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A Higher-Order Godunov Method for Modeling Finite 
Deformation in Elastic-Plastic Solids 

JOHN A. TRANGENSTEIN AND PHILLIP COLELLA 
Lawrence Livermore Na,ionQI l...Dboralory 

In thiS paper we develop a lirst-order system or const",ation laws for finite deformation in solids. 
descrihe its characteri$tic structure, and use this Inal~is to develop I second-order numerical method 
for problems In''olvinl finite deformation Ind plasticity. Thl'! equations of miss. momentum. and ener8Y 
conservation in lagrangian and [ull'!riln frames of rererence Ire combined with kinetic: equations of 
state for the stress lind wilh caloric: equations of state for the internal energy. as well .. with lu~ili.ry 
equations represent!n! eqllality of milled partial deri"atiws of the defoRRation plIIditnl. Plrtieular attention 
is paid to the inRuenee of a curl constraint on the deformation lradient. so thaI the characlenslic speeds 
transform properly between the tllllO frames of reference. Nut, we consider models in ralc·roRR for 
isotroPIC elastic-plastic: materials With work.hardenins. and examine the circumstances under which 
these modclslead 10 hyperbolic s~tems for the equations of motion, In spite o(the fact thatlhcse models 
viola Ie thermodynamic principles in such a way that the acoustic: tensor becomes nonsymmetric. we 
~hll find thaI the chara.cltri~tIC speeds are always real for elastic: behavior. and essentially alway1 real rOf 

plastic response. These results allow us to construel a 5t'OOnd-order Goduno\! method for the computation 
of three-dimensional displacemcnt in a. one-dimensional malerial vitwed in the Lalransian frame or 
reference:. We also describe a technique for the approlimate solution of Riemann problems in order to 
determine numerical fluxes in this Ilgorithm. Finally. we plC!ent numerical es.amples or the resulls or 
the algonthm. 

I. Introduction 

•• 1. O~ervlew 
Solids ollen exhibit nonlinear behavior under sufficient applied forces. Materials 

may stiffen or soften as they are compressed, leading to a nonlinear relation between 
the material restoring forces and the deformation. This nonlinear deformation is 
elastic if the material returns to its original shape when the applied force is removed. 
In other cases 'he deformation is plastic, meaning that permanent dislocations of 
the constitutive chemical bonds or panicle positions have occurred. Another source 
of nonlinear response in materials is due to the geometry of large deformations. 
These nonlinear material effects can be imponant in a variety of physical problems. 
In this paper, we are interested in the dynamic response of nonlinear materials, 
especially due to large forces such as eanhquakes and explosions. 

Our goal is to develop numerical methods for the computation of propagating 
discontinuities in nonlinear solids. Since second-oroer Godunov methods were suc­
cessful when applied to problems involving local linear degeneracies and complicated 
global wave structure in petroleum reservoir simulation (see (6), (421, (43», we 
have decided to develop second-order Godunov methods for finite deformation in 
elastic-plastic solids. This necessitates some analytical development for solid me­
chanics: the equations of motion must be formulated as a first..arder system. and 
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the local hyperbolic structure of this system must be determined. We apply this 
analysis to several material models of practical interest. and examine the circum­
stances under which these models lead to hypcrholic systems for the equations of 
motion. This work constitutes the first principal result of this paper. The second 
principal result is the development of the second-order Godunov method for finite­
deformation in elastic-plasttc solids for general constilutive laws, even those given 
in rate form. This numerical method then provides a useful tool for beginning a 
study of waves in elastic-plastic solids, both in this paper and other papers to follow. 

The equations of motion for general continua are derived from laws describing 
the conservation of mass, momentum, and energy. In the Lagrangian (rame of 
reference. these laws take the form 

( 1.1 ) 

0:: OPl 
in' 

Here III is the mass per volume at rest, T is time, lis the vector of body forces per 
mass, v is the vector of particle velocities, a is the vector Lagrangian spatial coor­
dinates. SL is the second Piola-Kirchhoff stress tensor, F ox/aa IS the gradient 
of the current particle position, w is the radiative heat transfer per mass, and f is 
the internal energy per mass. In three dimensions, there is one equation for con­
servation of mass, three equations for conservation of momentum, and one more 
equation for conservation of energy, for a total of five conservation equations. 
However, the5e equations involve twenty-one unknowns: density, velocity, stress 
(which is a symmetric 3 X 3 matrix). deformation gradient F. temperature and 
internal energy. In order to close the system, we must specify sixteen additional 
relationships among these unknowns. so that the end result is a first-order hyperbolic 
system. 

Two different types of equations are needed to close the system. The first type 
consists of constitutive laws that characterize the material. For example. in an 
elastic material the stress tensor is relaled to the deformation gradient by a kinetic 
equation of state. Of course, there are many other kinds of constitutive equations 
of use in modeling solid mechanics. Since our ultimate purpose is to identify a 
general form for use with our analysis ofthe equations of motion. we have chosen 
the rate-form 

(1.2 ) 
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for our characteristic an'1Iysis. since it includes a large class of constitutive models 
currently in use. (In Section 4 ~Iow we di!.Cuss how other models, not given in 
ratc-form. can he treated with our analysi~.) Here. 8 is the absolute temperature 
and el is the unit vector in the i-th coordinate direction. Of course, we assume that 
the parameters II., anti h, in this equation satisfy the constraint that this equation 
of state is invariant under rotation~ of the frame of reference. In addition to the 
kinetic equation of stale. we also relate the internal energy to the temperature and 
possibly the dcCormation gradient by a caloric equation of state. 

Note that because ( 1.2) is an ordinary differential equation. it allows the stress 
to depend on the history of the deformation gradient and temperature. Because 
this evolution equation for stress cannot he written in conservation form, this means 
that our system of equations is not, strictly speaking. a system of conservation laws. 
As a result. the jumps across discontinuities could in principle be dependent on 
the internal structure of the discontinuity. 

The other type of equation needed to close the system of equations is some 
identity relating the deformation gradient to the velocity. In the Lagrangian frame 
of referen(.'c. this identity takes the form 

( 1.3) 

Here are nine equations that can be added to the seven equations from the con­
stitutive models to ohlain a closed system of Lagrangian equations, with all but the 
ordinary dilfcrcntial equations ( t.2) for the constitutive laws in conservation form. 
In addition, we assume that the initial-value constraint 

(1.4 ) 

is satisfied by the deformation gradient~ if this constraint is satisfied initially, then 
( 1.3) shows that it is satisfied for all time. 

In the Eulerian frame of reference. there is a delicate point regarding the form 
of the equality of mixed partials. A n identity analogous to ( 1.3) can be obtained 
by the Implicit Function Theorem: 

( 1.5) 
01 

However. a direct characteristic analysis of the resulting first-order system leads to 
characteristic speeds that are not properly analogous to the Lagrangian speeds, and 
to spurious eigenvector deficiencies. In a numerical scheme, such anomalies could 
have disastrous consequences. These difficulties can be overcome by using another 
adentity for equality of mixed partials. 

( 1.6) 
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in order to rewrite ( 1.5) in the non-conservation form 

( 1.7) 
dF- 1 Ov 

= -F I~. 

The system of partial differential equations involving (1.7) and the Eulerian form 
of (1.1 ). with the Eulerian form of (1.2) to provide information about partial 
derivatives of stress, has characteristic speeds that are properly related to the La­
grangian speeds. The constraint ( 1.6) is also an initial value constraint. 

In Section 5 below, we collect the physical conscrvation laws, constitutive laws. 
and auxiliary identities into closed systems of differential equations for both frames 
of reference. Specifically, we show that the Lagrangian characteristic speeds are 
either zero, or occur in plus/minus pairs corresponding to the SQuare roots of the 
eigenvalues of the 3 x 3 Lagrangian acoustic tensor. The Eulerian characteristic 
speeds are related to the Lagrangian speeds by 

An eigenvector deficiency occurs if one of the plus/minus pairs of Lagrangian char­
acteristic speeds is zero (or, equivalently. if one of the analogous Eulerian wavespeeds 
is equal to the normal velocity). Furthermore, the characteristic directions for either 
of the full systems of conservation laws can be easily obtained from the eigenvectors 
ofthe corresponding acoustic tensor. 

Once the general analysis of the characteristic structure of the equations of 
motion has been established. the next task is to apply the analysis to specific con­
stitutive models. We consider three-dimensional finite derormation of isotropic 
models using the Jaumann stress rate, and elastic-plastic models with work-hard­
ening. In the elastic case, the acoustic tensor is 

A H+C. 

where 

I(+~ 
JJ 3 

11 - 1 - + liE -- n~. 
PE PE 

Here liE is the direction of propagation in physical space, Sf:: is the Cauchy stress 
tensor, and PE is the mass per volume in the current configuration. The symmetric 
matrix II is positive-definite, with eigenvalues equal to the SQuares of the standard 
p- and s·wave speeds of isotropic linearly elastic infinitesimal displacement. The 
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nonsymmetric matrix C is due to the form used by the Jaumann stress rate to 
guarantee rotational invariance. In spite of the nonsymmelry. we show that this 
matrix (. is such that the acoustic tensor has real eigenvalues. which are positive 
provided that the difference between the largest and smallest principal stresses is 
not too large. 

During plastic response, the acoustic tensor lakes the form 

A=II-m!mT+c fl . 

Because this matrix is a rank-one symmetric perturbation of the previous acoustic 
tensor, the characteristic speeds during plastic response cannot be larger than those 
in clastic response. Our analysis shows that plastic yielding causes a discontinuous 
decrease i~ t.he cha.racteristic speeds from those obtained in elastic response, and 
as a result It IS poSSible to see more than one wave in the same wa"'e family. It also 
appears to be possible to obtain complex characteristic speeds with these models if 
the yield strength is sufficiently large: howe",er, the yield strength is generally fairly 
low. and as a result we have not yet observed complell w3vespeeds for elastic-plastic 
response in metals. 

Given the analysis discussed above. we have the analytic information required 
to formulate a second-order Godunov method; see {6 ]. This algorithm is described 
in Section 7 below. In this method, we use the characteristic form of the equations 
to compute nUlles. which are differenced conservatively. Second-order accuracy in 
smooth regions is obtained by constructing piecewise linear interpolants as initial 
data for the characteristic solution at each time step. and oscillations at disconti­
nuities are suppressed by limiting the characteristic amplitudes of these interpolants. 
The ordinary differential equation ( J.2) is integrated subject to yield constraints in 
order to update the stress in a rotationally invariant fashion. In the present work. 
we consider three-dimensional displacements in a one-dimensional material; this 
aUo~s us to study both compressional and shear waves while simplifying the nu­
meneal meth~ for this initial work. We have also limited the method in Ihis paper 
to the Lagrangian frame of reference, for two reasons. First. the approximate SOlution 
ofthe Riemann problem is less difficult in the Lagrangian frame than in the Eulerian 
frame. Second. it is trivial to find the initial conditions for integrating the stress­
rate equations along particle paths in the lagrangian frame. 

In ,the eighth scction of the paper we present numerical results to verify the 
analYSIS and the method. The examples involve finite deformation of a nonlinear 
elastic-plastic metal undergoing various levels of compression. tension, and shear. 
As expected. the Godunov method is able to resolve strong shocks without devel­
oping destructive oscillations or excessive smearing of discontinuities and clipping 
of peak~. We ,observe a variety of nonlinear wave behavior in the various regimes 
tested, inclUding compound waves due to local linear degeneracies in the charac­
teristic slructure. In compressions we find that the elastic precursor shock and the 
plastic shock are both in the same wave family and are separated by a constant 
state that has associated with it a discontinuous change in characteristic speed. This 
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behavior is due to the fact that states on the yield surface have two characteristic 
speeds associated with them, depending on whether the materi~1 response is elastic 
or plastic. In a second set of examples. we compare the numerical. results from the 
second-order Godunov method to the analytic solution for sphencal wave propa­
gation in solids with pressurized inner cavities. Here the numerical re~ults do not 
show any of the oscillations commonly produced by standard f1~lte difference or 
nnite element methods, and the time lag between the pressure nse and the peak 

response is small. 
Even though our numerical method only uses information about the local wave 

structure, it is still possible to solve problems with complicated global wave structure. 
Our numerical results show convergence to solutions involving. for example, local 
linear degeneracies. panty as a result of our conservative diflerence scheme and 

judicious use of numerical viscosity. 

J .2. PrtYious Analyses . . . 
The characteristic structure of the equations of motion .n elastic solids has, ~n 

studied by a number of authors. Truesdell and NOll, in (47 ~ exa',llined the conditions 
for real characteristic speeds in isothermal isotropIC elastic solids and related tho~ 
conditions to the S-E (strongly elliptic) condition; an analYSIS of lhe~oelasuc 
solids can be found in (I). A number of authors (who were surveyed well In (27) 
studied the shock jump conditions in vanous frames of refer~nce. for ~bstrac' con­
stitutive laws. Cristescu in (II) considered a variety of appl .. cau~ns In sohd ~e­
chani~. from vibrating strings and membranes to solids descnbed In a conse,:,atlve 
Eulerian framework. He examined the jump conditions f~r shoc::ks. but av.old~d a 
disc:ussion of analytical or numerical results for proble~s InvolvlRg, c?mphcahons 
due to coincident characteristic speeds (i.e., loss of stnet hyperbohctty) or to the 
existence of extrema of the characteristic speeds along the individual wave curves 

(I.e .. local linear degeneracies). .,. 
In recent years. the structure of solutions to problems involVing local hnear 

degeneracies or loss of strict hyperbolicity has been addressed by several mathe­
maticians. WendroJf(see (48)) constructed the global solution to Riemann problems 
for strictly hyperbolic systems with local linear degeneracies ?r linearly degenerate 
waves, and Liu (see [29» proved the eltistence of these solutlo~s: They found that 
the individual wave curves could involve compound waves conslstmg of rarefactlo~s 
and shocks. Key6tl and Kranler (see (251) examined Cristescu's m~el for a vi· 
brating string and constructed the solution to the Riemann problem ~n .terms of 
strains and velocities. In this model, the square of one of the charactenstlc speeds 
is the derivative of the tension with respect to the strain. while ~h~ othe~ speed 
squared is the tension divided by the deformation gradient. Thus It I~ po~lble ~or 
the two characteristic speeds to be equal at one or more value~ of the stral.n. wnh 
a coincidence of the wave characteristics. As a result. the solution of the Riemann 
problem is more complicated than for strictly hyperbolic systems. Rec~ntIY. !ang 
and Ting (see (41)) examined the characteristic structure of general one-dlmenslo~al 
deformation of nonlinear elastic solids. Unlike Keyfltz and Kranzer, Tang and Tlng 
inverted the stress-strain relationship and examined the interaction of waves in 
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terms of the components of the strt'SS tensor. They I{)und thaI the characteristic 
speeds can hccome equal at umhilic POints. around which the structure of the 
solution of Riemann prohlems is quite complicated. Unfonunalcly, the work hy 
Tang and Ting docs not gencrali/c to many nfthe most-commonly-used mat('nal 
models. because the stress-strain relationships for these models arc not invertible. 
In passing. we note that additional work on the structure of solutions to general 
hyperholic 2 X 2 systems is under study hy Shearer in (38): also. there is work by 
Shearer in (39) and Holden in (19)10 determine the structure of the solutions to 
systems with finite elliptic regions. such as occur in strain-softening materials or 
malenals with nOn-convC1!. strain energy functionals. 

1.:1. Other Numerical Methods ..... 
The standard numcri(:al approach for computing the dylt'dmic response of solids 

has been to solve the I..'quations of motion in non-conservation form using centered 
differences coupk'd with additional artificial viscosity. There is a Significant dis­
advantage to this approach. In order to guarantee stability of the s('hcmc and con­
vergence to the entropy-satisfying solution ofthe equations of motion. an appropriate 
amount of artificial viscosity must be added. Typically. it is impractical to add 
enough anificial viscosity to suppress all of the oscillations. since this smears dis­
continuities 100 much. These oscillations are a cause ofsignitkant concern in prob­
lems involving elastic-plastic solids. since they can Icad to unphysical ratcheting of 
the material response alternately on and off the yield surface. One could consider 
using flux-corret.·ted Iranspon (see (R) .151 J) to control the introduction of anilicial 
viscosity, but Ihis method has been known 10 produce entropy-violating disconti. 
nuities t{)f conservation laws with local linear degeneracies. 

Another approach that has been receiving increasing attention by the engineering 
and mathematical communities in recent years is slreamline diffusion (see (21). 
(23 Jl. This method has provable convergence propenies for problems in which a 
transformation to "entropy variahles" is availahle. so that the selection ofthe phys­
ically meaningful solution to the equations of motion is natural. However. the 
entropy variables for general constitutive models in solid mechanics are unknown~ 
as a result. some analytical work still needs to he done to guarantee the convergence 
of Ihis method to Ihe physically realistic solution for problems involving strong 
shocks. 

2. Notation 

The notation of solid mechanics is by no means standardized: as a result. we 
have adopted conventions that are particularly wen-adapted to the use of linear 
algebra in the characteristic analysis below. We shall denote scalars by lower-case 
Greek letters. vectors by lower-case Roman letters. and matrices by upper-case 
(Greek and Roman) lellers. Somewhat in contradiction ofthis convention. we shall 
retain the same lower-case character for the entries of ,'ectors and upper-case leiters 
jor the entries or matrit.'es. Vectors wtll always be understood to be "column vectors." 
Also. we shall use summation conventions when convenient. 
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As an example. the vector Q will be written 

The gradient with respect to 0 is 

a 
dGI 

d 
V' = .. 

OQ2 

0 

aD) 

We shan assume that the gradient operates only on objects to its right "Row vectors" 

are formed by taking the transpose of vectors: 

Thus the inner product of two vectors a and b is 

Note that the order of the vectors Q and'b in the Inner product does not matter. 
However, the divergence of a vector v is written 

In this expression, it is crucial that v appear to the righ~ o~ V' a·.. . 
Matrices are arrays of vectors. One very useful matnx IS the Identity matnx. of 

which the columns are the Euclidean axis vectors and the individual entries are the 

Kronecker deltas: 

The trace of a matrix A is the sum of its diagonal entries: 
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Another matrix invariant is the determinant. which will be denoted by I A I or by 
del A. 

The outer product of two vectors is 

In particular. the matrlll of derivatives of a vector x with respect to a vector a ,s 

aXI ax. OXI 

dOl do} do) 

ax T T ih:l OXl ax} 
~ '" (t' x ) = 
00 a 00, 002 (0) 

OX} OX) OX} 

001 a02 (0) 

Throughout the remainder of this paper, time will be denoted by the Greek 
letter 1. We shan let a denote the Lagrangian coordinate, namely the location of a 
particle in its original Cartesian configuration. (Curvilinear coordinate systems. 
such as cylindrical and spherical coordinates, can be treated with the inclusion of 
the appropriate metric coefficients. We have omitted these terms for simplicity.) 
Ohviously. 0 is independent of T. We shan let x denote the Eulerian coordinate, 
namely. the current location of the particle. In Lagrangian coordinates. we consider 
the current position x ofa partkle 10 be a function oftime T and ils original position 
a. The notation dId T denotes the material ( total time) derivative, while a I itr denotes 
the partial time derivative; this distinction is important only in Eulerian coordinates. 
where the dependent variables are taken to be functions of T and x. We shall denote 
the velocity of a particle by 

In Lagrangian coordinates. the velocity is a function of a and T. while in Eulerian 
coordinates it is a function of x and T. In Lagrangian coordinates. we can also 
define the deformation gradient 

We assume that the determinant of Pis positive. so Ihat the motion has not turned 
the material inside-out and so that the correspondence hetween Lagrangian and 
Eulerian coordinates is invenihle. The inverse of the deformation gradient can. by 
application of Ihe inverse mapping theorem. be considered a function of x and T 

for applications in Eulerian coordinates. 
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J. Conservation Laws 

The motion of a solid is determined by the conservation of mass, momentum. 
and energy. together with the equallons of state for the material. In this section of 
the paper. we will stale the conservation laws without derivation. The interested 
reader can find a useful discussion of the derivation of these conservation laws, 
together with their expression in conservation form for Eulerian coordinates. in 
(II) or {l2J. 

In the equations to follow. we shall denote the mass density by P. the force per 
unit mass acting on the body by r. the stress by S. the internal energy per unit mass 
by f. and the radiative heat transfer per unit mass and unit time by w. (More 
generally. f and w might include diffusive terms. such as viscous forces and heat 
diffusion. that depend on the conserved variables.) As appropriate. we will suhscnpt 
these variables by E or L to denote the relevant frame of reference. 

3.1. Eulerian f"orms 
Conservation of mass in Eulerian coordinates can be written as the continuity 

equation or in conservation form: 

(3.1 ) 

dPE T 
0= -;;- + pEt"x v continuity equation. 

apE ,""T . f 0'" - + v, (vpd conservauon 0 mass. 
iJT 

Conservation of momentum can be written as Newton's second taw or in conser­
vation form: 

fT :: dv T _ ~ V': SF. Newton's second law, 
dT PE 

(3.2) 

TOPE\' T T T f 
PEf = -a;- + V'J (VPFY - Sd conservation 0 momentum. 

Finally. conservation of energy can be written as the first law of thermodynamics 
or in conservation form: 

df 
w:= dr - --P-E-- first law of thermodynamics. 

(3.3 ) 

+ V'; (vpd~ + 'v TV] - Sf v) conservation of energy. 
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3.2. uaran"ian I<'orms 
Given a system of conservation laws written in the Eulerian frame of reference, 

dU' - + t"T(;l:= rT ar x • 

we can rewrite the system in the Lagrangian frame of reference as follows: 

(3.4 ) 

These re~ults suggest that the Lagrangian density and stress should be related to 
the Eulenan dcnslly and stress by 

(3.5 ) 
PI = PI j Fl. 

(SL is commonly called the second Piola-KirchhofT stress, and Se is commonly 
called the Cauchy stress.) Then the Lagrangian form of conservation of mass is 

0 = dpl. 
dr continuity equation. 

o OPL 
dT conservation of mass. 

The Lagrangian form of conservation of momentum is 

(3.6) 

dv T ( 
fT = d; - ;;: V'!(SlFT

) Newton's second law, 

iJPI.V T 

dT V'r ( SI FT) conservation of momentum. 

The Lagrangian form of conservation of energy is 

(3.7) first law of thermodynamics, 
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4. Equations 01 State 

There are two kinds of equations of state that are needed to helD to dose the 
system of conservation laws. The first is called a kinel ic equatIOn oj.wall:. and re~ates 
stress to other important variables in the motion. such as the deformatton gradlc~t. 
The second is the calo,.ic ('qual ion oj.slale. relating the internal energy to quantities 
such as temperature. Under ideal circumstances. these equations of state obey the 
second law of thermodynamics, which requires that the time rate of change of the 

entropy production is non-negative. . . . 
For lucid but dated surveys of the literature on constitutIve models for elastIC 

materials. we refer the reader to the books by Malvern (see (30 1) an~ Fung (see 
{13]). We shall attempt to adopt as general an approach to lh~ equations of ~tate 
as possible without sacrificing clarity of exposition .. Furt~er. sl,nce our go~1 IS,. to 
eltamine the structure of waves in solids. we shall aVOId a diSCUSSion of the diffUSive 
effects present in reat materials. The inclusion of su~h effects in th~ m~els ~ou~d 
tend to obscure the degree to which we are controlling the numencal diffUSIon 10 

our computational schemes and would not introduce significant complications into 

the numerical method. . . .' 
We assume that the kinetic equation can either be differentiated m time or 

expressed directly in the rate form 

(4.1 ) 

Here, 8 is the absolute temperature. If Ihe derivatives of SE with respect to F-
1 

and 
6 exist, then we can formally identify the matrices 

(4.2) 

(note that Iii) is a matrix, not the i, j entry of a matrix). and the vectors 

(4.3) h
' = OSEtj 

I 08' 

The equivalent form for the kinetic equation of state in the Lagrangian frame is 
(1.2), where we rormaUy identify (when the derivatives exist) 

(4.4) 
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The~ forms ( 1.2) and (4.1 ) are broad enough to encompass a very large class of 
constitutive modcis; in panicular. it allows us to lreat the models used most onen 
in the numerical study of plasticity. 

Constitutive theory makes very specific demands on the form of kinetic equations 
of state, demands Ihat we are not able to display in ( 1.2) or (4.1 ). One is that the 
constitutive law should be frame-indifferent, so that a time-<iependenl orthogonal 
rotalion of the frame of reference induces the correct similarity transformation in 
the stress. This requirement forms the basis of simple (elastic) materials: see (47). 
Another useful notion is that there is a strain energy function, formed with respect 
to a homogeneous stress-free natural stale. so that its time derivative is equal to 
the trace term in the first law of thermodynamics (3.3) or (3.1). This requirement 
forms the basis of hyperelastk materials; see (47]. The notion of a hyperelastic 
material is very useful in developing variational principles that are important in 
finite element analysis for static problems. Furthermore, this nOlion can be gen­
eralized to include thermal effects and plasticity; see (40). Unfortunately, hyper­
elastic models have not been used as extensively in applied computations involving 
plasticity. Nevertheless. the constitutive laws for these kinds of elastic models could 
easily be differentiated with respect to time and expressed in the forms ( 1.2) or 
(4.1 ). for the purposes of developing the quasilinear forms in Section 5. 

Another useful class of constitutive models is given in rate form. This class of 
models is most easily ht to laboratory data. where the data commonly take the 
form of measurement of changes in stress due to changes in strain (or vice versa) 
in the Eulerian frame of reference. These models rarely satisfy the second law of 
thermodynamics, hut they are able to reproduce ,he laboratory data; their propo­
nents suggest that these models are accurate even though they are thermodynam­
ically inconsistent. 

Even though the models used for plasticity may violate thermodynamics, for 
our purposes they may be acceptable if they satisfy two fundamental principles. 
One is that they must lead to hyperbolic systems. so that initial value problems are 
well-posed. This point is seldom addressed in engineering literature, and serves as 
the focal point of the discussion in Section 6 below. Our other requirement l$ that 
the models must be frame-indifferent. 

There are other useful properties that stress rates should possess; see 124]. One 
is due to Prager. who suggested in 1371 that if the stress rate is zero, then the 
eigenvalues of the stress should be constant. Two such stress rates are the 1aumann 
stress rate and the Green-Naghdi stress rate. The former is easy to compute (see 
(20), (22 n. and its effect on the acoustic tensor, although nonsymmetric, is easy 
to determine (see Section 6.1 below). However, the Jaumann stress rate has no 
conjugate measure of finite strain (see (3)). and does not lead to a symmetric 
stiffness matrix; see (31). Further, kinematic hardening causes oscillatory response 
in the back stress during simple shear; see [24}, (34)). For this and other reasons. 
the Jaumann stress rate has been replaced by the Green-Naghdi stress rate in some 
numerical computations. However, the Green.Naghdi stress rate is significantly 
more expensive in three-<limensional computations, and its effect on the acoustic 
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tensor (also nonsymmetric) is difficult to analyze in three ~imensions. Mehr,abadi 
and Nemat-Nasser in (321 have shown how to relate the spm tensor I~ the Grce~. 
Naghdi stress rate to the spin tensor for the. Ja~mann stress. rate; this fo~mula IS 

complicated. but proves that the required denliatlVes of terms In lh,e acoustic Ic.nsor 
for the Green-Naghdi stress rate actually ell.ist and can be employed m compu.latlons. 
Another Objective stress rate is the Truesdell stress rate; see [35 J. [46]. ThiS stre~ 
rate arises naturally from hyperelastic constitutive laws and leads to a ~ymmetnc 
acoustic tensor; however, it fails to satisfy Prager's condition of ~o~stant eigenvalues 
of Cauchy stress for zero stress rate. This is one reason why It IS not commonly 
used in computations. . 

Our demands on the caloric equation of state are less stnngent. We assume t~at 
the internal energy is a function of the absolute temperature IJ and the deformation 
gradient F, in such a way that the partial derivatives 

(4.5) 

are available. This class of caloric equations of state includes, for example, ideal 
thermoelastic solids. 

5. Characteristic Analysis of the Equallons ot Motion 

In this section we shall write the complete systems of equations in n,:t-?rd~r 
consel"\'ation form, and determine the characteristic speeds an~ charactenSllc di­
rections of the motion. Our purpose in this section of the paper IS not to reproduce 
at length the classical results relating the characteristic speeds to the SQuare roots 
of the eigenvalUes ofthe acoustic tensors. We have other needs that are not met by 
the existing literature. . .. 

In order to apply modern numerical techniques for shock-captunng, It IS nec­
essary to write the equations of motion infirs(.o,derconservatjonform~ a.nd to ~nd 
associated quaslinear forms with the COfTect wavespeeds for ~haractenshc t,racmg. 
Our approach to writing the equations in ftrst-order consel"\'allon form requires ~he 
use of the deformation gradient as a conserved quantity; howel/er, the constral~t 
that the deformation gradient be the gradient of a deformation introduces compll· 
cations into the selection of the consel"\'alion forms and quasilinear forms of the 
equal ions of motion, as we shall see below. . 

For each frame of reference, we shall follow the same order of presentatl.on. 
First, we shall assemble the system of conservation laws in the form appropn.ate 
for a conservative difference method. In addition to this system of consel"\'atlon 
laws we shall write a stress-rate equation, the careful integration of which could 
determine the value of stress at various time levels. (Here, we are more concer.n~ 
in selecting a form for the stress-rate equation that is instructive for our charactenstlc 
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analysis. rather than one appropriately structured for frame-indifferent time inte­
gration.) Afterward. we shall rewrite the system ofconSotl"\'stion laws in tenns ora 
list of unknowns that arc useful in evaluating the nux in the consel"\'ation law. The 
analysis of the characteristic structure of the conservation laws will be perfonned 
with respect to these "f)Ull. variables:' 

5.1. LaRranAian An.IY!lis 
5.1.1. COD;Stn •• ion Form 

Ou: Lagrangian. system of equations consists of four equations, (3.1 H 3.8). 
gove,rmng conse~vatlon of momentum and energy. as well as nine equations. ( 1.3), 
also In conservation form. expressing equality of mixed paniaJ derivatives in space 
and time. This allows us to write a system of thirteen conservation laws 

(5.1 ) 

where 

(S.2 ) 

In addition to this system ofconsel"\'ation laws. we also have the ordinary differential 
equations ( 1.2) for the stress. These ordinary differential equations can be considered 
to be a prescription for evaluating the stress and its derivatives; indeed. if the stress 
~ere described by a hypereJastic modeJ. there would be no need 10 integrate ( 1.2) 
In the course of solving the equations of molion. (See (40) for a discussion of Ihe 
advant~ges of,an app.roacb o~ this form in the conteJtt of plasticity.) At any rate, 
lhe ~rdm~ry dlfferenhal equatIons ( 1.2) do not contribute to issues concerning the 
claSSificatIOn of the system of consel"\'8ttOn laws. Finally. we note thai the curl 
condition ( 1.4) is assumed to hold; this is an initial-value condition that may need 
to be enforced occasionally during the time-stepping procedure of a numerical 
method, 

Note thaI aU of the entries of III and G l can be considered to be functions of 
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Thus the system of conservation taws (5.1 ) is hyperbolic if and only if the matril 

ha~ real eigenvalues for any unit vector "L' Equations (5.1) and (5.2) pose the 
proper form for purposes of conserving the appropriate quantities in our numerical 
algorithm, and for purposes of bequeathing the correct shock speeds to the com­
putational results. However. another step of the second-order Godunov method 
requires the computation of monotonized slopes in characteristic quantities for the 
purposes of constructing len and right states in a Riemann problem. (See Section 
7 below.) We want the results of the characteristic tracing step to provide the in· 
formation needed to construct physically meaningful fluxes at the cell interfaces. 
For this step of the computation, it is useful to write the equations of motion in 
non-conservation form. This form of the equations obtains the same characteristic 
speeds as in (5.1 ) and (S.2) I but the characteristic directions we shall determine 
below are far more simple. 

5.1.2. Quasilinear Fom 
We can use the equality of milled partials ( 1.3) to write the system of equations 

(5.1) and (5.2) in the form 

(5.3) 

where ')' and c) are defined by (4.5), and 

(5.4 ) 

Also recall thai when the derivatives elist. we can formally identify H,} and hi as 
in (4.4 ). In order to analyze the hyperbolicity of this system, we assume (without 
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loss of generality) that Ihe coordinate system has heen rotated so that the normal 
nL is aligned with the first coordinate axis. Then hyperbolicity requires 

[1' 
0 0 0 

o r[ 0 
0 

I 0 0] PI')' 0 o 0 -p,'YbT 0 o 0 0 
B -hi I o 0 -H II 0 o 0 0 

-hl 0 I 0 -JIll 0 o 0 0 
-h1 0 o I -1111 0 o 0 0 

[ 0 
0 -/.-!.. 0 

il PL 
-bT 0 0 0 

= -All 0 0 0 
-All 0 0 0 
-All 0 0 0 

to have real eigenvalues. Here we have used the notation 

(5.5 ) 

It is ohvious that seven of the eigenvalues 'of B are zero, with right eigenvectors 
corresponding to the appropriate columns of the identity matrix. This deflation 
process can be continued, reducing the problem to finding the eigenvectors and 
eigenvalues of All: 

(5.6) AIIX:; XA 2pL' 

Anerward. we can assemble the eigenvectors of B: 

0 0 -J.-!.. 0 

o 1 [ XA 

0 -XA 0 

; 1 
PL 

-bI 0 0 0 o bIx I bIX 0 

[ -A" 0 0 0 o XA 2
pl 0 XA 2PL 0 

-All 0 0 0 o A;u X 0 A 21 X 1 

-A.u 0 0 0 o A)IX 0 A)IX 0 

( 5.7) 

[ XA 
0 -XA 0 

;] [I 
0 0 0 

H bIx I bIx 0 0 0 0 
XA1PL 0 XAlpL 0 0 A 0 
A21 X 0 A21 X 1 0 0 0 
AliX 0 AJ1X 0 0 0 0 
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In summary, if the system is hyperbolic, then there are seven characteristic speeds 
equal to zero, and six other characteristic speeds occurring in plus/ minus pairs. 
An eigenvector deficiency occurs if any of the speeds in the plus/minus pairs is 
equal to lero. 

From this analysis. we can determine the circumstances under which the system 
(5.3) is hyperbolic. In order to do so, we shall use the definitions (5.4) and (5.S), 
as well as an orthogonal change of coordinates, to rewrite equation (5.6) in the 
form 

(5.8) ALX. [Huninl...!... + hi...!... n,br]x = XAi.. (summed over;) 
PI.. PI.. 

where nj are the enlries of an arbitrary unit vector. The equations of mOlion are 
hyperbolic if and only if equation (5JI) holds with a real matrix AI. for any unit 
vector nt.. If we can assume that the derivatives of the first Piola-Kirchhoff stress 
FSl e"ist with respect to F and 0, then we can rewrite this result in the form 

Of \] 
Pl dfnJ X = XA[. 

Thi~ condition for positive eigenvalues is consistent with TruesdeU's nOlion of a 
stronglyelliplic function for isothermal isotropic elastic solids (see (47]), and must 
be verified for the individual constitutive model and caloric equations of state. In 
the discussion to follow, we will call AL the Lagrangian Q(·(Ju.ftit.'len.mr. even though 
the conventional acoustic tensor in the continuum mechanics literature ignores 
thermal effects. 

Before concluding the Lagrangian characteristic analysis. we note that in some 
applications (such as gas dynamics) the stress is formulated directly in terms of the 
internal energy. In other applications, the caloric equation of state may be difficult 
to solve for temperature. Thus, there are cases in which it may be advantageous to 
perform a characteristic analysis using l instead oft). The form of the characteristic 
analysis in such a case can be related to the analysis above by taking l' I and 
cJ = 0; that is, no separate characteristic analysis is needed. 

5.1. Eulerl.n Anal)'sls 
Nex.t, we turn to the problem of identifying the characteristic speeds for the 

Eulerian formulation of the system of conservation Jaws. Here, we nttd to make 
sure that we have all of the variables needed to evaluate the flu" in our quasilinear 
equations. We shall also nttd to be careful about the correct form of the equality 
of mixed partial derivatives, in order for the Eulerian characteristic speeds to be 
properly related to the lagrangian speeds. 
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S.2.1. Conservation .'orm 
The Eulerian form of the conservation equations is 

( 5.9) 

where 

(5.10) 

Th: la~t nine equations in this system come from Ihe equality of mixed partial 
~cnvallves ( t.5). which has been chosen from several alternatives in order to min­
Iml~~ the number of variables nceded in the quasilinear form (5.11 ) below. In 
addItion to this system of equations, we have the stress-rate equation (4.1 ). 

Note !hat (here is a difficulty with this formulation of the conservation laws in 
th~ .Eulcna~ frame of reference. The stress-rate equation ( 4.1 ) uses the equality of 
mUled panla!s 10 the form ( 1.7), while the system of conservation laws (5.9) and 
(5.10) uses the form (1.5). Further, a direct characteristic analysis of(5.9) and 
(5.10) produces some characteristic speeds that are not the proper analogues of the 
Lagrangl~n spccd~. h. would have heen tempting to apply the equation (3.4 J tor 
C'ha~gc of fra~c 01 reference to the lagrangian equation ( 1.3) for equality of mh:ed 
partIal denvatIVes. and derive 

for the Eulerian form of equality of mixed partial derivatives. This is the form of 
equality of mixed panial derivatives chosen by Plohr and Sharp in (36). However, 
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direct characteristic analysis of this conservation law, by itself. does not obtain the 
proper characteristic speeds. either. 

In both the Lagrangian and Eulerian frames of reference. the system of conser­
vation laws must be augmented by equations representing equality of mixed second­
order partial derivatives in space. The obvious purpose of these constraints in the 
Lagrangian frame is to guarantee that the deformation gradient is the gradient of 
a vector field. namely the current particle position. In the Eulerian frame, the 
inverse deformation gradient is likewise constrained. The need to impose these 
constraints has been observed by several authors, such as Hanyga in (J 7}. and Plohr 
and Sharp in (36). With these constraints, the equations of motion in first-order 
form are fully and correctly specified. However, the above authors do not consider 
the issue of how to impose these constraints properly in a characteristic analysis. 

Since we are interested in using characteristic information in the development 
of a second-order Godunov method, we shall determine the characteristic speeds 
very carefully. In order to write the equations of motion in conservation form, we 
might prefer equation ( I.S) for the evolution of the inverse deformation gradient, 
while for purposes of the characteristic analysis we shall nnd that ( 1.7) is better. 
The curl condition (1.6) can be used to show that (1.7) and (1.5) are equivalent. 
In this regard, we note that if tbe curl of the inverse deformation gradient is zero 
in the initial data. then it is zero for all time. (The proof of this fact uses the fact 
that the curl of the velocity gradient is zero.) Numerically, it may be necessary to 
enforce this curl condition occasionally during the computation, much as the 
div B condition in magnetohydrodynamics is handled. (In fact, experience with 
numerical methods for magnelohydrodynamics indicates that catastrophic failure 
of the integration can occur jf div B = 0 is not enforced during the timestepping 
procedure.) Another option is to replace the appropriate equations in (5.9) and 
(5.10) with the equations ( 1.7). which are not in conservation form: this necessitates 
some modification to the conservative difference step in the Godunov scheme. The 
proper form of the Eulerian equations of motion for numerical purposes will be 
the subject of a future paper. 

5.1.2. <PQ_Iinnear Form 
lookinS at (5.10), we see that the flux depends on the variables 

Thus the Eulerian frame requires more variables to evaluate the flux than does the 
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Lagrangja~ frame. and even more variables than are conserved in (5.9) and (5.10). 
We can wnte the system for these flux variables in matrix-vector form as follows: 

, 0 0 0 0 0 0 PE 

o JpE 0 0 0 0 0 v 
o 0 PE"'( 0 0 0 0 0 8 
o 0 -hi I 0 0 0 SEt'. 
o 0 -il2 0 J 0 0 aT SE,e2 

o 0 -lil 0 0 J 0 SEe) 
o - F-' 0 0 0 0 1 F-'v 

VJ PEeJ 0 0 0 0 0 PE 
0 IpEvj 0 ~J6'j -16')J -/jlJ 0 v 
0 "'(Pt;'; 'Y'!EVJ 0 0 0 0 a IJ 

(5.11 ) + 0 -I}IJ -~IV) IVj 0 0 0 SEe. 
0 -I_Ill -~2Vj 0 lv, 0 0 ax, SEe} 
0 -Hjj -h1Vj 0 0 I'll) 0 SEe) 
0 0 0 0 0 0 lv, F-'v 

[f~J IIJPf 
:: 0 

0 
0 
0 

where 

bJ --- elSE + PE-_-,-F-t , -T I ( Of) 
PE"'( of ej 

and H,} and h, a~ given in (4. I). Recall that when the derivatives exist we can 
formally identify H., and h, as in (4.2) and (4.3). In order for the system is. I I ) to 
be hyperbolic, we require 

v. PEeT 0 0 0 0 0 

0 lv, 0 -I..!. 0 0 0 
PF.. 

B= 0 bT v. 0 0 0 0 
0 -All 0 IVI 0 0 0 
0 -~21 0 0 Iv. 0 0 
0 -All 0 0 0 Iv. 0 

0 F-IVI 0 -F-I1. 0 0 Iv. PE 
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to real eigenvalues. Here. we have dehned 

A'J H,) - h,bJ. 

By shifting the eigenvalues and deflating, we derive the interesting eigenvalues from 

(5.12) 

Assuming that we can solve (5.1.2) with real nonsingular A. we can solve the ei· 
gen problem for iJ: 

I -PEeTX 0 -PEer X 0 0 0 

0 XA 0 -XA 0 0 0 

0 -bIx I -iiIX 0 0 0 

jj 0 XAlpE 0 XAlpE 0 0 0 

0 A21 X 0 AllX I 0 0 

0 AJ1X 0 AllX 0 I 0 

0 -F- ' X(/VI - A) 0 -F-1 X( /VI + A) 0 0 J 

I PEeYX 0 '-PEeTX 0 0 0 

0 XA 0 -XA 0 0 0 

0 -itTx I -bIX 0 0 0 

0 XA 2
pE 0 XA 2pf. 0 0 0 

0 A11X 0 A,IX 1 0 0 

0 A1IX 0 A},X 0 I 0 

0 - F- ' X(lVI - A) 0 -F- I X(lVI + A) 0 0 I 

VI 0 0 0 0 0 0 

0 IVI - A 0 0 0 0 0 

0 0 VI 0 0 0 0 

x 0 0 0 IVI + A 0 0 0 

0 0 0 0 IVI 0 0 

0 0 0 0 0 IVI 0 

0 0 0 0 0 0 IVI 

We want to And a condition thai is salishcd if and only jf (5.11 ) is hyperbolic. By 
a rotation of the axes, we can rewrite equation (5.12) in the form 

(5.1l ) 

where n are the entries of an arbitrary unit vector. The system (5.11 ) is hyperbolic 
ifando~IY if for any unit vector nf. (5.13) is satisfied with real AE. The characteristic 
speeds are either v TnE or ±AE + v TnE . We shall call AE the Eulerian acousticlensor. 
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Ir the derivatives of the Eulerian stress Sf: exist with respect to F- ' and 6, then we 
can usc (4.2) and (4.3) to rewrite (5.13) in the form 

S.l. Equi~.lence of the l..agrangian and Eulerian Formula'ions 
From the analyses of the preceding two sections, we have seen that the lagrangian 

equations are hyperbolic if and only if for any unit vector "L. the Lagrangian 
acoustic tensor has non-negative real eigenvalues. We also have seen that the Eulerian 
equations are hyperbolic if and only if for any unit vector nE. the Eulerian acoustic 
tensor has non-negative real eigenvalues. If the derivatives of stress with respect to 
deformation gradient and absolute temperature exist, then we can relate the Eulerian 
and Lagrangian acoustic tensors quite easily. Since the lagrangian and Eulerian 
unit normals are related by 

for some scalar JI (see, for example, (27 J or ( I}), we can use the relationship (3.S ) 
between the stress and density in the two frames of reference. the fonnula 

for the derivative of an inverse. and the equation 

for the derivative of the matrix of co-factors, to show that 

ALII2 = AE • 

(Here, we have assumed that aU the required derivatives of Lagrangian and Eulerian 
stress actually exist.) Since the matrices AL and As are scalar multiples of each 
other. they share the same eigenvectors: 

AlX = XAr. • AsX = XAl. 

Thus we obtain the (ollowing relationship between the Lagrangian speeds and the 
Eulerian speeds minus the normal velocity: 

" 
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6. Characteristic Analyses of Specific Material Modell 

In Sections 5.1 and 5.2 we reduced the characteristic analysis of the equations 
of motion to an eigenproblem for a 3 x 3 matrix. In the sections below we shan 
examine this eigenprohlem for a few models of common usage, in order to determine 
whether these models lead to hyperbolic systems of equations. This discussion is 
not intended to be exhaustive of models for solids; instead, we are primarily con­
cerned with determining that some of the common models for plasticity lead to 
hyperbolic systems. We have chosen models that are used to describe elastic-plastic 
solids in practice (such as in the wen-known nnite element codes DYNA2D and 
DYNA3D), in spite of the fact that these models may not obey thermodynamic 
conditions such as the second Jaw. For further discussion oftbe use oftbese models 
in practice see [22). We also note that the analysis in these sections is similar 10 

that by Mandel {31}. who analyzed the effect of plasticity on the characteristic 
speeds.. but ignored the effect of the stress rates. 

6.1. Eluti( Laws in Rate Form 
We shall use the Jaumann stress rate 

(6.1 ) 

where W is the spin tensor 

(6.2) 

Since W is antisymmetric, we can use it to generate an onhogonal matrix O( T), 
defined by the initial value problem 

(6.3) 

As a resUlt. the Jaumann stress rate can be written in the form 

(6.4) 

This relation shows that the Jaumann stress is determined by rotating the rate of 
the unrotated stress, 

(6.5) 
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From (6:4~. we can also see that if the Jaumann stress rate is zero, then the eigen­
values 01 ,\. arc constant. 

For e1astit:.' behavior, we assume that the Jaumann stress rate is related to the 
rate of deformation. defined by 

(6.6) 

through Hooke's law in rate form: 

(6.7) . (2JJ) S._ "" D 2,." + I K -") tf D. 

Here. K is the bulk modulus and,." is (he shear modulus. neither of which is necessarily 
constant. I n ~rder to ~etermine whether ( 5.9 )-( 5.10) lS hyperbolic. we use (6.2). 
(6.4 ) to rewnle (6.7) In the form: 

dSE 
'= [av (av)T] ( 2JJ) av 

d ..:I + a ,." + J K - - tr-
T uX x 3 dX 

+ [£ -(:: r] i SE - SF. [:; - (:.: r] i . 
By a str~i~htforward calculation, we see from this equation and (S.13) that the 
hyperbollclty of the equations of motion is determined b th' I f 
Eulerian acoustic tensor y e cigenva ues 0 the 

where 

K+~ 
II-/~ + II[ nL 

PE PE 

(6.8 ) 

Th~ acoustic tensor is the sum of a symmetric matrix II thaI is derived from Ihe 
strain rate terms, and a nonsymmelric matrix C that comes from the stress rate 
terms .. Even though t~e acoustic tensor is not symmetric, we can perform a careful 
analYSIS to show that It has real positiYe eigenY8lues. 
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We note that nE is an eigenvector of the acoustic tensor. with eigenvalue 
(" + (4", /3)) 1/ P E. We shall use deflation to determine the remaining eigenvalues. 
Let Q be an orthogonal matrix., the Ilrst column of which is nl : 

(6.10) 

As a result, AI: is similar to 

The remaining eigenvalues of the acoustic tensor 8re eigenvalues of the 2 x 2 
symmetric matrix 

and are therefore real; however, the equations of motion are hyperlxllic if and only 
if these eigenvalues are non-negative. The Rayleigh quotient for this matrix. takes 
the form 

where z is an arbitrary unit vector. Note that both nlSI·nl' and z T01 S, 022 lie 
between the smallest and largest eigenvalues of Sf. As a result. the remaining ei­
genvalues of the acoustic tensor lie between ('" - 1I)/pf and (fJ + (f)/pl. where (f 

is the difference between the largest and smallest eigenvalues of S,. If a < p.. then 
the acoustic tensor will have real. positive eigenvalues. and the equations of motion 
will be hyperholie. funhermore. if II < I( + i"" then the acoustic tensor has a full 
set of eige;'veclors, We note in Section 6.2.6 below that II typically lies well below 

the value of IJ. 
This model can be rewritten in the lagrangian frame of reference without any 

signifleant effort, Because of our discussion in Section 5.3 alxlve. we can write 
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Furthermore. it is straightforward to write the constitutive law in a form involving 
Lagrangian variables. 

6.2. Plasticity with Isotropic Wo,k~Hardenlng 

6.2.1. Background on Plastkit, 
When materials are suhjected to sufficient applied forces, the individual particles, 

grains. or chemic-d.1 honds in the material can be dislocated. If the applied forces 
are subsequently removed. the material will relax to a permanently deformed con­
figuration. This permanent deformation is also called plastil'deformation. The 
behavior of the material then becomes a function of the history of its applied loads; 
this phenomenon is called Irr!iI(·r(·sis. We shall discuss some elementary models 
for clastic-I,lastic m.uerials. Our discus,'lion will not incorporate the very interesti ng 
work on plasticity models for finite elastic and plastic deformations: see (16 J. (26]. 
( 28 ). ( 40}. We shall also ignore temperature eWects in this discussion. even though 
it is commonly known that the work done on the material in order to cause plastic 
deformations contributes to an increase in the temperature of the material. (For 
discussion of a model with temperature effects in hyperelastic plasticity see (16).) 
Furthermore. we shall ignore dependence of the stress on the rate of deformation. 
since this will contribute to a diffusive term in the system of diWerential equations 
describing the motion. Finally. we assume that the material is isotropic. even though 
finite plastic deformation will usually introduce anisotropies in the material response; 
see [ 16 J. These arc onen modeled with kinematic work-hardening, through a back~ 
stress; we have not induded these terms in our discussion below in order to simplify 
the exposition. 

6.2.2. F.lastic·Plastic Model 
Our analysis in this section is based lIpon the general discussions of plasticity 

with work-hardening in 113 J and [30}. Note that specific application of our nu­
merical method to thc cap model for plasticity in soils and rocks appears in (44): 
the cap model involves four yield surfaces, two of which depend on the hardening 
parameter. 

We assume initially that there is a yield function ~ depending on the Jaumann 
unrotatcd stress (6.5) and on a work-hardening parameter )(. The purpose of tile 
yield function is 10 place a constraint on the admissible values of stress for a given 
level of hardening. Specifically. for ~ < 0 the material response is assumed to be 
elastic. The male rial response is also elastic if ~ := 0 and the rate of deformation 
leads to a nonpositive rate of change of ~. Otherwise. the material response is 
plastic. For simplidty. we shall assume that the elastic rate of deformation i~ infin­
ilesimal, so that the rale of deformation is the sum of the elastic and plastic rates 
or deformation: 
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(The correct generalization of this equation to finite elastic and plastic dclonnations 
is described in 116).) We also assume that the elastic stress-strai n relationship is 
given by the analogue of(6.7): 

. (2#) S.: "" D''2# + I f{ - 3 tr D". 

Our next goals are to describe the circumstances under which plastic loading occurs 
on the yield surface, and to determine the plastic rates or deformation. 

During elastic response, no additional permanent deformations are introduced. 
Thus, 

DI' = 0 and 
dx . 
dT = 0 during elastic response. 

Elastic response occurs in two ways: if the unrotated stress lies inside the yield 
surface, or if the stress lies on the yield surface and the rate of change of the yield 
function is non-positive. Let us give a mathematical representation of the latter 
condition. If the stress lies on the yield surface. meaning that 4>(S, X) = O. then 
unloading (or neutral loading) occurs, and the material response is elastic. if 

= tr( t s [ U' DU2~ + {« -~ )tf D]) during elastic response. 

Here. we have used the notation 

for the matrix of partial derivatives of the yield function with respect 10 the unrotated 
stress. During plastic loading, the stress lies on the yield surface. and the rates of 
deformation are such that elastic response would move the material state beyond 
the yield surface: 

0< tr( t s[ OT D02# + l( I( - 2; )tf D]) during plastic loading. 

In order to determine the rates of plastic deformation during plastic loading. 
two pieces of information must be specified. First. we must specify the rate of 
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change of the hardening parameter. Generally. this is taken to be a linear funclion 
of the unrotaled rate of plastic deformation: 

Secondly, a flow rule must be prescribed. We shall discuss associated Row rules. 
derived from Drucker's hypothesis, which basically states that useful net energy in 
addition to the elastic energy cannot be extracted from the material and the applied 
forces. Rather than formulate this hypothesis mathematically, let us list some of 
its conclusions. First. the yield surface must be a convex function ofstress. Second, 
the plastic rate of deformation must be normal to the yield surface, pointing out 
of the region of admissible stresses, at points where the latter is continuously dif­
ferentiable. and must lie between adjacent normals at points where the yield surface 
is not continuously diflerentiahlc. Third. the plastic rate of deformation must be a 
linear function of the stress rate. (A simple derivation of these conclusions appears 
in Fung [13 J. For finite strains. the normality condition is not a necessary conse­
quence of Drucker's postulate; see Naghdi and Trapp (33].) 

Now we can derive a formula for the plastic rate of deformation from these 
conclusions of Drucker's hypothesis. At points where q, is continuously differentiable. 
the associated now rule requires that the unrotated rate of plastic deformation 
satisfies 

for some positive scalar a. Thus during plastic loading. 

o d4> 
dT 

We can solve this equation fOf (t to get 

where 
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6.2.3. Acoustic Tensor 
This eq uation allows us to write the stress rate in terms of the r,de of deformation: 

Note that we can use the ordi nary di fferential equation ( 6.9) for the rotation matrix 
fl to rewrite this equation in the form 

dS,. I [ ( iJv)T iJv] [av _ (iJV)T] I _ [iJV ( iJv )T] - + - - - - Sf + SF - - - - - + JJ 
dr 2 iJx iJx' . ax ox 2 iJx iJx 

( 211) iJv [ (2,,)] I + I IC -"3 Ir ~ - O~suT2JJ + J ,,- 3 tr.z.s ~ 

In this way, we find that the acoustic tensor is 

(6.11 ) 

where II and C are given by (6.8)-(6.9), and 

m • O.z.sUT nE2" + tll'( IC - 2; )tr .z.s. 

Again. we must perform some analysis to show that this matrix has real positive 
eigenvalues. 

6.2.4. Analysis of Jlyperbolicity 
The eigen val ues of 1/ are /J / p", /J / P E , and (I( + 41l /3 ) I / p" . Standard est i mates 

from linear algebra (see (15)) can be used to show thai the eigenvalues X, of 
/I - m( 1/ PI' tJ)m T satisfy 

If we can ignore the contribution Cto the acoustic tensor from the stress rate terms, 
then the characteristic speeds for the material undergoing plastic yield cannot be 
larger than the characteristic spt.'Cds during elastic response. We could also use the 
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first inequality to determine a sufficient condition for hyperbolicity; however. we 
shall pcrlurm a ditlcrent analysis to derive a necessary and sufficient condition. 

Note that congruence relations preserve the signature of matrices; in other words, 
two congruent matrices have the same number of positive, zero, and negative ei­
genval ues. Our goal wi II be to use a congruence transformation to develop a necessary 
and sulflcient condition for the positivity of /I - m( J / pEll)m T. Let Q be the 
orthogonal matri" in (6. 10). Then II - m ( 1/ P 1-. fJ) m T is congruent to 

[ 

I( + ~ ] 
1'!!"'+nL--3nl-m-l-mT QII-'12 

P~. PI' PEfJ 

Two of the eigenvalues of this matrix. arc one; the other eigenvalue is positive if 
and only if 

(6.12) 

This gives us a necessary and sulllcient condition for the positivity of the matrilt 
/I - m( 1/ p~.l3)m·r. 

'6.2.5. Von Miscs Yield Surface 
As a spcl:ial case, we consider the von Mises yield surface 

where S' is the unrntatcd stress deviator 

S' .. S _ I tr S 
3 . 

This is a perfectly plastic yield surface for which 

.z..\" '= S' , X E = 0, 
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Condition (6.12) for the positivity of the eigenvalues of 11 - m( 1/ P E In m T becomes 

for aU unit vectors "E' Let us define 

,,+ ~ 
J 

where Q is defined in (6.10). Then the inequality (6.12) is equivalent to 

K+ e 
;SrJS'J = ~ If Sl > eIS2e, - (eTSt',)2 -i = SI]SI} 

«+3 

Alier expanding the sums in this expression and canceling terms, we obtain the 
following necessary and sufficient condition (if we can ignore the contribution C 
o(lhe terms from the stress rate in the acoustic tensor) for real characteristic speeds 
during plastic loading with a von Mises yield surface: 

This inequality will be true if Poisson's ralio, 

is non-negative. For most metals, Poisson's ratio is approximately 0.3, and the 
hyperbolicity of the equations of motion is closer to being established. 

6.2.6. Nons),mmetric Stress Rile Terms 
We have postponed until now the discussion of the effect of the matrix C on 

the eigenvalues of the acoustic tensor (6.11 ) for plastic loading. Since C. defined 
by (6.9), is linear in SE and zero if Sf; is a multiple of a diagonal matrix. it can 
only depend on the deviatoric stress S. The yield function t; typically bounds the 
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deviatoric stress, keeping its norm t~pjcally two orde~ of magnitude smaller than 
the shear modulus IJ.. Thus, (. contributes only a small perturbation to the acoustic 
tensor, and will not destroy hyperbolicity of the equations of motion unless the 
eigenvalues of /I - m( 1/ PI tl)m) are near zero or nearly equal. 

We could try other stress rates that lead to symmetric acoustic tensors, such as 
the Truesdell stress rate, since reasonable thermodynamic assumptions require this 
symmetry. liowcver, these stress rates lead to problems in numerical implemen­
tations, since zero stress rate does not imply constant invariants of stress. We would 
try hyperelastic models. since they do not involve the complications of objective 
stress rates, but they have not been successful in reproducing laboratory data. Our 
choice of models reneets the goal of our research: to study wave propagation in 
models of practical interest. The propagation of waves dominates our model re­
quirements: the models must generate hyperholic systems, so that initial-value 
problems are well posed. Given this caveat, we have shown that the models in this 
paper are acceptable for our numerical work below. 

7. Numerical Method 

Our next step is to describe a numerical method for solving the lagrangian 
equations of motion. The basis of this method is to use the local hyperbolic structure 
of the equations of motion to upstream-center the differencing and to resolve the 
interaction of waves at cell interfaces. We acknowledge that there may be global 
pathologies in the wave structure that the current method may not be designed to 
handle. Our approach is to use this method to examine the structure of finite­
amplitude waves, while proceeding with care due to the limitations o(the numerical 
method. 

We will use a second-order variant of Godunov's method. which is described 
in Colella and Glaz; see (10 J. The reader interested in a survey of Godunov-type 
schemes for hyperbolic systems of conservation laws should read the paper by 
Harten #!I al. (see (18); a recent survey of numerical methods for hyperbolic con­
servation laws ean be found in Yee; see {50 J. 

The second-order Godunov method has been very successful at computing the 
correct entropy-satisfying solutions to problems in gas dynamics, even in the pres­
ence of strong shocks. Lately. the second-order Godunov method has been applied 
to problems outside the realm of gas dynamics. The most notable of these appli­
cations has been petroleum reservoir simulation; see (4), IS]. (42). (43]. This 
application involved considerable additional difficulties not present in gas dynamics, 
but found in solid mechanics. In reservoir simulation. the characteristic speeds are 
not ne<:essarily hyperbolic, and they can be locally linearly degenerate. Furthermore, 
it is possible for the wavespeeds to be discontinuous at points where new Ruid 
phases are formed. Because of the significantly greater complexity of the hyperbolic 
wave structure of the reservoir flow equations. it has been necessary to develop a 
stable and appropriately accurate approximate solution to the Riemann problem 
for general hyperbolic systems; see r 61. The success of the second-order Godunov 
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method on these very complicated problems gives some degree of confidence in 
extending this method to shocks in solids. 

Since our numerical results in this paper will be restricted to one dimension, 
we shall restrict our review of the second·order Godunov method to one dimension, 
as well. The method consists of seven steps: 

I. Characteristic anatysis and time-step estimation; 
2. Monotinized slope computation; 
3. Characteristic tracing; 
4. Aux computation; 
S. Conservative differences; 
6. Rotation update; 
7. Stress uJXlate. 

We shall consider each of these steps in turn. 

7.1. Characteristic Analysis and Time-Step Estimation. 
We compute the wavespeeds using the characteristic analysis applied to the 

non.conservation form (S.) of the Lagrangian equations of motion. These equa­
tions involve derivatives of quantities 

for problems in one dimension. We subscript w by its grid cell index. and superscript 
it by its discrete time level. With respect to these variables, we have shown in 
Section 5.1 how to compute the eigenvectors and eigenvalues of the linearized 
coefficient matrices. The maximum Stable time step for the second-order Godunov 
method on a uniform grid is governed by the Courant-Friedrichs-l.ewy condition 

Here. ~nw. is the largest absolute value of the eigenvalUes ofthe lineari7.cd coefficient 
matrix B. as shown in (5.7). This condition must be satisfied for all the cells in 
the grid. Because the maximum wave speed of the continuum may not be sampled 
well in the discrete calculations, we usually require the left-hand side of this inequality 
to be less than 0.9. 

7.2. Slope Computation 
Our next step is to compute slopes in the flux variables w, to expand these 

slopes in terms of the characteristic directions, and to limit these characteristic 
expansion coefficients to preserve monotonicity. The effect of this is to selectively 
introduce numerical viscosity only in the individual cells and individual charac­
teristic families that are attempting to oscillate. As a result, the amount of numerical 
viscosity added to the computation is ,reatly reduced. 
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We hcgin hy using the eigenvt."Ctors from the characteristic analysis (5.7) to 
compute the vcctors of expansion cociflcienls for the jumps in w: 

(7.1 ) 
I 

w")-
) .::1Q' 

Next. we modify these slopes in order to avoid the introduction of any new extrema 
in the piecewise-linear profile for the characteristic quantities. For the ;~th wave 
family. the slope in the )-lh cell at the k-th time level is given by 

(7.2) 

where {3,} ~ 2. For genuinely nonlinear conservation laws, it is permissible to take 
tj'l = 2. However, if the system of conservation laws possesses local linear degener­
acies. it is sometimes necessary to take {3,} to be smaller; see (6 J. In the examples 
of this paper. we found that tjll 2 was sufficient. However. in other applications 
to solid mechanics (see (44) we have found it useful to compute fl'J as described 
in (2): if diflcrenccs between eigenvalues of the same family in neighboring cells 
indicate thaI the gradient of the characteristic speed has changed sign, then {3 IS 
reduced to I.s. 

Also notc that the characteristic speeds and directions can change abruptly 
when plastic loading begins or ends. These discontinuities in the characteristic 
structure are associated with shocks in the material response. In order to ensure 
thai the computational scheme produces the correct discontinuities. we: introduce 
additional numerical viscosity by setting (3'J = 0 in cells whose neighbors are not 
undergoing the same loading conditions, 

7 . .1. Characteristic TraciAg 
The nCltt step in the second-order Godunov method is to use Ihe piccewise­

linear prolllc described hy (7.1) and (7.2) to approximate K' at the cell edges and 
half-lime level. from Taylor's theorem. the quasilinear form of the equations of 
motion (5.3). and lhe characteristic analysis we have 
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This approximation forms the edge-centcred values of the flul{ variahles by tracing 
the characteristics with positive characteristic speed inlO the j-th cell. and the char­
acteristics with negative characteristic speed into the (j + I )-th cell. In order to use 
only upwind information in constructing the edge-centered slates. we shall take 

(1.3) W;-+ 112:= w: + L X:e,(l1a - ~~l1T)C~,l/l. 
""/'" 0 

In a similar fashion, we trace 

L X:. I t',(l1a + X~/.:.\T)t:7.,. 1/2' 

''',0(0 

Even though these states ignore some of the terms needed to maintain st"Cond­
order accuracy in the Taylor cllpansion. the solution of the Riemann prohlem in 
the next step will recover the accuracy. 

7.4. Flux Computation 
By tracing characteristics from the left and the right. we have used the piecewise­

linear profiles to establish two distinct states at the cell edges. The interaction in 
time of these traced states can be resolved by solving a Riemann problem and 
evaluating the flux at the stationary state in its solution. Unfortunately, the analytic 
solution of the Riemann problems for the material models in this paper are not 
known; further, even if they were known, they would very likely be very complicated 
to evaluate. (See. for example, (25]. (391. (41 J. and (46).) 

Our approach is to approximate the solution of the Riemann problem. We note 
that the second-order Godunov method does not require that the local interactions 
of the waves be handled any more accurately than the underlying discretization 
errors. Our basic construction ofthe solution of the Riemann problem is motivated 
by the results of Wendrotf in {48) and liu in (291. They showed that the left and 
right states in the Riemann problem are connected by a series of curves in state 
space corresponding to each of the characteristic families. It is well known that the 
eigenvectors are tangent to these wave curves for the appropriate families. This 
suggests that we expand the jump between the left and right slates in terms of the 
eigenvectors. In one-dimensional Lagrangian coordinates. two or three of the char· 
acteristic speeds are positive. two or three are negative. and the remainder are zero. 
There are always two linearly independent characteristic directions corresponding 
to the zero wavespeeds; further, these directions are constant (since they are just 
columns of the identity matrix). If plastic yielding generates an additional pair of 
zero characteristic speeds, then there is only one linearly independent characteristic 
direction for this pair, with a corresponding eigenvector deficiency. 

For simplicity. we shall ignore the eigenvector de6ciency and reorder the eigen­
values and matrix X of eigenvectors 
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corresponding to the signs of the characteristic speeds. Next. we decompose the 
jump between the Icft and right slaCes in terms of Ihe eigenvectors from the upwind 
cells by solving for thc cl{pansion coetficients ('J • 1/2 in 

We want to compute the flux at the intermediate state that moves with zero speed. 
Since the information that moves with zero characteristic speed forms a contact 

discontinuity, its characteristic speed and its Rankine-Hugoniot speed should both 
be identical. Thus. it should be equivalent to use the flux evaluated at either 

or 

We shall use the average of the flul( at these two states to compute the approximate 
Oux in our conservative ditTerence scheme: 

In the ease that plastic yielding creates an eigenvector deficiency in one cell 
oordcnng the edge where we are computing the flUll, then we use the existing 
characteristic direction for the dcgener.He lero speed to construct the approximate 
p~ase-space path. For clample, if A, is singular. we decompose the jump wf+ 112 

WI' III as before. and evaluate the flux at w:. 1/2 plus the sum of the parts of the 
approximate phase-space path corresponding to negative characteristic speeds (the 
part of the path corresponding to the degenerate zero speed is ignored). If both 
cells bordering the edge where the nux is being com PUled have eigenvector den· 
ciencies. then we compute the least-squares projection of the jump onto the char­
acteristic directions coming from nonzero wavespeeds, and continue with the flux 
evalualion as before. Because of rounding errors in the computations. the latter 
case is extremely rare. 

7.5. Consenative Difference 
The next step in the second-order Godunov method is to compute the conserved 

quantities at the new lime level. By applying the divergence theortm to the con­
servation law (5.1 )-(5.2) in the time-space box la - Q11 < ~l1a, 0 < T - Tic < l1r. 
and by applying centered quadrature rules for the integrals, we obtain 

(1.5) fl!' 1= tJ. _l1r (G1 + 1/ 1 _ G It + I12 ) 
I J l1a ,+-1/2 }-Ill' 
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Note that the characteristic tracing (1.2 H 7.3) was performed on the quasilinear 
form of the equations (5.3). while the conservative differences use the form (5.1 )­
(5.2). The Quasilinear form incorporated the stress~rate equations directly, with 
the equality of mixed partials ( 1.3) used to replace time derivatives of the defor­
mation gradient. However, the conservation form (5.1 H 5.2) used in the difference 
equation (7.5) gives us new values for the deformation gradient without updating 
the stress. 

7.6. Rotation Update 
For the Jaumann stress rate. we compute the rotation matrix by using the or­

dinary differential equation (6.3). This requires the spin tensor, which in turn 
depends on the velocity gradient. In order to compute the gradient of the ",eloeity. 
we compute the current position vector x at the cen edges and half·time level by 

Here, the velocities were obtained by the solution of the Riemann problems at the 
cell edges. We compute the first column of the velocity gradient by 

the second and third colunms are zero since the motion is one-dimensional. The 
rate of deformation is taken to be the symmetric part D of the velocity gradient. 
and the spin tensor is the antisymmelric part. 

Hughes in (20) and 122] shows how to integrate the ordinary differential equaA 

tion (6.3) for the Jaumann rotation with second-order accuracy in time: 

It is easy to see that n remains orthogonal: 

where the orthogonal matrix Q is defined by 

It is also useful to note that the spin tensor is singular. and its null vector z (which 
provides the axis of rotation for Q) satisfies 

W:+ 1I2b z x b for aU vectors h. 

This allows us to compute the SQuare root of Q for use in evaluating the rotation 
tensor at the half-time level: 
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where 

7.7. Stress Update 
The nnal step in our algorithm is to update the stress at the new time level. For 

an elastic or hyperelastic constitutive law. this requires only a direct evaluation. 
For constitutive laws specified by a stress-rate equation, it is necessary to integrate 
the ordinary differential equation ( 1.2) for the stress. This integration must be 
sufficiently accurate to maintain the global second~order spatial and temporal ac­
curacy of the second~order Godunov method. Also. for plastic loading this ordinary 
differential equation needs to be integrated subject to the yield surface inequality 
¢ ~ O. Because the eFL condition for the conservative difference considers the rate 
of change of the stress, we shall not need to concern ourselves with the stability of 
our stress integration technique for large timesteps. 

Because the constitutive laws are typically specified in terms of the Eulerian 
stress. we typically integrate ( 4.1 ) rather than ( 1.2). In order to compute a second­
order accurate approximation to the stress at the new time level. we use an implicit 
trapezoidal method with a Lagrange multiplier correction for the yield condition; 
see 114). This method lakes the form 

S;" I - Sj _ _ Ir ~ II t I (iiv)1t .. l/l 
A1' e, - HH,.(S}) + H,I(S} ») ax!. e; 

} 

,,"" I 8-+ Hhf(S~) + h,(S7+ I)] 1 A; J + (fI.(S7+ I le,a. 

Here. (1 is a scalar chosen so that the yield condition ¢ = 0 is satisfied exacdy at 
the new time level. Note that the coeffidents Hi)' h,. and (fl. have been evaluated 
at the half·time level by using averages of their values at the full·time levels. Since 
these coeWacients can be nonlinear functions of the stress, the resulting difference 
method defines the stress at the new time level implicitly. 

This does not necessarily mean that a nonlinear iteration is required to compute 
the new stress. Let uS consider this method for a von Mises yield su~face. If D' is 
the deviatoric part of the unrotated rate of deformation. then the rate equation for 
the unrolated stress deviator SI is 

dS' = D'2 _ S' lr(S'D')2Jot 
d1' Jot tt S,2 
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Using the implicit trapezoidal method, we obtain the discretization 

This gives us the equation 

S
,t .. I[ I + liT tr(S;H I Dj"'" "2) 2 A ] 

J "2 tr(S;'+ 1)2 p. - (fur 

Thus. Sj' + I is a scalar multiple of the matrix on the right. This suggests that we 
compute the matrix on the right. then compute the norm of the updated stress and 
scale the stress back to the yield surface. (However, for yield surfaces more com­
plicated than von Mises. we have found it useful to use an implicit midpoint method; 
see [44 ].) 

In order to compute the Eulerian stress at the new time level and cen center 
using the Jaumann stress rate, we must compute the unrolated stress at the old 
time level and the unrotated rate of deformation at the half-time level. The former 
is 

while the latter is 

After we have updated the unrolated stress, we need to rotate it to form the Eulerian 
stress at the new time level: 

We also complete the computation of x at the new time level. 

8. Numerial ResuUs 

We shall present several numerical results to illustrate the analysis of the char· 
acteristic structure for elastic-plastic solids and to demonstrate the success of the 
numerical method. AU of our Canesian examples are similar to, or modifications 
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of. problems due to Wilkins; see (49). This model uses a von Mises yield surface 
to describe aluminum. for which the density. shear modulus. and yield strength 
are given hy 

PI.. = 2700 kg./m.1 

p. = 2,48 X 10 10 pa. 

The pressure is taken to be a function of the strain measure 

1 =~-I' 
PI.. • 

specifically. the pressure is the following function of", in units of pascals: 

p ",(7.3 X 10 10 + "'( 1.72 X 10 11 +!f4 X 10 10». 
From this. we compute the instantaneous bulk modulus 

II: 

In the calculations Ilelow, the Jaumann stress rale was used to describe the deviatoric 
behavior of the material. 

In our fIrst example, shown in Figures I and 2, we examine the results of one 
aluminum plate striking another at a velocity of 200 meters per second. Initially. 
the left plale hits the right plate in the center of the grid. The impact generates two 
waves moving left and two waves moving right. By plotting the variables versus the 
distance from the point of impact divided by the elapsed time. we readily see that 
both waves moving to the right are in the fast wave family. The fastest wave is a 
shock, called the clastic precursor. Because the yield condition creates a discontin­
uous change in the characteristic speeds, the elastic precursor is separated by a 
constant state from the slower !l.hock. the plastic compressional wave. Note that 
the constant state separating these waves shows a discontinuous change in the char­
acteristic speed, corresponding to the choice between during loading and unloading 
for states on the yield surface. In this prohlem, the volumetric strains (measured 
as the logarithm of the determinant of the deformation gradient) are small (less 
than 2%). Note that the numerically chosen characteristic speeds assume a very 
large value in the center ofthe grid. Due to computational errors, these states have 
fallen just inside the yield surface. and have adopted elastic characteristic speeds. 
The results in .... igure I were obtained hy using 500 cells in the grid. Figure 2 shows 
the pressure protile lor calculations using 63, 125.250, and SOO grid cells. 
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In Figures 3 and 4 we show two plates striking at 2000 meters per second. In 
this prohlem, the elastic precursor is very small. However. the volumetric strains 
become quite large; and because the metal is so compressed in the constant state 
around the point of impact. the characteristic speeds reach large values in this 

(' 
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plastic region. The plastic characteristic speed is around 8400 meters per second, 
but most of the cells contain elastic states near the yield surface with characteristic 
speeds around 9100 meters per second. Because of the strong compression, the 
plastic shock is very strong and sclf·steepening; as a result, a Ilrst..order method is 
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perfectly adequate for this problem. In fact, a pure second-order version of Go­
dunov's method produces shocks that are too sharp and oscillate behind the wave. 
We have used slope Ilattcning (see 191) to introduce a linear viscosity in thosc cells 
that are in the midst of strong shocks. rigure 4 shows the results of a grid refinement 
study for this problem. 

In Figures 5 and 6 we show the total stress (first diagonal entry of the Cauchy 
stress tensor) in a one-centimeter wide aluminum plate striking a four-centimeter 
wide plate. The impact velocity in Figure 5 is ROO meters per second, and 2000 
meters per second in Figure 6. Initially. the impact generates an elastic precursor 
and a plastic wave in pairs moving left and right. As the waves moving left bounce 
off the free surface. they become rarefactions moving right and overtake the shocks 
moving to the right. In contrast to the results in [49]. the clastic precUrn)r shock' 
is very well resolved in Figure 5, and there are no noticeahle oscillations hchind 
the slow rarefaction. 
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In FigUfl'S 7 and 8, we impulsively stretched an aluminum plate by giving the 
len half a velocity or 200 meters per second. In this case. elastic precursor and 
plastic waves arc both rarefactions. as is clearly indicated hy the plot of the eigen­
value. Normally, the metal would have heen modeled as reaching failure when the 
pressure rea<:hcd minus one-third the yield strength; however. we suppressed the 
failure model in this calculation. Also note that the constant state between the 
elastic precursor and the plastic wave has a discontinuous change in its characteristic 
speed. due to a change in the direction of loading at a state on the yield surface. 
Figure 8 shows a grid refinement study for this problem. 

In Figure 9 we show the results of shearing an aluminum plate with a transverse 
velocity of 10 meters per second. This generates a relatively large elastic shear wave 
moving at slightly more than 3000 meters per second: the eigenvalue plOlS identify 
this wave as a weak shock. The shearing motion also generales a small compressional 
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wave, moving at more than 6000 meters per second; this wave is also a shock. The 
longitudinal velocity in this wave (Figure 9a) is four orders of magnitude smaller 
than the transverse velocity that initiated the motion, and appears from grid re­
finement studies to be correctly resolved in this figure. Figure 9b shows that the 
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strains are very small. and the maximum rotation in the polar decompos.ition of 
the deformation gradient is also very small. 

In Figure 10 we shear the plate with a transverse velocity of 100 meters per 
second.tn this case, the material yields in the center, and the smallest characteristic 
speed is zero at this point. This corresponds to an eigenvector deficiency in the 
characteristic structure (see Section 5 above). There is a compound fast wave, 
involving a rarefaction and a shock. moving at more than 6000 meters per second. 
This wave generates 10ngitudinaJ velocities that are roughly four orders of magnitude 
smaller than the transverse velocities. There is also an elastic shear wave, moving 
at slightly more than 1000 meters per second. The stationary wave is due to plastic 
yielding, and would normally correspond to failure of the material. Note that the 
material is highly rotated at the cenler, and that the principal strains (the logarithms 
of the eigenvalues of the symmetric matrix in the polar decomposition of the de­
formation gradient) are very larse at the center. 

Our next set of examples involves a spherically symmetric elastic material un­
dergoing infinitesimal displacements. Altbough this problem does not exercise the 
large displacement aspects of our numerical method. nor tbe plasticity models, it 
does generate interesting results for which there are analytic solutions due to Blake; 
see (1]. We have made minor modifications to the second-order Godunov method 
in order to handle the spherical symmetry. The characteristic anaJysis orthe models 
is easily incorporated. but the geometric source terms must be accounted in the 
characteristic tracing step and tbe conservative update. 

Our material has an elastic modulus 

E = 6 X 10 10 pa. 

and a Poisson ratio of 0.2702. This leads to the following bulk and shear moduli: 

/( = 4.35 X 10 10 pa. 

#J = 2.36 X 10 10 pa. 

The material density is 

PL'" 3000 kg/m' . 

At the inner radius of 0.1 meten we impose a constant pressure of 10(> pascals for 
1'>0. 

Figures II and 12 show a comparison between the numerical solution with the 
second-order Godunov method and the analytic solution due to Blake. Blake's 
solution is plotted with a solid line, and the cell-cenlered values of the numerica1 
solution are plotted with + signs. In Figure II we show the profile of the radial 
displacement, velocity. 8, 8 component of the deviatoric stress. and the pressure at 
1.6 X 10-4 seconds. for a 200 cell grid. Note that the peak velocity and pressure 
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are less than the analytic values: also note that the Godunov method is placing 
about live cells in the discontinuity. This is the case because the discontinuity is 
very weak, since the nonlinearilies in the model are not active. (The radial dis. 
placement at the inner radius is six. orders of magnitude smaller than the radial 
position. so the volumetric strains afe truly infinitesimal.) In Figure 12 we show 
the results of a grid refinement study for the pressure. These results show linear 
convergence oflhe peak pressure to its analytic value. due to the errors in capturing 
the discontinuity. Nevertheless. the results at an cell sizes are free of numerical 
oscillation and show convergence of the method to the correct answer. 

~ . 

! 
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Filure 12. Grid refinement study for Blake's problem. 

9. Conclusions 

In this paper we have presented a complete set of equations needed to write the 
equations of motion ror finite derormation of solids in first-order conservation 
rorm, in both the Lagrangian and Eulerian frames of reference. We also examined 
the characteristic structure of these systems of equations in both frames or reference, 
including thermal effects. in order to determine the circumstances under which the 
characteristic speeds are real and to guarantee the correct relationship between the 
two sets of characteristic speeds. We analyzed several models of common usage 
and showed that both elastic and plastic response with these models leads to hy· 
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perbolic systems. under reasonable conditions on the model parameters. We found 
the possihility of coincident wavespecds. eigenvector deficiencies. compound waves 
due to local linear degeneracies. discontinuous change in the characteristic structure 
at yield. and multiple waves in the same characteristic family separated by constant 
states. Finally. we constructed a second-order Godunov method that successfully 
solved a variety of problems in one Lagrangian coordinate dimension. without 
introducing annoying numerical oscillations or algorithmic parameters that require 
fine tuning. Our numerical method was able to resolve global pathologies in the 
wave structure, such as local linear degeneracies and nearly coalescing characteristic 
speeds. using only information about the local wave structure. 

Two of these results are non-.classical. First. we have studied the hyperbolicity 
of the equations or motion using a kinetic equation of state in rate·rorm. Second. 
we have studied the curl condition on the deformation gradient as a constraint 
on the first-order system of conservation laws. This constraint is similar to the 
div 8 :: 0 condition in magneto-hydrodynamics. and must be periodically re-en­
forced in order to avoid prohlems in numerical schemes. 

In forthcoming papers. we shall describe the extension of the second-order Go­
dunov method to problems in multiple spatial dimensions. We have also applied 
the method to more complicated material models; indeed. we have already com­
pleted a numerical implementation of a second-order Godunov method for the 
cap model; see (44). In a parallel effort. we have examined the structure of finite­
amplitude walles in the longitudinal motion of one-dimensional nonlinear solids 
with plastic yielding; see (45). However. the extension of analytic techniques to 
the solution of Riemann problems for systems of more than two equations is. in 
general, very difllcult. 

We acknowledge that there may he global pathologies in the wave structure that 
the current method may not be designed to handle. Our approach is to use this 
method to examine the structure of finite-amplitude waves. while proceeding with 
care due to the limitations of the numerical method. We have, however. observed 
local linear degeneracies. as well as nearly coincident wavespeeds which should 
have corresponding eigenvector deficiencies. These pathological waves are shown 
in Figure 10, and have been captured adequately usinS the method described in 
this paper. 

This work has raised several interesting mathematical questions. For eKample. 
it is not clear that the jumps obtained at discontinuities must be independent of 
the path of integration for the ordinary differential equations describing the kinetic 
equation ofstale. In our calculations thus rar. we have not observed any indications 
of any sensitivities in this regard; if they exist. these phenomena could be activated 
by changes in the eFL timestep selection parameter. It is also unknown if correct 
jumps occur in the limit or vanishing diffusion or dispersion. 

We also note that this work raises some questions about the correct formulation 
of material models. Because of the asymmetry ofthe acoustic tensor for the J3umann 
or Green-Naghdi stress rates. it is possible that complex wavespeeds might be ob­
tained in some circumstances. 

~ , 
I ~ 
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