy. Hilditch

[19] found slope limiters, developed to prevent oscillations in compressible flows with she

discontinuities, to be unnecessary for smooth, low Mach number flows.

Extrapolation of normaly-direction velocities is similar. Once we have computed ar
edge-centered normal velocity field, we apply an edge-centered projection to ensure

the advection velocities are divergence-free. First solve

Ld) — D (un+l/2)’

(A.9)
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and then correct the velocity field,
uhalf — un+1/2 _ G¢ (AlO)

This set of edge-centered advection velocities at tifié/? is used to compute the
advective terms in (A.1). Note that we have only computed velocities normal to the fac
which would be(uf'?] , ;. v/, ,)T.

A.2. Scalar Advection

First, we predict edge-centered upwinded valuessfot/? in the same way as for the
velocity predictor. As before, we compute values $6"*1/2 and3R"t1/2 and then we
choose the upwind value based on the local sigu"8f:

1
norm half half
U = é(ui+l/2,j + ui—1/2,j)

~ |1 At 1 At _
Sy =9 + mm[z (1 - uﬂ‘frmh) z]m, EERUSICONE

As before,
tan _ L/ ha half
vij = E(Ui,j+1/2+vi,j71/2)
1 n n
(s0i,j = §(§+1,j —51—14)
(A.11)
_ s -9 ifu>0,
= {D T
S,j+1_$,j |f vi,j <0.

For the right state we have
1 At 1 At _
=xR.n+1/2
§iha) =Sk + ma){i (‘1 - Uin,?rmr)’ —E](&)HLJ - %Uitinl,j (COIFERE

Then, choose the upwind state:

~L.n+1/2 . edge
34_1/2,]' if ui+1/2.j > 0,
n+1/2 ~R.n+1/2 3 edge
S+12) = | S41/2] if Uiy12j <0, (A.12)
edge

1/=L.n+1/2 | =Rn+1/2\
385120 +851217) ifuidn; =0

Computation o ”ﬁ/ﬁz on they-edges is similar. Then, we compute the fluxes:

sx _ haff o ontl)2
i+1/2,j = Uit1/2.jS+1/2,

(A.13)
ESY  _ half  (nt1/2
i+1/2 = Vi j+1/25,j+1/2:

Finally, the updated stag®*+! can be computed using the discrete analog to (A.2):

S, X S, X sy s,y
1= - At ( Five) — e R FH-W). (A1)
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A.3. Velocity Predictor

Using u"@f we compute an approximation of the advection tefm: [V)u]"+/2. Al-
though the advection velocities in this algorithm are discretely divergence-free, wh
would allow conservative differencing to be used to compute the advection terms,
instead use convective differencing. In the multilevel case, the advection velocities are
generally discretely divergence-free, owing to the effects of the freestream preserva
correction.

First, we re-predict edge-centered velocities as in Section A.1, this timew$thgther
than Av©~E(u"), which was used in Section A.1. We re-use the already-computed norn
velocitiesu™" as predicted velocities. So, we only compute the tangential edge-cente
predicted velocities. To compméﬂ 12,j» forexample, we extrapolate in the same way as fo
u{‘j’;"{/zyj, in this case including¢ to represent the effects of the edge-centered projectiol
We obtain

1 hai half
uiy = 5 (Wi ) +Ut2)
A.15
~L,n+1/2 n : 1 normAt 1 At tan, — ( )
Uiy = vy +min) o 1-u )2 (wx)ij — T (vy)ijs
where
o _Len n A.16
(i,j = E(Ui+1,j - Ui_l,j) (A.16)
and
half half
oY = 5 (02 + ) A1)
B ol — oy if >0, '
(Uy)i,j = n n i tan
v~y iy <O
For the “right” state, we have
1 At 1 At _
~R,n+1/2
viﬁ/z,f =+ ma{é (—1 — Ui",?rm?), _§:|(Ux)i+1,j - %Uitinl,j (Vy)itj-
(A.18)
Then we choose the upwind state:
~L,nt1/2 .
Vi +g/z,€ if Uihf{/z,j >0,
+1/2 ~R,n+1/2 .
Uin+1//2,j = Ui+272,§ if u,; <0, (A.19)

1/~L.n+1/2 | ~Rn+1/2 e half _
E(Ui+1/2,j T V{10 ) if U'ti2j = 0.

Finally, we include the pressure gradient:

half  _ half S
Vit1/2) = Vit1jzj — (GPit12j

dirtjr1itdi—1j+1— Pitrj-1— Pi-1j-1
:UPJ?E/Z,j _ QitLj+ i—1,j+ = i+1, i-1j-1 (A.20)
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To compute the advective terms, first compute a cell-centered advection velocity:

AD—-CC _ = Av EaCuAD

u
Then,
half hal half half
12 (uP2l o — a5 0) (uPaty, —ufry )
[(u V)u]n+/ :u{-\l]) cc \Mi+1/2,j - i—=1/2,j +le|]3 cc \Mi, j+1/ . i,j-1/
(A.21)
n12 _ ap—ce(Uth2) —W20) | ap-cc(Viae — Ut)
[(U V)U] = Ui’j h : +v |J h - .
Finally, we computer*:
uf = uly — At[(u- Vyull
s (A.22)
vi’fj = Ij — At[(u- V)v]n+/.
A.4. Projection
First, solve
n+1/2 1 cc
L = —D**Uu*). (A.23)

At

Then, correct the velocity field onto the space of vector fields which satisfy the diverger
constraint:

u"tl = u* — AtGCCr Y2, (A.24)
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