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This paper describes a numerical method for the solution of plasma fluid equations
onblock-structured, locally refined grids. The plasmas under consideration are typical
of those used for the processing of semiconductors. The governing equations consist
of a drift—diffusion model of the electrons, together with an energy equation, coupled
via Poisson’s equation to a system of Euler equations for each ion species augmented
with electric field, collisional, and source/sink terms. A discretization previously
developed for a uniform spatial grid is generalized to enable local grid refinement.
This extension involves the time integration of the discrete system on a hierarchy of
levels, each of which represents a degree of refinement, together with synchronization
steps to ensure consistency across levels. This approach represents an advancement
of methodologies developed for neutral flows using block-structured adaptive mesh
refinement (AMR) to include the significant additional effect of the electrostatic
forces that couple the ion and electron fluid components. Numerical results that
assess the accuracy and efficiency of the method and illustrate the importance of
using adequate resolution are also presented.

1. INTRODUCTION

Many of the process steps performed in the manufacture of very large scale integr:
(VLSI) circuits involve plasmas [18, 19]. Inductively coupled plasma (ICP) reactors repr
sent one type of processing tool that utilizes high-density, low-pressure plasmas to sa
the demanding process criteria resulting from the desire to create increasingly smaller
vice features on large wafers. Computational models of ICP reactors can help equipn
manufacturers and process engineers understand the complex relationships among re

1 This work was supported by the Applied Mathematical Sciences Program of the Office of Mathemati
Information and Computational Sciences, of the U.S. Department of Energy under Contract DE-AC03-76SFO(
with Lawrence Berkeley National Laboratory and by Lawrence Livermore National Laboratory under Contr:
W-7405-Eng-48.

550

0021-9991/99



SOLUTION OF PLASMA FLUID EQUATIONS 551

and plasma parameters (e.g., reactor geometry, radiofrequency (RF) power, gas pres
gas composition, electrode bias, densities, velocities) and process performance (e.g.,
rate, anisotropy, uniformity, selectivity, damage).

A number of simulators have been developed to computationally model process plast
The Hybrid Plasma Equipment Model (HPEM) [30] at the University of lllinois consists c
many interacting physics modules (e.g., electromagnetics, chemistry, fluids, Monte C
collisions) and has been used extensively [12,13, 17, 23, 24, 28, 29]. The INDUCT code |
27] developed at Lawrence Livermore National Laboratory implements a two-dimensior
axisymmetric plasma fluid model with a self-consistent treatment of the inductive fiel
generated by the RF coils. INDUCT includes neutral flow, multiple ion species, and ve
able ion temperature. It has been benchmarked against experiment [4, 31] and has
used extensively within the semiconductor industry. Work at the University of Californ
at Berkeley has extended the code to include complex chemistry, and the effect of thes
actions has been investigated with INDUCT [5]. The commercial package CFD-PLASN
(ICP), utilizing unstructured grids, has been developed by CFD Corporation for ICP sin
lations [33].

Among the primary difficulties encountered in the development of computational mod
of plasma processes is the need to address problems associated with a wide range of ten
and spatial scales. The high-density, low-pressure plasmas employed in ICP reactor
particularly challenging in this regard. Here, the difference between the dielectric relaxat
time of the plasma and the reactor transit time for an ion can be many orders of magnitt
Moreover, due to the small Debye length of such plasmas, the sheath and presheath re
over which much of the potential drop occurs can be three or four orders of magnitude sm:
than the reactor dimensions. Numerical methods must therefore accommodate large
variations. For example, all of the plasma simulators listed above use some form of “she
model” to handle the rapid variation of the underresolved state variables near the ree
boundary.

One way to handle multiple scales in a numerical model is through the use of adap
mesh refinement (AMR). AMR algorithms permit the underlying computational mesh to
modified in space and time to follow changing solution features. To date, the applicatior
AMR techniques to plasma simulation has been mainly limited to fusion plasmas (e.g., [
and references therein), and magnetohydrodynamics [25]. Relatively little attention has
given to the use of AMR in the simulation of high-density, low-pressure process plasm
In [9], we described and analyzed a numerical algorithm for the solution of a system
plasma fluid equations on a uniform spatial grid. In the present companion paper, we b
an investigation of AMR for high-density, low-pressure plasma simulation by generalizi
this algorithm to enable the solution of the same system of plasma fluid equations on loc
refined grids. We focus our attention on grid structures with multiple levels of resoluti
that are prescribed priori, which is the first step toward a fully adaptive algorithm.

The approach we have taken in this work utilizes and extends a number of ideas
have been developed for the application of AMR in other contexts. One of the first bloc
structured AMR algorithms was introduced in [3] for hyperbolic conservation laws usil
finite difference methods on a hierarchy of regular Cartesian grids. Early applications
cluded problems arising in gas dynamics and shock physics [2, 11]. In this approach,
level of the grid hierarchy corresponds to a degree of spatial refinement, where the loce
and topology of the grids is determined by Richardson extrapolation estimates of the ti
cation error combined with cell tagging/clustering algorithms. The hyperbolic system
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integrated on each refinement level separately using a time step appropriate to the CFL
bility requirement of the grid on that particular level. Communication among levels occt
through the use of temporally and spatially interpolated coarse grid data to define bount
conditions for the integrations on finer levels, as well as so-called “refluxing” operatio
performed to restore flux continuity and local conservation at coarse—fine boundaries.

The generalization of AMR for systems that are not purely hyperbolic, such as f
plasma fluid model we consider here, presents a number of additional challenges. Elljj
parabolic, and mixed systems lack the real characteristic structure and transit time
lation that make hyperbolic AMR straightforward in comparison. Although the specif
algorithms are problem-dependent, some general strategies have been developed at
plied to problems in incompressible flow [1], combustion [22], and radiation transport [1-
A common theme is the continued use of nested levelwise integrations as in the pu
hyperbolic case, with the addition of “composite synchronization” steps to restore glo
constraints (e.g., incompressibility or charge conservation) as well as any compatibi
conditions at the interface between coarse and fine grids that may have been violated di
the level integrations. These synchronization steps typically require the solution of lin
systems on a portion or all of the grid hierarchy. The fact that such linear systems mus
solved on a hierarchy of successively refined grids makes multigrid-based multilevel st
tion algorithms a natural choice. In fact, the availability and high efficiency of multigri
algorithms on Cartesian grids is one of the primary motivations for using a block-structu
AMR approach. In addition to the vast literature on multigrid methods, a good overview
multilevel adaptive methods can be found in [21]. The particular approach incorporatec
the present work was motivated by the ideas presented in [20].

In Section 2, we present the physical model and the system of equations to be solved.
plasma is regarded as a fluid consisting of charged components, ions and electrons, co
by Poisson’s equation. The motion of the electrons is described by a drift—diffusion mo
including temperature, while each ion species is modeled by a system of Euler equat
augmented with electrostatic force, collisional, and source/sink terms. The discretizatio
the system described in [9] on a uniform spatial grid is summarized in Section 3. In Sectio
we extend the single grid algorithm to the case of block-structured locally refined gri
Beginning with a rectangular uniform grid, subregions are successively refined to crea
hierarchy of refinement levels, each of which is a union of non-overlapping rectangles. -
time evolution of the fluid systems is accomplished through the coordinated advancen
of individual refinement levels, using the single grid algorithm of Section 3, together wi
composite synchronization steps to enforce charge conservation and continuity of par
fluxes and electrostatic field across levels. In Section 5, numerical results illustrating
accuracy and efficiency of the method are presented. The method is then applied to
problems of practical interest, both of which suggest the need for adequate resolutio
simulations.

2. THE PLASMA MODEL

We consider the plasma fluid model described in [9] consisting of the electron equatic

dNe

o TV (nete) = ij Rej, (2.1)

Nele = Net Vo — nV(Nek Te), (2.2)
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the ion equations, for each species

an;
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j

jIRj <0 jIR;>0
& = % 2.7)
and Poisson’s equation
€V -E= ZQi Ni — QeNe, E=-V¢ (2.8)
i

with the variables defined in Table 2.1. In deriving the electron equations (2.1)—(2.3) fr
moments of the Boltzmann equation, we have neglected electron inertia in replacing
electron momentum moment equation with the drift—diffusion force balance equation (2
and we have replaced the electron total energy moment equation with the internal en
equation (2.3). The electron transport coefficients are given by

Ven = Z Vej, (2.9)
j

W = €/MgVep, (2.10)
n = 1/Mgven. (2.11)

Boundary conditions for the electron continuity equation (2.1) are derived from t
approximation

NeUe ~ Iy = Newe(kTe, @) (2.12)

for the total electron boundary flux, wheug is the average velocity of electrons reaching
the boundary given by

we(KTe, ¢) = @ exp(—ewﬁ_r_(bl) (2.13)



554 COLELLA, DORR, AND WAKE

TABLE 2.1

Variables Used in the Plasma Fluid Model
n; Number density
uj Velocity
¢ Potential
E Electric field
T; Temperature
& Internal energy
Vi Ratio of specific heats
Pid Input power density
w,n Transport coefficients
m; Mass
R; Number density gain/loss rates from ionization, attachment, etc.
Si Number density gain/loss rates from inelastic collisions
€6 Energy transferred in inelastic collisions
vij Elastic collision frequencies
g Charge
e Elementary charge
€ Permittivity of free space
k Boltzmann’s constant

andv(kTe) = +/8kTe/mme is the average speed for a Maxwellian distribution. Using (2.12
one obtains boundary conditions for the electron temperature equation (2.3) from

5 5nek T
Qb = ZNekTele — = e

VkTe = 2kTeI” 2.14
2 2meVen e el b, ( )

whereQy, is the total energy boundary flux.

Hypersonic outflow boundary conditions are assumed for the ion equations (2.4)—(:
corresponding to positively charged spediég > 0). As explained in [9], this choice is
consistent with the usual Bohm sheath criterion in electropositive systems (i.e., all
species are positively charged) as well as modifications of the Bohm condition for el
tronegative systems (i.e., at least one ion species is negatively charged). Zero flux bour
conditions are imposed for negative ion spetigg < 0).

Dirichlet boundary conditions are specified for the potential (2.8) corresponding to
an applied voltagey, at the boundary. The value ¢f can vary spatially along the boundary
and with each time step. For example, in the simulation of an ICP reagt@ong the
wafer boundary could be prescribed as a sinusoidally varying waveform representing
applied radiofrequency (RF) bias.

The charged species described by (2.1)-(2.8) are generated from, and collide wit
background neutral gas. Although the neutral flow is important, we restrict our attentior
this paper to the charged species only and assume that the dynamics of the neutral sg
are already known.
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3. SINGLE-LEVEL ALGORITHM

Assume that we have known values for all quantities at tigpend that we wish to
integrate (2.1)—(2.8) to a new timg,; =t, + At. The time stepAt is chosen such that

At < amin i,i , (3.15)
ur|ER|” un By

which is the stability restriction for the explicit steps in the algorithm. Since (3.15) is bas
on data at the beginning of the time step, we incorporate the facftypically o« =1/2)

to account for velocity changes during the step. As described in [9], the integration is s
into five main steps, which we now describe.

Step 1. Advance the ions using a second-order Godunov metkodeach species
the system of ion equations (2.4)—(2.6) can be written as a single vector equation

ou a

3
ot +3—XF(U)+a—yG(U): H(U, E), (3.16)

where we have the definitions

N;
[x
U= r , Ix =niuix, I'y=niujy (3.17)
y
%Ui Ui + & /m
KT + KT,
2= n¥hitKle (3.18)
mi
I'x Iy
il
S e, T
FU) = rr , GWU) = 2
N 2+ cn;
nj n i
(Fu; - Ui + & /mi +c?)Ty (3ui-u +&/mi + )Ty
(3.19)
S
1 KTe2™ + g ni Ex + Six
HWU, E) = o KT e , (3.20)
i e5y TOANEy+ Sy

V-nikTeu) +gniui -E+ S

where §, S, and S, denote the collisional and gain/loss terms in the right-hand sid
of (2.4)—(2.6). The system is slightly modified for the electronegative case as descri
in [9]. Note that (3.18) defines th@lasmasound speed rather than the usual neutral ge
speed/y kT, /m;. The inclusion of th&kTe/m; term in (3.18) is balanced by the density
derivative terms in the right-hand side (3.20) (i.e., the first term in the second, third, &
fourth components of (3.20)). The asymptotic analysis presented in [9] shows that
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particular organization of the ion equations, when combined with the electron and Pois
equations, results in a slowly varying source term (3.20) that can be lagged in an exp
time integration.

We use a second-order, unsplit Godunov method [8] to solve (3.16). The update sch
in a typical cell(i, j) is

At ~n

Ut =u [F(Uls;) = F(U s )] Ay

T Ax
ALrg(un BN 4 H(UH, EME 3.21
+7[ (U E") + H (U, )] (3.21)
whereU i”il/z’j andl]i”’jﬂ/2 are the Riemann problem solutions at the right, left, top, an
bottom edges of celi, j), respectively. The second of the two terms discretizing the sour
termH (U, E) depends upoU{f?“, which is a provisional value at tint&** computed us-
ing approximate values for the state variableg'at, as well as the fieldE"* at the new
time. Since the latter quantity is not yet known, we compute only the provisionaluﬁ[ﬁé
and the flux divergences - (nju;), which are required in Step 3 below, at this stage of the

algorithm. The final ion update (3.21) will be completed after the new field is computed

Step 2. Calculate electron diffusive fludMe next compute a slope-limited, Taylor-series
predictionn?*/2 of the edge electron densitytat ;> upwinded relative to the drift velocity
ug. We then combine (2.1) and (2.2) to solve

ﬁg“ — ng _ n+1/2-n N (A1 TN n
=V (nETAR) + vV (Rg KT + > R, (3.22)
j

for A1, which is a prediction of the electron density at titne; that we employ solely in
order to compute the electron diffusive flux

rgit = —n"V(AZKTY). (3.23)

Step 3. Calculate new potential and electron densitysing the electron diffusive flux
i and the electron densityi+'/2, we advance the potential by solving

€0 i o]
V. EV(;&”“ + AtF(gb”*l)] =ng — i E'nin + AtV (Z El(ni U2 FQ#) .
(3.24)
where
F o™ = ni+/2ny g+t on interior cell edges (3.25)
na™/2we (KT, ¢"1)  on boundary cell edges '

We then compute the new electron density via

ngtt =nd — AtV - T3P + ALY "R, (3.26)
J
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where
ot = Fe™h + gkt (3.27)
andl“gﬁgl is assumed to vanish at the problem boundary. The new field is
EMl = _vetl (3.28)

Note that the implicit treatment of the electron drift flux in (3.24) transforms an otherwi
easy-to-solve Poisson equation into a nonlinear (due to the electron flux boundary condit
equation with a variable-coefficient Jacobian. The scaling analysis presented in [9] shc
however, that this modification is essential to avoid a severe time step restriction. Fortuna
given time steps satisfying (3.15), the nonlinear problem (3.24) can be adequately so
using only a couple of Newton iterations after the first few time steps, during which t
performance of the Newton iteration depends upon the prescribed initial conditions. -
Jacobian system is solved in each Newton step using a multigrid algorithm [9].

Step 4. Calculate new electron internal energysingn?*t, '0*1, andE"*?, we obtain
the internal electron enerdyT"*! at the new time by solving

§ng+1kTe“Jrl — npkTY Ly 5F”+1kT”+1/2
2 At 2°°

— —eFQ“- En+1+gv (’7 nn+1/2an+1/2van+1) + |nd

3m
- Z Mey KTovging + > e S, (3.29)
j

whereT"*/2 is a slope-limited, Taylor-series prediction of the edge temperatufe &t
upwinded relative to the velocityl. Collecting all terms involvingr"** on the left-hand
side and incorporating the boundary conditions (2.14), we observe that (3.29) is a lir
system with a symmetric, positive definite coefficient matrix.

Step 5. Complete calculation of new ion datdhe last step is the computation of the
ion data at the new time step via (3.21).

4. SOLUTION OF THE FLUID EQUATIONS ON LOCALLY REFINED GRIDS

Let Q¢ denote a union of disjoint, uniform, rectangular grids. £gtalso denote a union
of disjoint, uniform, rectangular grids, each of which is obtained by refining a rectangu
subgrid ofQ2. by a factom,es. Let P(2¢) denote the projection of tHae grid2¢ onto the
coarse grid2.. Define thecomposite gricby

Qcomp = Q¢ U(QAN\P(Q1)) (4-30)

and letl denote the interface between the coarse grid compaRg(® (2¢) and the fine
grid component2; of Qcomp (S€€ Fig. 4.1).
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FIG. 4.1. Coarse, fine, and composite grids.

4.1. Solution of Poisson’s Equation on a Composite Grid

We want to extend the algorithm described in the preceding section for use on the ¢
posite grid (4.30). A key requirement is the enforcement of Poisson’s equation

—€e0Ap = p (4.31)

at each time step, so we begin by describing what it means to solve (4.31) on (4.30).
in the single grid case, we will not be solving (4.31) directly during the integration of tt
fluid system on the composite grid, except for initialization or diagnostic purposes. Nev
theless, the separate consideration of (4.31) here will introduce some important conc
and notation.

On Q¢ or ¢, the standard five-point cell-centered discretization of (4.31) can be €
pressed in terms of edge-centered fields as

eo(—Ei_1/2j + Eit12) — Eij—12+ Ei j11/2) = hpi j, (4.32)
where, e.g.,
Btz = —(is1j — ¢ij)/h, (4.33)
¢i j andp; ; are the potential and charge at cell ceritelj), respectively, antl is the grid
size. Dirichlet conditions are imposed on the physical boundary by extrapolating inter

potential values and the prescribed boundary value to a “ghost” cell exterior to the probl
as is depicted in Fig. 4.2(a).
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FIG. 4.2. (a) At a physical boundary, interior and boundary value} ére used to extrapolate to the ghost
cell (o0); the ghost value and the other interior valu€sare used to construct the Laplacian at (a). (b) Locations
of coarse grid boundary condition®), tangentially interpolated values)( fine grid cells ¢), and ghost cells
(A and). (c) Domain of dependence énd ®) of the Laplacian at a fine cellY) adjacent to the coarse/fine
interface.

A composite discretization of (4.31) on (4.30) is obtained by applying (4.32) separat
onQ ¢ andQ:\ P(2+) with the definition of the edge-centered fieldslosuitably modified
to enforce continuity of the potential and field across the interface. Since each coarse
edge onl is the union ofn fine grid edges, field continuity requires that the coarse field
at such edges be obtained as the average of the fields on the corresponding fine edge
To obtain the fine grid fields oh, we require potentials 0.\ P(2+) interpolated to
the fine grid resolution and centered in a single layer of ghost cells surroufidinghich
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then enables (4.33) to also be applied on fine grid edges contairled/e employ an
interpolation scheme whose stencil is depicted in Fig. 4.2(b) for a sample grid struct
with n.et = 4. The potentials at coarse cell centers (large filled circles) are first quadratice
interpolated tangentially tbto obtain values at the locations depicted by the unfilled circle:
These values are then linearly interpolated normally tsing the potential values at the
centers of the fine cells abuttirig(small filled circles) to obtain potentials at the ghost
cell centers depicted by the triangles and squares. As suggested by the overlapping tric
and rectangle in the upper right-hand corner of the coarse grid region in Fig. 4.2(b),
potentials interpolated in this way may not be unique, with the value denoted by the trian
being used to compute the field on the vertical fine edge to the right, and the value den
by the square being used to compute the field on the horizonal fine edge immedia
above.

The resulting discretization of (4.31) d2comp iS Second-order accurate. The corre-
sponding discrete Laplacian operator is not symmetric, however, as can be deduced
Fig. 4.2(c), which displays the operator stencil based at the circled fine grid cell alutting
For example, the coarse cell labeled “a” participates in the stencil based at the circled
grid cell, but the converse is not the case. Effective multilevel algorithms can neverthel
be employed to solve the discrete system, as will be described in Section 4.4 below. Tl
multilevel algorithms rely heavily upon the observation that the solutiofithe composite
Poisson equation is also obtainable as the solution of a coupled pair of Poisson equa
onQ; andQ,

—€0Ags = pt = p ONQ, o1 = Q(or, ¢¢) atl (4.34)
—€0APe = {,0 — €V -9 onS\P(&2) (4.35)
(PP onP(Qf)
by setting
bc onQc\P(2¢)
= 4.36
¢ {¢f onQs. ( )

Here, Q denotes the linear boundary operator atmplicitly defined by the previously
described high-order tangential interpolation of coarse grid potemtiat®mbined with
normal interpolation of fine grid potentials:. (ot)pq,) denotes the volume-weighted
average ofp onto P(2¢). In (4.35),

SE=—(Voi) + Vo, (4.37)

where(-); denotes the arithmetic averaging of fine edge data to coarse edge dlatédern,
and in the remainder of this section, we adopt the conventior thdenotes the difference
on coarse edges inof a generic quantitfF computed on the coarse grid and fine grids. Fo
such quantities, it is also convenient to define the diverg@hcéF as the divergence of
the extension by zero ¢fF to the remaining edges 64;. The termeyV - §E has the form
of an integrated surface charge, but in fact results solely from the change of grid resolu
atl. In the solution of (4.35), this “coarse—fine” surface charge causes a jump in the cos
grid field atl such that continuity of the composite field is obtained.

Because only the coarse grid potentigl on Q:\P(2¢) is used in constructing the
composite solution (4.36), it might at first seem inefficient to be solving (4.35) on the ent
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coarse grid2. versus solving just of2.\ P(£2¢) andQ2 s with matching conditions dt. This

is not the case, however, since we intend to solve (4.34)—(4.35) with a multilevel metho
which the approximate solutions of (4.35) in residual-correction form comput&{Qn)
represent coarse grid corrections to smoothed approximate solutions of (4.34). This re!
in a very effective iterative solution method. This approach also avoids the need to comj
solutions only orQ2.\ P(£2¢), which may be far more geometrically complex than eithe
grid Q¢ or grid Q.

4.2. Solution of the Plasma Fluid System on a Composite Grid

With the composite solution of Poisson’s equation as background, let us now cons
the integration of the plasma fluid system. As in the single grid case, discrete time evolu
equations on the composite grid can be obtained by combining a first-order differenc
Poisson’s equation over a time stay = t"1 —t" with the continuity equations for the
ions and electrons. Again with the electron drift flux treated implicitly, this yields

ni*t =n] — AtV - (T (N3 T2, ™) + g ) + AtS” (4.38)

N =n" — AtV - T + AtS (4.39)

V. <Eeov¢n+l + Atrdl’ift (n2+1/2’¢n+1)>

= ng— q—(;ni"-{—At(Zq—;V.Fi —V-Fdiﬁ> (4.40)
i

in addition to evolution equations for the ion momentum and electron temperature, wk
we omit for now. In (4.38) and (4.39%" denotes the source/sink term.

Implied in (4.38)—(4.40) are matching conditiong @hat couple the dependent variables
onQ¢ and2:\ P(22¢). Conservation of mass (i.e., hyperbolic matching conditions) require
that

Ixe=(Txt)1s X =i, drift, diff, (4.41)

wherel'y ¢ andT'y ¢ are the fine and coarse fluxes bnrespectively. Continuity of the
potential and field (i.e., second-order elliptic operator matching conditions) is achieved
enforcing

P = Qa7 o2 (4.42)
n- Vet = (n-veitt), (4.43)

onl, wherenis a unit normal td .

Although the composite system could be integrated directly, such an approach woul
penalized by the need to use a single time step for both spatial grid resolutions. In partict
given comparable electron drift velocities, the time step will be limited by the stability r
guirements 01R2 ¢, which might represent only a very small fraction of the physical domair
To avoid the resulting unnecessary additional workson P(2¢), we instead employ a
predictor—corrector approach comprising separate integrations on the coarse and fine
coupled by a composite sychronization step. Specifically,
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1. Coarse predictor stepUse the single grid algorithm of Section 3 to integrate the
plasma fluid system of; over a time stepAt, = t"*1 —t".

2. Fine predictor stepIntegrate the system of2; over the same time interval to
t"* using Neycle UNiform time stepsAts = Ate/Neyee, With boundary values interpolated
spatially and temporally fror@:\ P (2¢).

3. Composite synchronization stepolve for a potential correction on the composite
grid to restore matching conditions at the coarse—fine inteifahat were violated during
the separate coarse and fine integrations.

The corrected coarse and fine predictions are then combined to obtain a composite
lution that closely approximates, with mild assumptions, the solution one would have
tained by integrating the composite system using the fine grid time steps everywhere. -
is, lettingm=m(n), ..., m(n+ 1) index the time steps taken on the fine grid, we obtair
approximations to the composite quantitg¥™?, n™™* and¢™™+ satisfying

ng1(n+1) — m(n) Z Atf Fd |ft( nm+1/2 ¢m+1) + ng];frl/z) . Sn] (4.44)

M =M N At (V2 - 8T (4.45)
m

€
V . <e0v¢m(n+l) + Z Atfrdrift (ng'l+1/2’ ¢m+1)>

m
i 0] +1/2 +1/2
n;“(“)—zgn{*‘(”WZAtf <ng-r{” Z_v.r5 /> (4.46)
i m i

with the conditions analogous to (4.41)—(4.43) larWWe now describe this algorithm in
more detail.

4.2.1. Coarse Predictor Step

On Q, select a time stept, =t"** —t" and perform the integration

gt = ngc — AtV - (Tain (NGEY2, 681) + Tain c) + AteS) (4.47)

it =nl.— AtV - Tjc + At 4.48
C i,c c

1,C

< V¢n+1+AtCFdrlﬂ( n+1/2 ::H-l))

= EOV-(SE“~|—AtCV~ (ngEY2u"SE") 4+ nd — inn

+ At (Z %‘v Tic— V- rdiﬁ,c) (4.49)
i

This is the same single-level integration described in Section 3 except for the first two te
in the right-hand side of (4.49) involvingE", which is computed as in (4.37) usigg and
¢r. We include theSE" terms in (4.49) as approximations of the analogous quantities
the new time"** to anticipate better the effect of the subsequent fine grid integrations. .
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will be seen later, this modification of the coarse grid prediction reduces the magnituds
the correction required in the composite synchronization step.

4.2.2. Fine Predictor Step

Next, we integrate the system &Iy over the same time intervél! to t"+? using Neycle
uniform time stepsAts = Ate/Neycle. LEt M=m(n), ..., m(n+1) index the time steps
taken on the fine grid. We have

ng(fn+1> m(n) ZAtf Fdnﬁ( m+1/2 ¢m+l) g?;lf/Z) _ S‘P] (4.50)

N = MY — Zm (V-2 — s (4.51)

V. ( V¢m(n+l)+ZAtfrdnft< m+1/2 ¢m+l>>

m(n) Z i m(n) n Z At (Z Qi Gy, Fm+1/2 V. Fg?ft]-f/2>. (4.52)

In performing this integration, boundary values are needed at the coarse—fine interfac
These values are obtained from the corresponding valu€s0R(2¢) by linear interpo-
lation in time and appropriate spatial interpolations. Specifically, potential boundary val
at| are given by

min+1) —m

¢T:Q<¢ff“, o + m—m(n)¢2+1>’ m=mmn)+1, ....,mn+1).

c
r'|cycle r"cycle

(4.53)

Boundary values for the fine grid electron and ion dataate obtained from conservative
spatial interpolation of their corresponding values$an P(2¢), linearly interpolated in
time, to a layer of ghost cells surroundify .

4.2.3. Composite Synchronization Step

Having integrated the fluid system on b@&h and2:\ P (2 ), we would like to compose
a solution of (4.44)—(4.46) from the integrated solutions obtained from (4.47)—(4.49) ¢
(4.50)—(4.52). However, it is not possible to do this immediately for two reasons. First, 1
interpolated Dirichlet boundary condition (4.53) only ensures that the potential is continu
at |, but nothing has been done to enforce field continuity there. In other words, Poissc
equation is not yet satisfied since the composite potential still needs to be adjusted to sz
also the interface conditions (4.43). Second, since different fluxes were usetliang the
integration of the coarse and fine grids, (4.41) does not necessarily hold and conservz
must be restored by an appropriate “refluxing” of ions and electrons. Such a redistribu
of charge again implies a modification of the composite potential.

One solution to this dilemma would be to iterate the coarse and fine grid integratic
until we obtain a composite solution that satisfies the hyperbolic and elliptic matchi
conditions. This is clearly computationally unattractive. Another alternative would be
determine corrections to the fine and coarse solutions in order to obtain a solution satisf
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the matching conditions. If we were to formally subtract the coarse and fine solutions fr:
the composite solution, we would hope to obtain an equation for these corrections. V
very mild approximations, this is what we indeed obtain. The approximations we make
based on three principles.

The first principle is that the inertia of the ions makes them insensitive to changes
the potential over the relatively small time steps, which are determined by the significar
higher electron mobility. The ion density and momenta will not be immediately affected |
small changes in the field. Consequently, we consider charge redistribution due to comp«
potential corrections as entirely due to a change in the electron density. It is also suffic
to include field corrections in the momentum source term (3.20) in subsequent time ste

Second, for quasi-neutral plasmas, perturbations to the electron density (for a sir
coarse step) are very important as they affect the space charge, but they are not impc
for quantities involving the density alone. For example, a change of 1 part in 1000 |
the electron density will have little effect on the calculated pressure gradient, but it ir
drastically change the space charge. This observation is used in three approximations.
the edge centered electron densities used in the fine and coarse modified Poisson solv
approximately equal to those we would have if we were integrating the composite sys
itself. The same can be said regarding the diffusive flux terms used for the fine and co
integrations. Third, the changes inion and electron densities due to th&gatewlR; do
not affect the net charge and therefore do not require correction after the separate integr
of the coarse and fine grid systems.

Our final observation is that the electron temperature and the dependent rate coeffici
change slowly over a time step. We may therefore neglect changes in the rate coeffici
due to the composite corrections.

With these assumptions, we proceed in deriving equations for the potential and elec
density corrections that allow us to satisfy the governing equations along with the hyperb
and elliptic matching conditions.

We seek a potential correctiait = (¢%, ¢) satisfying the composite system obtained
bysubstituting

{¢T+¢? onQy,
oM = m=mn)+1,...,mn+1) (4.54)

gy onQ\P(Q),

into (4.46), then subtracting (4.49) &\ P(Q2¢) and (4.52) or2¢. The correction must
also satisfy the continuity requirement

7 = Q(¢7. ¢3) (4.55)

at the coarse—fine boundakyLet us now determine the equation to be satisfie¢pbpn
Q\P(22¢). On edges of2.\P(2¢) contained inl , define

1
8T = <At > Atfr{?rl/2> —Tic (4.56)
C
|

m

1
(SFdiﬁ = <E Z Atf Fgllf—;]%/2> — Fdiﬁ,c~ (457)
¢ |
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Substituting (4.54) into (4.46), withit = At., then subtracting (4.49) oftc\ P(Q2¢), we
obtain

v. E—eov(cbm‘”“) — ¢ty + Atrgrm] = —V SE" — AtV - (nZEV2u"sE")
+ALV. < ﬂar. - 3rd.ﬁ> (4.58)
i
where
<Aitc > om Ati T (NTFY2,6™1)) - on edges of2c\ P(Q)
. — Caritt (N3 £Y2, ¢211) contained inl

Carie = ’ (4.59)

2= 3 Atg Tain (T2, oM 1) on edges 0f2:\ P(21)

— Darine (N3 EY2, p011) not contained ifl .

In the first term of (4.58), we observe that

Vo on edges of2.\ P(L2¢) not contained in

V(¢m(n+l) _ 2+1) — _ _ (4.60)
(Voi) on edges of2.\ P(Q2+) contained inl .

On edges of2.\ P(L2¢) not contained in and not part of the physical boundary, (4.59)
yields

i = NEEY2u"Vey. (4.61)

Using (4.59), on the edges &\ P(2¢) contained inl , we have

1
Fsﬁft — <A_tc Z Atfng'+l/2um(v¢?1+l + V¢*)> ngtl/Z nv¢n+1 (462)
m

~ <A ZAthdnft( m+l/2 ¢m+l)> _Fdrm( n+1/2 2+1)
te

|

in which we make the approximation

<n2’1+l/2umv¢*> ~ <nm+1/2 m> (v¢ ). (464)
Therefore, if we let
T arit (dc)
N2y g on edges of2.\ P(2f) not contained
_ in | or the physical boundary (4.65)

(ngHD=2mneh-1y yer on edges of2c\P(¢) contained inl
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on the edges af2:\ P(2¢) not contained in the physical boundary, and define

SEM = —(Voith), + Vet (4.66)
1
6l = <Atc Z At Dyritt (I’]?:Jfrl/z, ¢T+l)> — Darift (ngfcl/z, (r:1+1)
m |
+nREY2U"S E" + 8T gi (4.67)

on the edges af2.\ P(2;) contained inl, (4.58) becomes

€0
V. <EV¢Z + Atme(%‘))
= -Vv. (<€é’ + <Atngf<f”+l>1/2Mm<“+1)1>,)(<V¢’;>| - V¢é‘)>

+6—e°v-(5E“+1—5E”)+Atv- < %m —5re>,

¢ = 0 on the physical boundary. (4.68)

To obtain the equation determiningf’ on ¢, we subtract (4.52) from (4.46), which
yields

1, 0Y atl,
V. <@V¢>”§ + Atrgrm> =0, ¢} = Q7. ¢c) _ (4.69)
e 0 on the physical boundary

where
1
it = AL Z Atg [Cariee (ng2, ™) — it (nemfl/z, T ). (4.70)
m

On the non-boundary edges@f, ' is approximated by

Tant(¢7) = ng 0 2umM D1V et (4.71)
Hence, o2,
€0 Q#%, ¢0) atl,
V. Lver 4 Atr -(*)):0, - _ 4.72
( e’ (0 o1 {0 on the physical boundary( )

The pair of equations (4.68) and (4.72) thus form the system to be solved for the compc
potential correctio*. It only remains to specify the modifications to be made on physic:
boundary edges due to (2.12). On the edge@HfP (2 1) on the physical boundary, (4.59)
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implies that
N - Tt
1 1
=N atgnmivzle v exp _e(¢m+1 —d ) _ nn+1/212e exp _e( et =g )
T A4 4 KTm e g KTD

1 e(¢m+l _ ¢m+1) e( n+1 _ ¢m+1)
~ n+1/2 Ve _ b _ _ c b
Flec™ g {Atc Zm Al eXp[ KT P KTD

- n+1 m+1 *
_ n+12Ve _e( ¢ — % ) _ e _
~fec” eXp[ KTo P\ kmn) T

4172 gl ep”
=n- Fdl’lf‘[( n" n ) |:exp< kTen> — ]_:| (4.73)
and similarly on the boundary edgesSiyy . Thus, (4.65) and (4.71) are supplemented by
n- Fdrlﬁ(¢c) =n-: Fdrn"t( n+1/2 n+1) [exp( an¢ ) - :| (4-74)
e
n- Fdnft(¢f) =nN- Fdrn"t( m(n+1) 1z ¢rfn(n+l)) [exp(— an¢*) - :| ’ (4-75)
e
respectively.
Similar subtractions of the ion and electron continuity equations show that
pmint+b on Qs
preHD = T (4.76)
" AtV ST onQe\P(Qy)
min+1) _ T (A
oD — {ne’f ALV Tain($7) onsi 4.77)
nott — AtV - (Tyiitt(¢*) + 8Te) onQc\P(22¢)

satisfy (4.44)—(4.45).

In the single-level integration algorithm, the electron diffusive fltgg is computed
using a predictior?*! of the electron density obtained by solving (3.22). In solving thi
linear system, it is convenient to regaigf 'k ' as the dependent variable. We therefore
require a boundary value for this quantity for the corresponding linear solves occurr
during the fine grid integration (4.50)—(4.52). For this, we again employ linear interpolati
in time and the high-order spatial interpolation oper&oi.e.,

min+1) —m

m—m(n
AgTKTY = Q( A KT, ng KTOE! + 7()ng_tlkTe'jc+l> (4.78)

ncycle ncycle
form=m(n)+1,...,m(n + 1). Note that, as in the single-level integration, we do no
correct the diffusive flux following the composite correction step (4.77).

Restoration of ion momentum conservation is handled similarly to (4.76). Specifical
momentum flux differences are accumulated afuring the coarse and fine level integra-
tions, then used to correct the coarse level ion momenta. This correction is independe
all other composite synchronization steps.

The composite synchronization of the coarse and fine level integrated electron temp
tures is performed in a manner similar to that in which the potential correction is perform
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After the integration (4.47)—(4.49) of the potential and electron density Avef At; on
Q\P(Q2¢), the temperature equation is also integrated to obtain

3 3 5
SNec KTEd — Sngk T + AtV - <2rg;1/2kngg1/2>
5 n
= At [v. (_gc nggl/szggl/WkTe'j;l) + Pr:‘et} : (4.79)
where
P, = —er" . E" 3 Moy § 4.80
net = —€ + |nd mj e ejn + Ge]$1 ( ' )

j
After the integration (4.50)—(4.52) of the potential and electron densiti€®:qnthe tem-
perature equation is integrated to obtain

3 m(n+1), +—m(n+1) 3 m(n) L, Tm(n) S m+l/2 m+1/2
Snat KT =S kT +Zm:mfv. Slet KT

m
- me [ : ( m+1/2kT”‘+1/ZVkTm+l) Pn”;t] , (4.81)
where
P, = EP = Y e e (482)
net — |nd : mj e,f ; ej“gj .
with boundary values dtinterpolated from the fine grid fan=m(n) + 1, ..., m(n + 1):
min+1) —m m—m(n
Temf = Q( emf ’ (nt Tenc + ( )Ten;_1> . (4-83)
’ ' Neycle ’ Neycle ’

The potential and electron densities are then corrected by solving (4.68) and (4.72)
performing the updates (4.54) and (4.77). bgaindI'} denote the corrections made to the
electron density and flux, respectively, during this step (ajg.=n2** — nltl). We then
seek a composite temperature correciign= (T¢'¢, T¢'.) such that '

T + Ty onQ;¢
"= ’ ’ m=mn)+1,....,mn+1 (4.84)
TSt +Tee  onQe\P(Qr)
with
= Q(Tg atl
et =Q , (4.85)
VTg=0 at the physical boundary

approximates the solution of the composite system integrated over the same fine grid
steps,

3 3 5
éngﬂn+l)k-|-em(n+l) _ Engw(n>k-|—em<n> + Z AtV - <21~g1+1/2k-rem+1/2>
m

= Z Aty [ : ( m+1/2kTm+l/ZVkTm+1) + P,;gt] (4.86)
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where
Po=—el™ - E™+ PR — > e qmymnm > e S (4.87)
net ind ; mj e Yej''e j ] >e]j
After the fact that

n+14n+1 n+14n+l _ ~n+1lox* n+14n+1 n+11+n+1
Ne Te _ne,c Te,c = Ne Te +ne Te,c _ne,c Te,c

= TS 4 nEToH (4.88)

ec °

is used and approximations similar to those used in computing the potential correction
made, subtraction of (4.79) from (4.86) &3\ P(Q2;) yields

3 iy 5n" n+1/2y, +n+1/2 *
éne kTe. — AtV - 7ne kKT °VKTS,

3 i rntl 57" n+1/2, 7n+1/2
= _EnekTe,c —i—AtV 7”6 kTe |

x ((VKTE )1 — VKTE) — gr;kTe"“/Z + BQ] : (4.89)

where

1 5 5T
5Q= <mc Sty |V (ropmane) - 2l iy >
m I
-Vv. §rn+1/2an+1/2 % N+1/2) Tn+1/2y | TN+ 4.90
2 ec e.c + 2 ne,c ec ec - ( . )

Furthermore, the subtraction of (4.81) from (4.86)@pyields

3 mn+Dp T+ 5ymh m+1—1/2), Tm(n+1)—1/2 *
3 * m(n+1) S * m(n+1)—1/2
= — SNk — AtV - (SrekT] . (4.91)

The pair (4.89) and (4.91) together with (4.85) is therefore the composite system to
solved for the correctiofiy".

4.3. Generalization to an Arbitrary Number of Refinement Levels

The algorithm just described for two grid levels can be generalized to an arbitrary num
of levels. Let{,1 =0, ..., Inha denote a refinement hierarchy with successive level
related as in the two-level case by

PQ)C 1, =1 ... Ima (4.92)

whereP is a projection operator. Ea¢h is again the union of disjoint, rectangular grids
obtained by refining rectangular subgrid<yf ; by a factom,. For this general case, we
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At, v
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time ——

FIG. 4.3. Multilevel advance and composite synchronization schedule.

also require th@roper nestingof levels. Specifically, we stipulate th&(2|) be properly
contained in2|_; forl =1, ..., Inhax €xcept perhaps at the physical domain boundary.

Our two-level algorithm consisted of the integration of the coarse grid equations o
a time step, followed by fine grid integrations over the same coarse time step and
composite synchronization of the two levels. For the general case, this can be impleme
recursively, with the composite potential and temperature corrections occurring at the e
of time steps at each level (except the finest level) and involving all finer levels. Figure -
schematically depicts the time step advance and composite synchronization schedul
a four-level problem withnes o =Nrer1 =2 andnget2 =4. The horizontal arrows denote
single-level time advance steps, while the vertical arrows denote synchronization of
composite grid.

A perhaps subtle detail in our description of the two-level algorithm was the use
approximations such as

1
= Ats n21+l/2um ~ ngl(n+1)71/2pdm(n+l)fl’ (493)

Atc m

which replace the average of fine edge data over the coarse time step with the data at th
fine time step. If such approximations are not made, then in the case of more than two
levels the composite synchronizations would require the similar accumulation and avera
of fine edge data on a given levebverall coarser time stepAt;,I’=0,...,1 —1, since
levell will eventually participate in a composite synchronization with each of these coar:
levels. Althoughitis possible to do this, we have determined empirically that approximatic
such as (4.93), which enable a totally recursive implementation, do not harm the accul
of the method.

4.4, Solution of the Composite Systems

The synchronization of potential and electron temperature lead to the composite syst
(4.68)—(4.72) and (4.89)—(4.91), respectively. In this subsection, we discuss the solutio
these systems.
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The system (4.68)—(4.72) is nonlinear due to the boundary condition (2.12) on the elec
flux. We therefore employ a composite Newton iteration. In each Newton iteration, we m
solve a composite Jacobian system with the composite nonlinear residual as the right-|
side, where on each refinement le¥gl the Jacobian has the form of a second-ordel
symmetric, elliptic operator

L (¢) = -V - (0 Vey) + agh. (4.94)

Since the level operators of the composite temperature system (4.89)—(4.91) are also ¢
form (4.94), it suffices to consider the solution of composite systems with opetatafrs
this general form on each level. We generalize the approach described in [20] for Poiss
equation to these variable coefficient cases. This is a multilevel algorithm that iterates c
a grid hierarchy{Q, | =lpase - . ., Imax} in @ multigrid-like fashion, taking care to enforce
the required matching conditions at the boundaries between successive levels. Eettir
denote the composite system right-hand sidewaddnote the desired composite solution,
the algorithm can be summarized as

R:=f —L(u).

While(|R| > €| f)
R:=f —L(u).
MGRelaxX(max)

EndWhile

Procedure MGRelak):

If (I =lmao thenR = f; — L"(u;, uj_1)
If (I >Ipase then

U save-=U|

g-1:=0
g :=Smootlig, R, h)
u:=u +e¢
R {<(R —L"@.8.0))pq, ONP()
fia — Li—a(up) on_1\P ()
MGRelax| — 1)

8 =@ + Interpolatge, 6_1)
g :=Smootlig, R, h))
U ‘= U savet €

Else
Smooth Il't)ase(abase) = Rlbase
Ulpase-= u'base+ Bpase

EndIf

Here,L, denotes the level operathqnf restricted to2)\ P(£2,1) and augmented with the
appropriate refluxing terms to impose the lelvel 1 fluxes onl (thenf in the superscript
of the operator defined by (4.94) means “no fine,” implying that there is no dependence
fine grid information). For th&mooth(¥unction, we use a single red-black Gauss—Seide
relaxation sweep, and for tHaterpolate()step we use piecewise-constant interpolation
enforcing the boundary conditien= Q(g, § _;) at the interface between levélandl — 1.
Using this multilevel composite solution algorithm, we anticipate effective convergen
rates typical of multigrid methods for elliptic problems. Our definition of “effective” in this
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context is nominally an order of magnitude reduction in the residual for each cycle over
level hierarchy. The convergence of the algorithm depends significantly upon the beha
of the level operator coefficientg andby (4.94), and especially the relationship of these
coefficients orP (€2;1) toa 1 andby ;. If these coefficients are smoothly varying over the
problem domain, a simple arithmetic averagingqf, andb;,; to obtain coarseneg and

b on P(2,,) is sufficient to obtain an effective convergence rate. This is indeed the case
the solution of the composite temperature synchronization system (4.89)—(4.91). Howe
in the composite Newton solution of the potential synchronization system (4.68)—(4.7
the linearization of the boundary condition (2.12) results in Jacobian coeffi@eatrsd

b that vary by a few orders of magnitude at the physical boundary. For such coefficiel
arithmetic averaging of thig coefficients fails to yield an adequate coarsening. If, instea
the coefficientdy are harmonically averaged in the coordinate directions normal to the
respective cell edges, we again obtain good convergence rates. We have also fou
generally advantageous to “W-cycle” the multilevel algorithm, i.e., visit each refineme
level twice before returning to the next finer level. This biases the computational wc
toward the coarser levels, which tends to improve both the robustness and the converg
rate of the iteration, although the work per cycle is increased.

The cost of the composite synchronization steps relative to the sum of the integra
and sychronization times depends upon a number of factors. For problems like those
which results are reported in Section 5, this ratio is typically about 20-30% in our curre
software implementation.

5. RESULTS

The algorithm described above has been implemented in the Adaptive Plasma Mc
(APM) computer code. APM is a hybrid C++/FORTRAN code built upon an object oriente
adaptive mesh refinement framework [10].

In this section we present numerical results that will help assess the utility of the pre
ously described algorithm. Criteria such as accuracy, efficiency, and applicability to pr
lems of practical interest are addressed. The accuracy of APM on locally refined grid
analyzed by comparisons to uniform grid calculations. The efficiency of the code is illt
trated with a comparison of timings and memory requirements for refined grid and unifo
grid calculations with the same peak resolution. The ability to attain very high resolutic
is demonstrated with a simulation of a hydrogen plasma in lwhid cmlong volume is
modeled with peak resolution of approximately 15®. This represents a ratio of length
scales of over 250.

Though the previously described algorithm is not limited to a specific application, v
have developed the algorithm with an eye toward modeling ICP reactors. Consequently,
section concludes with two simulations of practical interest for semiconductor manuf
turing. First, the relationship between RF coil placement and the ion flux striking a silic
wafer is examined. Second, RF biasing of a wafer is examined for its effect on ion flux &
energy distributions. Each of these studies shows the need for high resolution calculati

5.1. Accuracy Using Locally Refined Grids

Consider a locally refined grid calculation with cell sizgsl =0, ..., Imax, Whereh;,__
is the cell size corresponding to the finest cells Agdhe cell size corresponding to the
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coarsest cells. Such a calculation cannot be expected to be more accurate than a uniforr
calculation with cell sizén,__,. In fact, the degree to which the locally refined calculatior
matches the fine, uniform grid calculation is a measure of its accuracy.

Figure 5.4 shows a comparison of potential, ion flux, electron density, and elect
temperature profiles using a locally refined grid, a fine uniform grid, and a coarse unifc
grid. Symmetry boundary conditions on top and bottom of the rectangular domain rest
the solution variation to the x-direction. The uniform fine grid spacing corresponds to 1
finest cellsin the refined grid and the uniform coarse grid spacing corresponds to the coa
cells. The refined grid uses three levels. Each level was generated by refining the leftr
three cells of the next coarser level. This grid structure is shown in Fig. 5.5. The agreen
in the fine portion of the locally refined grid is excellent while the agreement in the coal
region is much better than that in the equivalent coarse grid.

The accuracy of the locally refined calculation depends critically on where the refin
grids are used. The high accuracy of this calculation is due in large part to the placemer
the fine grids near the boundary. As expected this region has the most variation in poter
density, and charge. Consequently, smaller cells are required to resolve this variation. (
versely, the use of coarse grids has little effect on the quasineutral region in the center o
plasma. In this case the correct placement for the grids was clear, butin a more complex
culation this may not be the case. We are continuing to investigate the relationship betw
grid placementand accuracy. Most of our work to date has used heuristically placed grids
our code is capable of refining grids based on values of the state variables or their gradi

5.2. Computational Efficiency

In order for a local refinement strategy to make sense, refined calculations need to s
some computational savings. Figure 5.6a shows the relative CPU times for uniform ¢
calculations compared to the locally refined calculations. The model problem for the
timings was an 8 cm square grid with symmetry boundaries on the top and right side
grounded conductors on the other sides. At each level, the outermost two cells along
physical boundary were chosen for refinement. One of these refined grids (correspon
to four levels refined by a factor of 2) is shown in Fig. 5.7.

Results are shown for refinement ratios of 2 and 4. In each case calculations were
formed with a refined grid and a uniform grid with the same peak resolution. The unifo
grid cell size corresponded to the finest cells in the refined grid. Each pair of calculati
was run to the same simulation time and the ratio of CPU times was calculated. Bec:
of prohibitive runtimes for the higher resolution cases (uniform or locally refined), the
nal time for each pair of calculations was the same but different pairs used different fi
times. Our experience has been that the CPU time per iteration does not vary much dt
a calculation, so these timings should be representative.

Figure 5.6a shows that speedup is a strong function of refinement ratio. For the mc
problem, four refined levels were required to obtain an improvement over the single fine ¢
case using a refinement ratio of 2. When a refinement ratio of 4 was used, only two refi
levels were required to obtain a significant speedup. These trends depend on a nul
of factors. Chief among these are the time spent performing composite synchronizat
and the fraction of the domain covered by fine cells. For this model problem, the num
of cells at the fine levels was rather large compared to the number at the coarse le
This is required if one wants to refine along an entire edge. If, for example, a cor
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‘ 8cm ‘
—=—— physical boundary ~ Symmetry boundary ———

locally refined grid

uniform coarse grid

uniform fine grid
1 cm spacing 1/2 cm spacing D 1/4 cm spacing

FIG.5.5. Locally refined, uniform fine and uniform coarse grids used to generate results shown in Fig. 5./

were recursively refined we would expect an even larger speedup using the locally ref
grid.

The dependence of time spent performing composite synchronizations on the grid f
archy is hard to quantify, but is typically about 20—30% of the total simulation time. W
do know that the number of composite solves grows quickly with the number of levels
m refined levels are used and each is refined by a factarinftime and space, this will
requiren™ ! composite solves per coarse time step. This fact and the speedup results st
in Fig. 5.6a both show the need for higher refinement ratios.

Decreased runtime is not the only benefit of locally refined grids. Figure 5.6b shows
relative reduction in memory requirements for the locally refined calculation. The memc
requirements are much less severe for refined grids, provided that the finest levels dc
make up a large fraction of the domain. At some level of refinement, it is no longer feasi
to compare highly refined grids to uniform equivalent grids because the latter canno
within physical memory. This fact limited the number of refined levels we could use
these comparisons.

The finest of the calculations shown in Fig. 5.6 cannot be run to steady state in areasor
amount of time. Even with the speedup shown with local refinement, very high resolut
calculations are still very expensive [9]. Significant savings can be made by gradu:
refining the grid as the solution approaches steady state. This approach was used fc
remaining calculations described in this paper.

25 40 .
> Refinement = 2 a » |° Refinement =2 b
201x Refinement = 4 Dgqlx Refinement =4
315 3
3 »
] 220
210 <)
2 £
5 %)10
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Number of Refined Levels Number of Refined Levels

FIG. 5.6. Ratio of CPU times and memory requirements for uniform and locally refined grid calculations.
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symmetry boundary

W level 4 =1/16 cm
level 3 =1/8 cm
level 2 = 1/4 cm
level 1 =1/2 cm

[ ] base level =1 cm

physical boundary
Arepunoq AnjowwiAs

physicl

8 cm |

FIG.5.7. Sample grid used to calculate time and storage savings shown in Fig. 5.6. This grid corresponc
the case with refinement ratios of 2 and 4 refined levels.

5.3. Sheath-Scale Hydrogen Plasma Simulation

One of the primary mativations for using locally refined grids is to allow for the simulatio
of features with disparate length scales. In the next example, we illustrate this by mode
a hydrogen plasma with sheath-scale resolution in a domain that is a few hundred ti
larger. Specifically, we take advantage of symmetry and model an 8 cm regltoa witm
long volume and a symmetry boundary condition. In addition to the symmetry boundary
the x-direction, we enforce symmetry in the transverse direction. This forces the variat
in the solution to one direction, making it a one-dimensional problem. We employ tv
refined levels, each with a refinement ratio of 4. Each refined level covers the exjetior
of the next coarser level. This grid structure is shown in Fig. 5.8. With these refinemel
the finest grids are 156m, which turns out to be approximately the Debye length. At thic
resolution, we have a grid spacing that is smaller than the plasma sheath width.

In order to verify that our algorithm properly calculates the plasma behavior in tl
sheath, within the limits of our fluid model, we compared the APM results to the results
the sheath model of Ingold [15]. For the comparison, we took APM calculated values for |
and electron density, flux, and electric field at a point outside of the sheath region and t
these data as an initial condition for the Ingold model. The model was then integrated to
bounding wall using the CVODE [6, 7] ordinary differential equation solver. These resu

[ 4 cm /1 [:] grid spacing = 1/4 cm

physical boundary . .
symmetry boundary ~a. |:| grid spacing = 1/16 cm

. : ‘ | . grid spacing = 1/64 cm

FIG. 5.8. Grid structure for hydrogen sheath calculation.
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FIG.5.9. Comparison of APM and Ingold sheath model for potential, flux, and densities, respectively.

were then compared with the APM results in the sheath region and are shown in Fig. 5.9.
agreement is excellent. The small variations may be attributable to the omission of elec
inertia from APM, different treatment of the boundary conditions, or discretization effec
The assumption of constant electron temperature and constant collisional parameters i
Ingold model was not found to be an important difference from APM in this experimel
This was determined by varying the temperatures and collisional parameters in the Ing
model within the range used in the APM calculation.

5.4. Application to Inductively Coupled Plasma Reactor Simulation

We next consider the application of our method to two problems of interest for IC
reactor-based plasma processing. Both of these examples demonstrate the importar
using sulfficient resolution, which can be facilitated with local grid refinement. A gener
ICP reactor is depicted in Fig. 5.10. The first simulations examine the effects of differ
power deposition profiles on the uniformity of ion flux at a wafer surface. These profil
correspond to specific RF coil positions and hence address the important engineering i
of optimal coil placement. The second set of simulations considers RF biasing of the wx
surface, in which we examine the effect on ion particle and energy flux.
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. RF coils
Computational
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wafer surface

/ metal chamber
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FIG. 5.10. Sample inductively coupled reactor and the domain on which the simulations occur.

5.4.1. Power Deposition Profile Effects

Along with selectivity and etch rate, spatial etch uniformity is a critical process paramet
A uniform ion flux will help produce a uniform etch. One of the controls over the ion flux i
the power deposition within the plasma. The input power drives up the electron tempera
and ionization rate. This results in the production of ions which ultimately bombard t
wafer or the chamber walls.

The dimensions and grid structure used in these simulations are shown in Fig. 5.11
these simulations, the time-averaged RF power profile is based on the location of driv
coils and an assumed exponential falloff for the time-averaged power within the plasi
The model does not resolve the inductive fields, nor are the effects of density variatior
the power profile in the plasma considered.

Figure 5.12 shows the relation between the assumed reactor coil positions and the rest
power deposition profiles. In each case, the coil power was assumed to falllofi witm
skin depth normalized to 1000 W total power. The resulting ion fluxes at the wafer surfe
were compared for these five cases using both a relatively coarse uniform grid and a
with local refinement near the wafer surface. The uniformity of the normal ion flux at tl

(] 1/2 cm resolution

] 1/8 c¢m resolution
8 cm

l6cm —m=

| =—— wafer surface ————= |

FIG.5.11. Computational domain for the locally refined calculations used to study power deposition effect
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CASE 2 CASE 3

CASE 4 CASE 5

FIG.5.12. Coil positions and power density contours for power deposition study (uniform power density cz
is not shown).

wafer surface was measured and is shown for all five cases in Fig. 5.14. The diffel
cases were compared using the figure of merit

uniformity — max flux— min flux (5.95)
y= average flux '

Itis interesting to compare the results for two of these cases, labeled 2 and 3. Using
the coarse grid solutions, case 3 appears to be a far superior coil configuration. Subse
refined calculations, however, show that cases 2 and 3 were very similar and that 2
in fact superior. This is shown in Fig. 5.13. Although total ion flux is not sensitive to gri
spacing, this simulation suggests that the details of the spatial distribution are.

20 20
6x10 6x10
UNIFORM GRID REFINED GRID
§55 _ T 5
E B LA N E55 _______ e
c , c T
25 2 5
o
£ £
S4.5r|—Case 2 45 —Case 2
--Case 3 z --Case 3
4 4

Position Along Wafer Position Along Wafer

FIG.5.13. Coarse, uniform solution for coil placements 2 and 3.
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FIG. 5.14. Wafer flux uniformity error for refined and uniform grids.

5.4.2. Wafer Biasing Effects

One of the key advantages to inductively coupled plasma reactors is the ability to
dependently control ion flux and energy. Capacitively coupled plasmas have an elec
production rate dependent on the driving potential. High potential gradients required
high densities often result in bombarding of the wafer surface by very high energy io
which is usually undesirable. In many ICP reactors, the chuck (or platten) holding t
semiconductor wafer has an RF potential bias applied to it. This has the effect of increa:
the average ion energy at the wafer for the same total ion flux. The driving RF coils dul
energy into the plasma, but the resulting fields are not seen by the wafer, which is many
depths away. Similarly, the bias field at the wafer does not affect the bulk plasma. Surf
plots of the state variables for one of these calculations are shown in Fig. 5.15.

In order to quantify these effects and determine their dependence on grid resolut
APM was used to study the effect of RF wafer biasing on the ion flux and energy impingi
on the wafer surface. The geometry and grid structure for these calculations are show

Potential Electron Temperature (eV)

Electron Density

17
x 10

ity
\\“\‘\‘{\\\ Sy

i TR
SR e
‘\i“\“\‘éﬁ‘\“\““%““\“ﬁ?\n\\\\\\“‘“"

2 _,_,-o—"

FIG.5.15. Potential, electron density, electron temperature, and ion flux magnitude plots for one of the we
bias calculations.
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[] 1/2 cm resolution

] 1/4 cm resolution
10 cm

16 cm

[ =— wafer surface ———=

FIG.5.16. Computational domain used in the locally refined calculations as part of the wafer bias study.

Fig. 5.16. Three calculations were performed corresponding to 13.56 MHz bias potent
of 0, 10, and 20 V (peak). Each of these was calculated on a relatively coarse, uniform
and a locally refined grid. The refined grid included regions near the domain boundar
both those representing the wafer surface and the chamber walls. Figure 5.17 show:
calculated ion flux and energy, respectively, at the wafer surface.

As expected, the ion flux was insensitive to the bias potential as well as grid resolut
effects. The effect of the bias was less than 2.1% and that of the grid resolution was less
3.4%. Note how this contrasts with the previously discussed power deposition study. -
ion energy changed significantly at high bias potentials, however. The 20 V bias resulte

20 REFINED GRID F_J -18 REFINED GRID

x10 % x10
5—1 5 2 "
g — No bi © —No bias
= B 13 ﬁsb' .%_;2 5 -- 10 volt bias
x 2 voitbias T - 20 volt bias
2 --20 volt bias g
5 o e
=-25 il
g | TTRRmaa S1.57
= [}]
O c
= -3 . . . o 4 .

6 8 10 12 14 S 6 8 10 12 14

Position along wafer (cm) Position along wafer (cm)

20 UNIFORM GRID ) -18  UNIFORM GRID

x 10 % x10
3—-1.5 g .
2 —No bias g —No bias ‘
T 2 -- 10 volt bias 2.5 -~ 10 volt bias
é --20 volt bias g --20 volt bias
c 2
(=} [
=-25 g ______________________________________________
£ | 150
= | TTTs=aa ® |-
S c
= -3 . , o 4 —— .

6 8 10 12 5§ 6 8 10 12 14
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FIG. 5.17. lon normal flux and energy per particle for uniform and locally refined grids.
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higher ion energies of up to 61.4%. The higher resolution calculations differed significar
from the corresponding uniform calculations as well. These grid resolution effects accour
for up to 17.0% variations in the ion energy. This suggests that an accurate computatit
study of RF biasing effects requires high spatial accuracy in the wafer region to prope
resolve ion energy profiles.

6. CONCLUSION

We have described a numerical method for the solution of plasma fluid equations
block-structured, locally refined grids. The accuracy and efficiency of the algorithm f
some representative problems have been demonstrated. We have also presented calcu
that address questions of interest for semiconductor processing.

The algorithm presented in this paper assumes fixed, locally refined grids. Howe
nothing in the algorithm precludes adaptive changes to the grid structure. In fact, the c
used to obtain the results presented in Section 5 can adaptively regrid based on user-spe
criteria. The selection of such criteria has been investigated in [32]; however, more stuc
warranted. In particular, the use of error estimation for grid selection should be investiga

In spite of the large computational savings achieved with locally refined grids, hig
resolution steady-state calculations can still be extremely expensive using our time-depe
algorithm. Consequently, we have investigated some modifications that allow the us
larger time steps. These include the reduction to first order of the electron density e
predictions and the use of more aggressive subcydtiggid> Nrer) [32]). A fully implicit
integration of the coupled electron continuity and Poisson equations is also being inve
gated. The accuracy and efficiency of such alternatives, relative to the algorithm prese
here, remain to be determined, however.
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