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We propose a decomposition applicable to low speed, inviscid flows of all Mach
numbers less than 1. By using the Hodge decomposition, we may write the ve-
locity field as the sum of a divergence-free vector field and a gradient of a scalar
function. Evolution equations for these parts are presented. A numerical procedure
based on this decomposition is designed, using projection methods for solving the
incompressible variables and a backward-Euler method for solving the potential
variables. Numerical experiments are included to illustrate various aspects of our
algorithm. (© 1999 Academic Press
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1. INTRODUCTION

We are interested in solving unsteady compressible flow problems where the flow s
is much less than the sound speed and the acoustical waves have large wavelength:
problems could be found in a variety of applications such as combustion [1] and flow n
generation [2]. These low speed flows are often difficult to simulate numerically bec:
of the presence of low-amplitude acoustical waves.

One possible way to simulate to low speed flow is to treat such a flow as a fully compi
ible flow and use an explicit method. These explicit methods have a time step restric
the CFL condition which states that for stability, the time step size must be inversely
portional to the maximum of the sum of flow speed and the sound speed. Explicit met
are best suited for problems where the flow speed is on the same order of or larger th:
sound speed. In low speed problems, however, the sound speed could be orders o
nitude larger than the flow speed, thus grossly overresolving in time features of the
flow.

1 This work was performed under the auspices of the United States Department of Energy by the Los A
National Laboratory under Contract W-7405-ENG-36.
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246 COLELLA AND PAO

One would then like to somehow separate out the “ill-conditioned” part of the flow ar
treat it implicitly, while hoping that the rest of the flow may be advanced at an acceptal
time step with an economical and accurate method. Such is the approach first takel
Amsden and Harlow [3] and later expanded by many others [4-11]. A common theme
all these methods isplitting: by separating the flow variables into various parts, one ma
identify the part of the flow that needs implicit treatment and thereby bypass the string
CFL condition dominated by the sound speed.

In their original paper [3], Amsden and Harlow treated thensityvariable implic-
itly; later, it was understood that thressurevariable is the problematic one. Casulli and
Greenspan [4] were able to show that optgssureneeds to be discretized implicitly, and
the resulting difference equations are solved via an iterative procedure. Pettrzik5]
extended the work of Casulli and Greenspan to include an “implicitness parameter” to t
the degree of implicitness. Various other formulations have also been proposed in [6-
Klein [9] and co-workers [10] have also proposed a numerical method based on asyi
totics, which were an extension of the low Mach number asymptotics of Klainermann &
Majda [12].

To develop a numerical method useful in the regime of our interest, we shall stud
decomposition of the equations of inviscid, compressible flows. These equations will
rewritten in terms of a Hodge decomposition of the velocity field and in terms of auxilia
pressures. With the new equations, we will separate the flow into the divergence-free |
one that varies on a time scale determined by the flow speed, and a part that may contail
sound waves. The former part may be advanced with time step determined solely by the
speed. Since the fast sound waves are only present in the latter part, we can advance mi
the flow using an explicitmethod, and apply animplicit method only to the compressible p:

In this paper, we will first present the evolution equations for low speed flows in Sectior
A numerical algorithm for solving these equations will be detailed in Section 3. Results
numerical experiments will be tabulated in Section 4.

2. THE GOVERNING EQUATIONS

Consider the inviscid, compressible Euler equations for depsityt), velocityu(x, t),
and pressur@(x, t) in a closed rectangular container solid-wall,

ot + V- (pu) =0, 1)
ut+(u-V)u+%Vp:0, 2
P+ (U-V)p+ pc(V-u) =0, ®3)

with initial values
p(X,0) = po(X),
u(x, 0) = uo(x),
p(x, 0) = po(x),

and the boundary conditions
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Herec?=yp/p is the square of sound speed, ands the ratio of specific heats. We
would like to rewrite the Euler equations in terms of a divergence-free velocity field ¢
a “correction.” Various asymptotic formulations have been studied by Klainermann :
Majda [12] and Kreis®t al. [13]. Instead of an asymptotic expansion, we shall study tt
exactdecomposition of the velocity field.

Our approach is based on the Hodge decomposition (see, for example, [14, Sect.
Classically, the Hodge decomposition is a splitting of an arbitrary vector field into t
orthogonal components, one divergence-free, and the other the gradient of a scalar fie
w =w(X) is a smooth vector field defined on a smooth regignvith

/ w-ndS=0,
1]

thenw can be written as
1
P

whereV -wy =0 andwyg - n =0 on the boundary of2, and¢ is the solution to the elliptic
equation

L,pg=V-w inQ,

199 _

w-n onoag,
p an

with the variable-coefficient second-order elliptic operator
1
L,p=V-=V¢.
P

The decomposition is orthogonal with respect to the density-weighted inner product,
is,

1
/Wd . —Vqﬁpdv =0.
Q Y

The Hodge decomposition is unique.
We may define the variable-density projection operators

P,=1-0Q,,

1=
Q, = ;v(Lpl)v-.

The operatoP, is an orthogonal projection operator b functions, defined by

P, =P,
P2 =P,.

P, takes arL? function to the space of divergence-free functions.
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In terms of the projection operators, the Hodge decomposition is
w=P,w+ Q,w,
with the divergence-free part
P,w = wy

and the gradient

1
Q,w=—Vo.
o
The constant-density projection operators

Po=1—Qo,
Qo= V(A™H(V ),
are defined similarly but witle = 1. We shall apply these operators to the Euler equation

Suppose now the flow velocity fieldin the Euler equation is ih2; then we may apply
Hodge decomposition to and split it into a divergence-free part and a curl-free part,

U= Ug + Up, “4)
where
Pou = Ug, )
QoU = Uy, (6)
We also define
_ |Up|2
Aw:u-Vu—VT, (7
and an “acoustic pressure” as
s=p-—m, ®)
wherer is an auxiliary pressure variable defined by
1
—Vr = —Q,Aqu. 9)
1Y

Finally, we define a potential by

Vi = —QQ(%V§). (20)



PROJECTION METHOD FOR LOW SPEED FLOWS 249

We now make the ansatz that, for a closed rectangular container,

9
a—’t)+v-(pu)=o, (11)
au 1
o +PpAdu+PO(—V8) -0, (12)
ot P
au u,|? 1
W o Ul oo Lvs) —o. (13)
ot 2 Jo
98 o
h Voup=—(u-vp+ 2o 14
v up = (v vp BT, (1)

with initial values

p (X, 0) = po(X),
Ud(X, 0) = Pouo(X),
Up(X, 0) = QoUo(X),

8(x,0) = po(X) + L, H(V - (Ug(X) - VUo(X))),

and the boundary conditions

Ug-n=0,

Note that by summing (12) and (13) we obtain (2), the momentum equation for compres:
flow. Also note that (14) is simply the pressure equation (3) rewritten in termsafd
8. The initial conditions and the boundary conditions match those of Euler as well. Si
the Hodge decomposition is unique, tieandu, that satisfy Egs. (11)—(14) must be the
unique solution of these equations.

The termPo(%Va) represents baroclinic generation of vorticity by the acoustics, that
a “feedback” mechanism from the acoustics to the fluid flow. In a purely incompress|
flow, this feedback is zero. Ada — 0, Majda and Klainermann [12] have shown that, witl
initially divergence-free datdul,|/|ug| ~ O(Ma), and|V p| ~ O(Ma). Terms involvingu,
in Eq. (12) become lower order, aﬁ*d(%va) — 0 as well. Thus the incompressible Eulel
equation (with variable density) is recovered in the zero-Mach number limit,swithk the
limiting incompressible pressure.

In the zero-Mach number limit, the total pressure may be written as (see [12])

p(X, t) = Po(t) + MaZpy + - - -.

That is, when properly scaleg,~ O(Ma?). In numerical computations one may actuall
excite the acoustic feedback mechanism by includin@éa) term in the initial pressure
(see [10]). Thus it is imperative that, in a nearly incompressible computation, the evolu
equations and the numerical method do not allow such excitations in time.

On the other hand, suppose now that the divergence-free component of the veloc
zero initially, that is,uq(x, 0) =0. Thenz =0 sinceAgqu =0, andp = §. For a barotropic
fluid, p= f (p), and one can show th%tvs is a pure gradient, anﬁo(%vs) =0 for all
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times. Thusug =0 for all times, and Eqg. (13) becomes the evolution equatiorufca
purely potential flow. A numerical scheme should preserve this limit as well, by ensuri
that the vortical component of the flow (and the associated pressure variables) does
grow appreciably when properly initialized.

3. THE NUMERICAL METHOD

The numerical method for solving the initial-value problem (11)—(14) consists of the &
vection of density and velocity, various discrete projections, and an acoustics solve involv
up ands.

We seek the numerical solution of (11)—(14) in a rectangular closed containgr
[c, d], which is discretized intdM intervals in thex-direction andN intervals in they-
direction, of widthsAx = (b —a)/M andAy = (d — c)/N, respectively. A time discretiza-
tion of At is used. At timeg" = nAt, we haveu" = (u", v"), 8", p", 7"~¥2 U = (uq, va)
atthe cell centerg, j),i=1...M,j=1...N, andur,‘):(u”, vg) at cell edgesi +%, D)
and(i, j + ), respectively.

3.1. The Discretized Equations

Equations (11)—(14) are written in the form
Vi + B(V, Vy, Vy) = F.

Our approach to solving Eqgs. (11)—(14) is to discrefzi@ space at the appropriate times,
and marchV in time.

The discretization oB requires the discretizations of the divergence operBtand
the gradient operatds. Since the values of some of the variables are prescribed at ¢
centers, while some are prescribed at cell edges, we will need to defimel G that will
take the finite differences &f at both cell centers and cell edges and return values at bo
centers and edges. It turns out that only two divergence and two gradient operators
required. The operatdd™a¢is the discrete divergence operator applied to edge values, a
DY the discrete divergence operator applied to cell-centered values; both operations
cell-centered scalars. The operaBt2°is the discrete gradient operator, applied to a scalz
at the cell centers to yield a vector field at the cell edges, wbilés the discrete gradient
operator, applied to a scalar at the cell edges to yield a vector field at the cell centers. T
and other spatial operators will be described in detail in Section 3.2.

To advance the numerical solution one time step, we first use a Godunov advec
procedure to advance the densityo timet"+1, and compute the source teryg (u)"+/2
for the projection of the incompressible pressure:

pn+1 — pn _ AtDmac(pu)n-k—l/Z’ (15)

1
U; = Ug — At (Ad (U)n+l/2 + WGOHH_]‘/2> . (16)

We then solve a (variable density) Poisson problemLiprto obtain the incompressible
pressurer"+Y/2:

n+12 _ on-1/2 _ | -1 o ug — ug 17
v =T P12 At . ( )
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Next we solve for the acoustic variableg and$ at timet™* by first discretizing the
corresponding differential equations (13) and (14) implicitly:

* __ N At Gmac |up|2 " 1 Gmac8n+l 18

(19)

nn+1/2 _ n,n—l/Z
§ML =" — At (yp”D"“"‘Cu’;J +@Uu-vp"+ —xt )

Solving these equations algebraically 8rt, we obtain a Helmholtz equation féf+?.

Once we solve the Helmholtz equation 8r%, we perform another projection to obtain
un+t:
P

1 |up|2 3 1 1
ug’ =ug—At<Gma°<—2 ) + Qg° —pn+1GmaCa”+ . (20)

Simultaneously to the above steps, we collect the terms needed to advance the incom
ible velocityuq to timet"*:

1 1
utt = ug — At <p“+le°<n“+1/2 —a" Y+ Pg(,anHGO‘SM))' “

In the next few sections, we shall describe the implementations of the above scher
greater detail. First, in Section 3.2, we describe the spatial discretizations of the dis
divergence(D) and gradien{G) operatorsD™a¢, D% G, and G°, as well as the dis-
cretizations of the projection operatd?sandQ and the operatok ,. Then, in Section 3.3,
we describe the time stepping of the above scheme in more depth. Inflow and out
boundary conditions used in the numerical experiments are explained in Section 3.4.

3.2. Spatial Discretizations

We shall need to determine various divergence and gradient operators, as well a
appropriate discretization of the projection operaf®edQ, and the discretization of the
operatorL ,.

SupposeD and G are the discrete approximations to the divergence and gradient
erators; then we would like, for an arbitrary vector figld= (w, w?) on a region, to
have

1
wW=wq + —G¢,
0
where
Dwy =0,
and¢ satisfies

L, = Dw ing,
n-Gp=0 onag2.
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Ideally, we would like to hav® = (—%G)T; that is, the divergence and gradient are adjoin
of each other with respect to the density-weighted inner product. The discretizatign of
is given byLQ = D%G. Note that because of the adjoint propettyas defined above can
always be found (up to a constant).

Recallthatthe continuous projection operdgis self-adjoiniP, = P;) and idempotent
(P;f =P,). We would like our discretization of the projection operal8rto have these
properties. If

1 1 \1
thl—G(DG) D
P P

with D andG defined as above, then these properties of the projection operators are satis
This projection operator, however, is not suitable for computation. The biggest disadv
tage is that the discrete operaﬂbr%G would have a null space of four dimensions (see
[15]), and the solution decouples into four independent components. This is the so-ca
“checkerboard effect,” or alternating modes.

Instead, we use the projection operator

1 -1
P'=1— ;G(LZ) D.

There is no decoupling of the solution. However,
1
h
L, #D-G.
0

This causes the discrete projection operdbrto be non-idempotent. We call this an
approximateprojection.

In the algorithm specified above, we use two different discretizations of the gradic
operator. One discretization &, denoted byG°, is based on centered differencing. The
other,G™2¢, uses the staggered marker-and-cell (MAC) mesh of Harlow and Welch [16]. (
a rectangular grid, the MAC gradient operator is defined by the differences of cell-cente
values:

(Gma%)ixﬂ/z,j _ ¢i+l,jA; ¢i,j ’
G,y | = i1 j+1 — ¢i+l,j4—Al;‘ Pij+1— ¢i,j—1’
(GMp)X Ly = i1 j+1— ¢i—l.j4+A1:' Giv1j — Pi-1j ’
(C™p)] 412 = i‘pi’”z; i,

The cell-centered gradient operator may be defined in terms of the MAC gradient opera

1
(Go)} = S(GC™ D)2+ (C™ )N 1y2)

1(dis1j —di-1j)
2 AX '
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1
(G} = S(GC™ ) 112+ G D) _1p2)
_1(@ijy1—¢ij-1)
=5 Ay

The divergence of a vector field shall always he defined at the cell centers. Since we
take the divergence of either a cell-centered vector field or an edge-centered vector
we shall need two kinds of divergence operators as well: The edge-centered divergen

’

1 1 2 2
mag, Wit12j — Witz o Wij+y2 — Wij-12
(D )ij = Ax + Ay

and the cell-centered divergence is

1 wl 1i _w;l;l. u)2 1_u).2.71
D) = = 1) i-1j i+ i .
( )i, | 2( Ax + Ay

Note that the cell-centered divergence can also be viewed as an average of the edge-ce
divergence, if we let

1 - 1 1
wiayag = 5 (Wi +wi),

= NIl

2 _ 2 2
Wi 12 = E(wi,jJrl +wi)),

that is, interpolate the edge-centered values by averaging the cell-centered values.
Boundary conditions are applied to the gradients by using values in the “ghost ce
cells outside the computational domain. For example, at the left edge, we would have

ogyx . = L(92i o))
G =5

wheregg ; isinthe firstrow of ghost cells, its value determined by a third-order extrapolatic

¢o,j = 3¢1,j — 3p2j + ¢3j.

Boundary conditions are applied to the divergences by considering the fluxes at the bour
We can writeD°w in conservation form,

E - F . F —Fi_
(D), | = i+1/2,] \=1/2)  Thivy2 T i1z
AX Ay
with
E . _} 1 1
i+1/2,) = 2(wi+1,j +wi,i)
N V.
ijr12 = 2<wi,j+1+wi,j)

fori=1,..., M, j=1,..., N. Thenthe boundary condition is appliedfan the bound-
ary. For example, on the left boundary, the conditiwnn=h is enforced by setting
Fi2j=hypaj.
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The discrete operatdrz is given by

1
h _
(Lp¢)I,J = DmaC_GmaC(bi,j
0
:1{ 1 ¢j—¢ij 1 ¢i,j—¢i1,i}
AX | piy1j2,j AX pi-12j  AX
1{ 1 -0 1 ¢’i,j—¢i,il}
AY | pi,j+1/2 Ay Oij—1/2 Ay .

The inverse density, evaluated at the cell edges, is obtained by the average of the in\

densities:
1 1( 1 1 )
> +—
Pi+1/2j  2\Pi+1j  Pij

1 1( 1 1 )
— + - .
Pii+1/2 2\ Pij+1 O

In the rectangular closed container, we have the Neumann boundary condition

d
% _ g onog.
an

On the left boundary, for example, we have

(91,j — ¢0,j)

Ax =012,

or
o) = ¢1j — AXQy2,j-

And thusL ,¢ can be computed for all cells in the computational domain.
The projection operators can now be defined:

er;ac — EGmac(LB) -1 Dmac.
P

mac __ mac.,
Pp = —Qp ;

Q= %GO(LQ)*DO;

p

0 0
PO =1-Q°

There are two kinds of projection operators, a cell-centered projection and a MAC projecti
The difference is in the divergence and gradient operators used. In applying the M
projectionP;'*to a vector fieldv, we solve the Poisson problem

Lh¢ = D™w
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with the appropriate boundary conditions. Then
ma 1
QMw = —GM*%.
r o

On the other hand, in a cell-centered projecﬁ@w, one would solve the Poisson problen
L,¢ = D°w
with the appropriate boundary conditions. Then
Qow = %G%.

The Laplacian operators in the two projections are the same, but the arguments ©
divergence operators in the right hand side of the Poisson problems reside at different p
on the grid: in the regular projectiow; is at the cell centers; in the MAC projection,is
staggered. In both projections, the potengiabill be cell-centered, but the final projected
vector fields will again reside at different places on the grid.

3.3. Details of the Time Stepping

As mentioned above, to advance the solution one time step, we compute (15)—(21) rot
in that order. Here we shall present the details of time advancement.

First we need to comput&qu at the cell centers from the equation gy (16), while
advancingo conservatively to the tim&"+! using the density equation (11). This may be
accomplished by a Godunov-type procedure. In our Godunov procedure, we first extrap
the values at cell centers to the edges and at half time, using Taylor series. For examp
the vertical edgéi + % ), we may extrapolate from the cell on the left:

AX ouf At oul]
n+1/2,L d d
ud”/l/z*j ~ ugi*j + 2 ox 2 ot’

with the partial derivatives evaluated at cgll j), or we may extrapolate from the cell on
the right,

nU2R AXxduy At dug
Hai/2y = e T G T

with the partial derivatives evaluated at c@li 1, j). In both expressions we then replace
the time derivative by employing the equation

dUg 1
— = —((U- V)Ug + (Ug - V)Up) — =V§ — V.
ot 0

This is simply Eg. (16) but with the term

Q,o (Ad u)

omitted.
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Thus, at the edgé + % i), for the first component of velocity,

AX ou At au au ou au
n+1/2,L n d d d p p
d dii T ax 2 ( gy T ay UL T 8y)
At /1
——(=Vé§—=Vy ).
2 \p

The spatial derivatives of the velocity in the normal direction is approximated by the
limited difference, using the van Leer limiter [18]: let

1
A*UC = E(UdiJrl,j —Udi-1j),
A*ut = 2(ugij — Udi-1j),

A*UR = 2(Ugit1j — Udij)-
Then

Augij = min(|A*uC|, |AXut|, |[A*uR]) sign(A*u®), if AXubA*uR > 0,
=0 otherwise

The derivatives in the transverse direction are upwinded:

dUqg
By = (Udi,j — Udi,j-1)/AY, vij =0,

= (Ugi,j+1 — Udi,j)/AY, vij <O.

The derivative ou in cell (i, j) in the x-direction can be computed easily, singgare
defined on the edges+ 1, j):

au

p
—2 — (uy; L= Upi_1/2.)/AX;
o (Upit1/2, pi-1/2,])/

and the derivative aofi, in cell (i, j) in the y-direction is averaged:

au 1
8_yp = Z(upi+1/2,j+1 — Upit1/2j-1+Upi—1/2j+1 — Upi—1/2,j-1)/ AY.

The derivatives of andy are approximated by centered differences.
Onceugt;)»; andug ;17,5 have been constructed, the ambiguity at the ailgel, j)
is resolved by choosing the upwind value based on the total velocity normal to the e

(i+3. 1),

nt1/2 oy ntl/2l - n .
Ugitizj = Yditiz | ifuly +uly ;>0
| n+12.R - n .
_UdiJrl/Z,j |f ui,j +ui+l,j <0,

1/ "+1/2.R n+1/2,Ly
= 3(Uditz; +Ydizaz;) ifuly+uly; =0,

+1/2

for U =u, v. A similar procedure is applied to fing;; i’ .



PROJECTION METHOD FOR LOW SPEED FLOWS 257

Once the edge velocities at half time are obtained, we correct for the pressure gra
term by applying a MAC projection [21] to the edge velocity values: recall that in t
advection step above, we have omitted the term that corresponds to

The effect of this omission is that the current valueugfon the edges, denoted here by

ugred'“ed, is not divergence free. If we write

redicted
ug %= Ug + Vo,

whereu, is the divergence-free edge value, then a correctionf§f“*“may be found
by solving a Poisson equation for The Poisson operator in the equation above may |
discretized by the same five-point operatgrout the source term is formed by taking the
MAC divergence ofs5 "'

Once we solve fop, we can correct the predicted valueswgfby taking the discrete
gradient ofp:

n+1/2

n+1/2,predicted
Uy -

mac
= U2 G™%.

With the correctediy on the edges(,Adu)i”_j“/2 may now be approximated by finite differ-
ences.

We also construgt using the Godunov procedure outlined above, at the edges at the
time. To determine the unique edge value at each edge, the density is advected passiv
the normal velocity:

n+1/2 n+1/2,L

_ i N n .
Piy1/2j = Pit1/2)] iful; +ulyy; >0
_n+1/2,R ; n n .
= pi+1/2,j |f Ui’j + ui+1.,j < 0,

1 n+1/2,R n+1/2,L .
= E(foi+l/2.,j t Piv1)2] ) if upj Uty =0.

Likewise, pfﬁﬁz is passively advected hy'. The densityo can now be advanced to the

time leveln 4+ 1 conservatively:

At
+1 n+1/2 , n+1/2 n+1/2  n+1/2
/On = Pn - B(Piﬂ/z,j i+1/2,] — Pi_l/z,jui—l/z,j)
At ny12 ng12 n12  nel2
T Ay (pi,j+1/2Ui,j+l/2 - pi,jfl/Zvi,jfl/Z)'

Ay

The density"*%/2, needed in the projection in (17), is a by-product of the Godunov proc
dure, and already exists on the cell edges. The cell-centered qugntiigy also be formed
using (16), anclug+1 may be updated.

According to (17), we obtain"+/2 by solving the Poisson problem

1 —
Lpn+1/257'[n+1/2 = —D0 (Adun+1/2 + pn+1/2 Gon,r'l 1/2) i
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with the boundary conditions

iann-i—l/Z — 0
an

at solid wall boundaries. Then

ﬂn+l/2 — nn—l/z + 5nn+1/2.

Once we obtaimr"t1/2, the second term on the right hand side of (21) may be compute
anduj™ may again be updated.

Up to this point, the all-speed algorithm reduces to the conventional projection mett
(see[19], [20], or [21], for example) for incompressible flows, if incompressible initial da
is provided.

To compute the effects of compressibility, we first need to estimate the acoustic sot

term in (14). We approximate the time derivativenofit time leveln by
9 7'[”+1/2 _ nn—1/2
"
ot At

We may approximatéu - Vp)" by taking the centered differences pf in the x- and the
y-directions. Thus the forcing term is

O PV PYRNINE. (Y
b 2AX b 2AyY

iy =- At
Now (18) and (19) may be solved. These two equations are an implicit discretization of (
and (14). The ternQo(%V(S) in (13) is “predicted” by%V(S in the discrete equation (18),
and will be corrected for when we solve the discrete equation (20). Equations (18) and
are solved by first solving fa¥"*+* algebraically. This gives a Helmholtz equation 881+,

2\ N
un
(I — AtPyp LD )s™t = 6" + Atf —Atyp“<Dma°ug—AtLo<| 2"' ) )

with the boundary conditions

93

— =0

an
This linear system is always diagonally dominant and nonsingular, gitfce y p > 0. The
solutions"** can always be found.

We now correctuy, by projecting out the part O%VS““ that is not curl-free. This is
accomplished by first solving

V,(pl’H*l — ronac( pnl+1 Gmac5n+1> ,

with Neumann boundary condition on all physical boundaries

awnJrl 1 88n+1
an ptian

3
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and updatingi, using (20):

2
un
U?J+1 — ur;) — At <Gmac<| 2p’ ) _ Gmacwn-rl) )

Now we may compute the last term on the right hand side of (21) by aver&jifg "+
to the cell centers to forrﬁ)g(%GO(S). This completes the update aff ™.

Since equations involving the sound speed are solved implicitly (in the Helmholtz sol
we no longer need to take sound speed into account in determining a time step that
render the scheme stable. Thus we may choose the timeé\stiey considerings only:

min(AX, Ay)

At < Ceq .
max ([uo(X)|, lvo(X)|)

The sameAt may be used throughout the entire course of the computation; with sc
modification to the computation of the acoustic source term, one may also use vari
time-stepping. A safety factoG.; < 1, is also used.

3.4. Inflow—Outflow Boundary Conditions
In choosing appropriate boundary conditions for problems involving inflow and outflc
we are guided by the definition of the Hodge decomposition, namely that the vector |
may be decomposed into orthogonal parts, one divergence-free, and one potential, at
divergence-free part isarallel to the boundary near the boundary.
At a solid wall or an inflow boundary, one requires
u-n=g

for the inviscid Euler equations. We shall require

Ug-n=0 (22)
Up-n=g. (23)

We shall only consider outflow boundaries where the flow is uniform irxtdéection.
Thus

v=vp=14=0. (24)

The value of the potential velocity, at the outflow can be deduced from the gradient
Y, that is,

Up = (G™9y (25)

at the outflow. The value af in the first ghost cell is needed. For example, if the outflo\
boundary is on the right, then

Ymisj =3¥m,j — 3¥m-1j + ¥m-2j-
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The vortical component of the velocityy, must be divergence-free at the boundary. A
Neumann boundary condition a§,

Ud M+1,j = Ud m,j, (26)
will be sufficient. Alternatively, a second-order extrapolation
UdM+1,j = 2UdM,j — UdM—1, (27)

will also yield divergence-freaq at the outflow boundary.
For the projection

|Up|2
P, —u-Vu+VT , (28)
we may write
upl? Upl? 1
—u-Vu+vﬂ=Pp —u-Vquvi + = V. (29)
2 2 0
The orthogonality condition gives
|up|2
n-pP, —u-Vu-|—VT =0, (30)
or
n(—u. vuyyliel) o Lo (31)
2 ) pon’

Note that if one only considers the orthogonality condition, then
7=0 (32)

is also a valid boundary condition. In our numerical examples, we use (31) for inflow a
solid wall boundaries, while (32) is used at the outflow boundary.

Assuming that the inflow quantity is constant in time, we may determine the boundan
condition for the projection

1
(). (33)
1Y
which appears in the evolution equation &gy, (13). Let
1
Qo=Vs = —Vy. (34)
P
To ascertain

ot
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we must have

oy 9 upl?
an an( 2 (35)
1498
=———. 36
>an (36)
Thus the boundary conditions for the pressure varialaeinflow and walls will be
98 3 (|upl?
— =—p— . 37
an pan( 2 ) (37)

At outflow boundary, we shall specify the valuesofwhich is equal to the total pressure a
outflow. For theQq computation,

dy 195

- -7 38
an pon (38)
shall provide a Neumann boundary condition for all boundaries; alternatively,
0y _  (lupl’ (39)
an an\ 2

will ensureu,, - n=g at walls and inflow and may be used at those boundaries.

4. NUMERICAL EXPERIMENTS

First we shall present some convergence results. Our first problem is a convergenc
in the limit Ma— 0.
The initial flow is a “vortex-in-a-box,” a swirly flow with
u(x, y, 0) = 2 sirf(rx) sin(rry) cogmy),
v(X, Y, 0) = —25sin(x) cogmX) Sirf(ry);
p(x,y,0 = Py, Py=1,10,100 1000Q
p(X,y,0) = 1- 3tanh(y - 3)

on the square 8 x <1, 0<y <1, with the no-flow boundary condition
u-n=0
at the walls. We discretize the computational region by
AX = Ay = 1/32,1/64,1/128 1/256

For convergence test purposes, Aét= 0.5AX%, and advance the solution uptte- 0.125.
Table | shows the range of Mach numbers for which we have done convergence stu
Here the Mach number is determined by taking the maximum of the ratio of the magnit
of the total velocity to the sound speed at 0.125.
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TABLE |
Mach Numbers Ma as a Function
of Initial Pressure Py

Po Approx.Ma
1 0.88
10 0.28
100 0.089
1000 0.027

We perform a convergence study. The pointwise e#tis obtained by taking the absolute
value of the difference of the computed solution with spatirsand that with spacing/2.
We expect that

" = CphP + O(hP*h,

wherep is the order of accuracy, or the rate of convergence. msy be computed from
the ratio ofe” ande?™:
e2h
=log,—.
p gZ eh

Tables 11-VI show the errorg” and the convergence rates for various discretizations fc
the densityp, incompressible velocityy, total velocity u, incompressible pressure,

and acoustic pressuge For P =1000, the convergence rates for the “incompressible
variables(uq, ) are basically second-order. This is actually quite remarkable, consideri
that our scheme is a mixture of first- and second-order approximations. An examina
of the convergence rates far p, andé reveals the effect of the backward Euler-centerec
differencing discretization of Egs. (14) and (13): the discretization is stable, but in ordel
obtain the expected accuracy, the time ssdmeeds to satisfy the conditiamt/Ax < 1.

The acoustic pressugecontains long-wavelength waves, with the largest wavelength c
the order of ¥Ma. For low Mach number flow, there is no hope of resolving such lon
wavelengths in our box of length 1, and we expect the convergence ratéddoe poor,

as seen in Table VI. The long-wavelength acoustic waves have very little feedback
the incompressible flow at small Mach number. Rslecreases, the corresponding Mach
number increases, and it becomes more and more important that the acoustic wave
resolved. FolP =100 and 10, however, the conditiont/Ax < 1 for theaccuracyof the

backward Euler-centered differencing scheme is not met, and the feedback of the aco
waves to the flow is not well-resolved; thus the accuracy of the overall scheme deteriore
For P =1, the largest wavelength is on the order of the size of the box, which means t

TABLE Il
L! Convergence Results—Density

Po 32-64 Rate 64-128 Rate 128-256

1 7.374e-3 1.08 3.491e-3 1.05 1.684e-3

10 3.551e-3 0.69 2.192e-3 0.77 1.280e-3
100 3.745e-4 0.18 3.275e-4 n/a 3.898e-4
1000 3.675e-4 2.07 8.726e-5 2.00 2.781e-5
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TABLE IlI
L! Convergence Results—Incompressible Velocityy
P 32-64 Rate 64-128 Rate 128-256
1 3.383e-3 1.54 1.169e-3 1.23 5.003e-4
10 3.666e-3 1.88 9.508e-4 1.70 2.928e-4
100 3.808e-3 2.07 9.047e-4 2.03 2.239%-4

1000 3.836e-3 2.03 9.422e-4 2.00 2.353e-4

TABLE IV
L! Convergence Results—Incompressible Pressure
Po 32-64 Rate 64-128 Rate 128-256
1 3.767e-3 .73 2.263e-3 0.88 1.232e-3
10 1.787e-3 .33 1.415e-3 0.58 9.522e-3
100 2.595e-3 1.28 1.074e-3 0.17 9.563e-4
1000 2.342e-3 1.95 6.071e-4 1.79 1.761e-4
TABLE V
L! Convergence Results—Total Velocity
Py 32-64 Rate 64-128 Rate 128-256
1 5.517e-3 1.29 2.262e-3 111 1.047e-2
10 6.404e-3 0.86 3.529%e-3 0.78 2.050e-2
100 3.898e-4 1.70 1.195e-3 0.14 1.087e-3

1000 3.836e-3 2.02 9.426e-4 1.87 2.575e-4

TABLE VI
L! Convergence Results—Acoustic Pressui@
Po 32-64 Rate 64-128 Rate 128-256
1 6.599%e-3 1.10 3.080e-3 1.09 1.446e-3
10 4.062e-2 0.53 2.812e-2 0.70 1.720e-2
100 1.588e-2 n/a 3.986e-2 n/a 4.952e-2
1000 2.809%e-4 n/a 4.158e-4 n/a 2.655e-3
TABLE VII

L! Convergence Results for the “Incompressible Variables”
att=0.5 for P=1000

32-64 Rate 64-128 Rate 128-256
P 1.930e-3 2.03 4.712e-4 2.03 1.163e-4
Ug 4.659e-3 2.09 1.093e-3 2.04 2.653e-4
b4 2.940e-3 2.20 6.377e-4 1.90 1.711e-4
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most of the long-wavelength components of the solution will be resolved, and we expec
get first-order accuracy.

The P =10 case represents a transition of the numerical method from a second-order
to a first-order one. Although the large-wavelength acoustic wavésare still not quite
resolved, we can see that the “compressible flow” quantitias andé are beginning to
show convergent behavior. F&=1, our scheme is clearly first-order accurate, with the
backward Euler-centered differencing fully resolving all features of the acoustic waves.

For P =1000, we surmised that the backward Euler-centered differencing Helmho
solver would eventually damp out the acoustic waves so that the feedback would be ne
gible. We let theP = 1000 run go up td = 0.5. The convergence rates forug, andz in
this case are presented in Table VII. These rates are in agreement with the results of
and Marcus [20]. These rates are an improvement over thdse @tl125, indicating that
the long-wavelength components have indeed sufficiently decayed that they have no e
on the convergence rates.

Our next convergence test is to study the behavior of the numerical method in a poter
flow. We would expect only first-order convergence, because backward Euler-cente
difference is only first-order accurate. Initially, we have an adiabatic, quiescent flow

U(X7 Y» O) = U(X, y, 0) = 00,
p(X,y,0) =1— ttanh(x — ) tanh(y — 3)
p(x,y,0) = p(x,y, 0)”

on the unit square 8x <1,0<y<1. Again, the spatial and temporal discretizations
areAx=Ay=1/251/50,1/100,1/200 At =0.5AX/|C|~. Here|c|,, is setto 2.0. The
convergence rates for the densitythe pressuré, the velocityu,, and the quantityp/p”
attimet =1 are presented in Table VIII.

In this test problem, only low-frequency waves are present. Time step size is also s
ciently small. In these circumstances, the Helmholtz solver is first-order accurate, and
numerical results are first-order convergent for the “potential” variables.

Next we present computational results of flow in a converging nozzle. In this flo
we prescribe an inflow velocity afij, at x=—1, and the total pressure is constédt;
at the outflow atx =3.0. The initial densityp is pg, and the density at inflow is held
constant afpg. The nozzle walls arg =0 andy =1/4(3 — tanh(4(x — 4))). The grid is
100x 25 cells, as shown in Fig. 1. In our experiments, we Rig: =100 andpo= 1.0,
and letuj, = 1.0, 2.0, 3.0, 4.0, 5.0. All are executed up to=3.0. Table IX shows the
approximate maximum Mach numbers in the duration of each computation.

Results foruj, =4.0 at timet =3.0 are shown in Figs. 2—-8. As the fluid flows past
the bend on the top wall, it is compressed. This compressibility effect may be seen fr

TABLE VIII
L! Convergence Results for the Potential Flow

32-64 Rate 64-128 Rate 128-256
o 6.179e-4 0.92 3.266e-4 0.86 1.801le-4
8 6.221e-4 0.81 3.554e-4 0.81 2.032e-4
[Upl 6.092e-4 0.99 3.065e-4 0.96 1.575e-4

p/p” 3.421e-5 1.04 1.661e-5 0.99 8.393e-6
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TABLE IX
Maximum Mach Numbers Ma as a Function
of Inlet Velocity ui,

Uin Approx. Ma

0.12
0.26
0.42
0.60
0.80

g b WN P

265

FIG. 1. The grid used in the converging channel computation.

Mach Number

FIG. 2. The Mach numbeMa att =3.0. u;,, =4.0.

Acoustic Pressure

120
118

117
113

109
107

104

102 -

99.8

FIG. 3. The acoustic pressufeatt = 3.0. u;, =4.0.

111 oo

105 -
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Total Velocity u

N Wbk haoo o

NoPonwwN=moioP o
DO RROIONORD

FIG. 4. The totalx-velocityu att = 3.0. u;, =4.0.

Total Velocity v

FIG.5. The totaly-velocity v att =3.0. u;, =4.0.

Incompressible Pressure

FIG. 6. The incompressible pressureatt = 3.0. u;, =4.0.

Incompressible Velocity ud

0.00125 -----
0.000667 -----
8.27e-05 -
-0.000502 -----
-0.00109 -----
-0.00167 -----

FIG. 7. The incompressiblg-velocity uq att =3.0. u;, =4.0.
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Incompressible Velocity vd

0.00423 -----

e T 0.00113 -~

0.00069 -
0.000247 -~
-0.000196 ----

FIG. 8. The incompressiblg-velocity vq att =3.0. u;, =4.0.

Uin = 1.0 on and up. The total pressure is mostly acoustic pregsiitee pressure increases
in time gradually, eventually becoming almost constant from the inlet to the beginning
the bend, decreasing rapidly as the fluid traverses the bend, and becoming constant
as the fluid flows out of the channel. A high-pressure spot is found near the top of the b
while a low-pressure spot can be found near the bottom of the bend. The pressure pr
are basically the same for all Mach numbers (except when the Mach number becomes
to 1; see below); when the Mach number is greater, the pressure drop across the b
greater, as expected. The total veloaitis mostly potential by design. Thecomponent
of the total velocity,u, settles into a pattern of low, almost constant in space upstree
rapid acceleration through the high pressure gradient region, and high, almost const:
space downstream. The velocity gradient is greater for greater values of inflow velo
They-component of the total velocity, remains “localized” around the bend for all Mach
numbers. The incompressible quantitieandugy are generally small after the initialization
effects are allowed to decay sufficiently; as the Mach number increases, their magnit
also increase.

As we increase the inflow velocity, we shall eventually reach a sonic point near outfl
Our algorithm and boundary conditions are not expected to handle sonic or supers
flows. Generally, when the Mach number becomes too large (when5 in these experi-
ments), the computation gives poor results, especially near the bend, where a “separati
observed. If sonic is reached in the course of computation, the computation will eventt
break down. These will be topics for future investigations.

5. CONCLUSIONS

We derived the evolution equations for the divergence-free and the curl-free part
the velocity field in an inviscid, compressible flow. A numerical method for simulatir
flows whose Mach numbers are less than one based on these equations has been d
Convergence results show that our numerical method is second-order accurate for
Mach-number flows and first-order accurate for higher Mach numbers. Results of ©
numerical experiments were presented.

One area of improvement is the resolution of acoustic waves. As we have seen fron
convergence tests, there can be important feedback from the acoustics into the flow e
low Mach numbers. While it may not be important that the sound waves be resolved
do wish to minimize the polluting effects of the poor resolution of acoustics. A possi
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approach would be to use a higher-order time discretization in the Helmholtz solve
desirable higher-order time discretization should contain enough damping to elimin
acoustic waves effectively at very small Mach numbers, and not as much damping for
sound waves at higher frequencies.

Another area of improvement lies in the numerical implementation of boundary con
tions. We do not yet fully understand how to implement boundary conditions numerica
in general; each case has to be “engineered” to obtain physically reasonable results
would like to develop a consistent framework for the application and the implementati
of boundary conditions for the decomposed velocity fields, as well as the corresponc
boundary conditions for the projection operators.

Finally, we would like to extend our formulation to include viscosity and chemistry terr
to study combustion applications.
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