100 3. A. TRANGENSTEIN AND P. COLELLA

|45) Trangenstcin, J. A., A second order algorithm for the dynamic response of soils, Impact Comp. Sci.
Eng. 2, 1990, pp. 1-39.

(46} Trangenstein, J. A, and Pember, R. B., The Ri problem for longitudinal motion in an elastic-
plastic bar, SIAM ). Sci. Suat. Comput. 12, 1991, 10 sppear.

1471 Truesdell, C., The simplest rate theory of pure elasticity, Comm. Pure Appl. Math, 8, 1953, pp.
123132,

[48) Truesdett, C., and Noli, W., The nonlinear field theories of mechanics, in Handbuch der Physik 3,
Springer-Verlag, 1965.

1491 Wendrofl, B., The Riemann problem for materials with nonconvex ions of state 1: I i
Sflow, 3. Math. Anal. Appl. 38, 1972, pp. 454-466.

[50} Wilkias, M, L., Calculation of elastic-plastic fiow, Meth. Comp. Phys. 3, 1964, pp. 211-263.

[51) Yee, H., Upwind and Symmetric Shock-Capiuring Schemes, NASA Technical Memorandum 89464,
NASA Ames Rescarch Center, 1987.

[82) Zalesak, S. T., Fully multidimensional flux corrected transpor algorithms for fluids, ). Comp. Phys.
31, 1979, p. J38.

Received November 1988.
Revised October 1989,

O

O
f{'l-

A Higher-Order Godunov Method for Modeling Finite
Deformation in Elastic-Plastic Solids
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Lawrence Livermore National Laboratory

Abstract

In this paper we develop a hest-order system of conservation laws for finite deformation in solids.
describe its characteristic structure, and use this analysis to develop a second-order numerical method
for problems involving finite deformation and plasticity. The equations of mass, momentum, and energy
conservation in Lagrangian and Fulernian frames of reference are combined with kinetic equations of
state for the stress and with caloric equations of state for the intermal energy, as well as with auxiliary
equations representing equality of mixed partiaf derivatives of the defc ion gradicnt. Particular
15 paud (o the il of a cur! int on the deformation gradient, so that the charactiensiic speeds
transform properly between the two frames of reft . Next, we ider models in raie-form for
isotropic clastic-plastic matenals with work-hardening. and ine the cire es under which
these models lead 1a hyperboli for the 1ons of motion. In spite of the fact thal these models
violale thermodynamic principles in such a way that the ic tensor b nonsy ic, we
stll find that the characteristic speeds are always real for ¢lastic behavior, and essentially always real for
plastic response. These results aflow us to construct a second-order God hod for the ¢ i
of three-di ional displ in a one-di ional ial viewed in the Lagrangian frame of
reference. We also describe a technique for the approxi lution of Ri probi in order (o
determine numerical fluxes in this algorithm. Finally, we present numerical examples of the results of
the algonthm.

1. Introduction

1.1, Overview

Solids often exhibit nonlinear behavior under sufficient applied forces. Materials
may stiffen or soften as they are compressed, leading to a nonlinear relation between
the material restoring forces and the deformation. This nonlinear deformation is
elastic if the material returns to its original shape when the applied force is removed.
In other cases the deformation is plastic, meaning that permanent dislocations of
the constitutive chemical bonds or particle positions have occurred. Another source
of nonlinear responsc in matcrials is due to the geometry of large deformations.
These nontinear material effects can be important in a varicty of physical problems.
In this paper, we are interested in the dynamic response of nonlinear materials,
especially due to large forces such as earthquakes and explosions.

Our goal is to develop numerical methods for the computation of propagating
discontinuities in nonlinear solids. Since second-order Godunov methods were suc-
cessful when applied to problems involving local linear degeneracies and complicated
global wave structure in petroleum reservoir simulation (see (6], [42], [43]), we
have decided to develop second-order Godunov methods for finite deformation in
elastic-plastic solids. This necessitates some analytical development for solid me-
chanics: the equations of motion must be formulated as a first-order system, and
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the local hyperbolic structure of this system must be determined. We apply this
analysis 1o several material modcls of practical interest, and examine the circum-
stances under which these models lead to hyperbolic systems for the cquations of
motion. This work constitules the first principal result of this paper. The second
principal result is the development of the second-order Godunov method for finite-
deformation in elastic-plastic solids for general constitutive laws, even those given
in rate form. This numerical method then provides a useful tool for beginning a
study of waves in elastic-plastic solids, both in this paper and other papers to follow.

The equations of motion for general continua are denived from laws describing
the conservation of mass, momentum, and energy. In the Lagrangian frame of
reference, these laws take the form

Lo
0= plt
v ST T T
(.1 oS =B—T—V,(SLF )
T
pulw + fTv) = prlet fvivy VI(sLFTv).

ar

Here o is the mass per volume at rest, 7 is time, fis the vector of body forces per
mass, v is the vector of particle velocities, a is the vector Lagraagian spatial coor-
dinates, S is the second Piola-Kirchhoff stress tensor, F = dx/da is the gradient
of the current particle position, w is the radiative heat transfer per mass, and ¢ is
the internal energy per mass. In thtee dimensions, there is one equation for con-
servation of mass, three equations for conservation of momentum, and one more
equation for conservation of energy, for a total of five conservation equations.
However, these equations involve twenty-one unknowns: density, velocity, stress
(which is a symmetric 3 X 3 matrix), deformation gradient F, temperature and
internal energy. In order to close the system, we must specify sixteen additional
relationships among these unknowns, so that the end result is a first-order hyperbolic
sysiem.

Two different types of equations are needed to close the system. The first type
consists of constitutive laws that characterize the material. For example, in an
elastic matenial the stress tensor is related to the deformation gradient by a kinetic
equation of state, Of course, there are many other kinds of constitutive equations
of use in modeling 50lid mechanics. Since our ultimate purpose is 10 identify a
general form for use with our analysis of the equations of motion, we have chosen
the rate-form

dES e, dFe! db
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for our characteristic analysis, since it includes a large class of constitutive models
currently in use. (In Section 4 helow we discuss how other modcls, not given in
rate-form, can be treated with our analysis.) Here, 8 is the absolute temperature
and ¢, is the unit vector in the i-th coordinate direction. Of course, we assume that
the paramelters 11, and h, in this equation satisfy the constraint that this equation
of state is invariant under rotations of the frame of reference. In addition to the
kinetic equation ol state. we also relate the internal energy to the temperature and
possibly the deformation gradient by a caloric equation of state.

Note that because  1.2) is an ordinary differential equation, it allows the siress
10 depend on the history of the deformation gradient and temperature. Because
this evolution equation for stress cannot be written in conservation form, this means
that our system of ¢quations is no, strictly speaking, a system of conservation laws.
As a result, the jumps across discontinuities could in principle be dependent on
the internal structure of the discontinity,

The other type of cquation needed 1o close the system of equations is some
identity relating the deformation gradient to the velocity. In the Lagrangian frame
of reference, this identity takes the form

(L3) rialre

Here are nine equations that can be added 10 the seven equations from the con-
stitutive models to obtain a closed system of Lagrangian equations, with all but the
ordinary differential equations ( {.2) for the constitutive laws in conservation form.
In addition, we assume that the initial-value constraint

(1.4) U, X FF =0

is satishied by the deformation gradient; if this constraint is satisfied initially. then
( 1.3) shows that it is satisfied for all time.

In the Eulerian frame of reference, there is a delicate point regarding the form
of the equality of mixed partials. An identity analogous to (1.3} can be obtained
by the Implicit Function Theorem:

L OF N

ar ax

(1.5)

However, a direct characteristic analysis of the resulting first-order system leads to
characteristic speeds that are not properly analogous to the Lagrangian speeds, and
to spurious eigenvector deficiencies. In a numerical scheme, such anomalies could
have disastrous consequences. These difficulties can be overcome by using another
identity for equality of mixed partials,

(1.6) U, XFT=0,
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in order to rewrite {( 1.5) in the non-conservation form

dE
(-0 Tdr T ax’

The system of partial differential equations involving ( I‘.‘I) and ghe Eulerian form
of (1.1), with the Fulerian form of (1.2) to provide information about partial
derivatives of stress, has characteristic speeds that are properly rv:lat.cd to the La-
grangian speeds. The constraint ({.6) is also an initial ynlue constrzun?. v

In Section $ below, we collect the physical conscrvation laws, constitutive laws,
and auxiliary identities into closed systems of differential equations fo; both frames
of reference. Specifically, we show that the Lagrangian charactenstic speeds are
either zero, or occur in plus/minus pairs corresponding to the square roots of. tI?e
eipenvalues of the 3 X 3 Lagrangian acoustic tensor. The Eulerian characteristic
speeds are related to the Lagrangian speeds by

Ae = nEv + Af Fingll.

An eigenvector deficiency occurs if one of the plus/minus pairs of Ia_grangian char-
acteristic speeds is zero { or, equivalently, if one of the analoggu:s Eu‘lcna_n wavesqceds
is equal to the normal velocity). Furthermore, the characteristic dxrecixoqs for either
of the full sysiems of conservation laws can be easily obtained from the eigenvectors
of the corresponding acoustic tensor. ‘

Once the general analysis of the characteristic siructure of hthc equations of
motion has been established, the next task is (0 apply the analysis 10 spoql’xc con-
stitutive models. We consider three-dimensional finite deformation of isotropic
models using the Jaumann stress rate, and elastic-plastic models with work-hard-
ening. In the elastic case, the acoustic tensor is

A=H+C,

where

1+E

Hu L 4 n al,

PE PE
T T T 1
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Here ng is the direction of propagation in physical space, Sg is the Cauchy strc§s
tensor, and pg is the mass per volume in the current configuration. The symmetric
matrix /{ is positive-definite, with eigenvalues equal 10 the squarcs of the standard
p- and s-wave speeds of isotropic linearly elastic infinitesimal displacement. The
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nonsymmetric matnx C is due 10 the form used by the Jaumann siress rate to
guarantee rotational invariance. In spite of the nonsymmeiry, we show that this
matrix (' is such that the acoustic tensor has real eigenvalues, which are positive
provided thal the difference between the largest and smallest principal stresses is
not too large,

During plastic response, the acoustic tensor 1akes the form

{
A=H-m-m"+ C.
3"

Because this matrix is a rank-one symmetric perturbation of the previous acoustic
tensor, the characteristic speeds during plastic response caanot be larger than those
in clastic response. Our analysis shows that plastic yielding causes a discontinuous
decrease in the charactenistic speeds from those obtained in elastic response, and
as a result it is possible to see more than one wave in the same wave family. It also
appears to be possible to obtain complex characteristic speeds with thesec models if
the yield sirength is sufficiently large; however, the yield strength is generally fairly
low, and as a result we have not yet observed com plex wavespeeds for elastic-plastic
response in metals,

Given the analysis discussed above, we have the analytic information required
to formulate a second-order Godunov method; see {6]. This algorithm is described
in Section 7 below. In this methad, we use the characteristic form of the equations
to compute fluxes, which are differenced conservatively. Second-order accuracy in
smaoth regions is obtained by constructing piecewise linear interpolants as initial
data for the characteristic solution at each time step, and oscillations at disconti-
nuities are suppressed by timiting the characteristic amplitudes of these interpolants.
The ordinary differential equation (1.2) is integrated subject to yield constraints in
order 10 update the stress in a rotationally invariant fashion. In the present work,
we consider three-dimensional displacements in a one-dimensional material; this
aliows us 10 study both compressional and shear waves while simplifying the nu.
merical method for this initial work. We have also limited the method in this paper
to the Lagrangian frame of reference, for two reasons. First, the approximate solution
of the Ricmann problem is less difficult in the Lagrangian frame than in the Eulerian
frame. Second. it is trivial 10 find the initial conditions for integrating the stress-
fate equations along particle paths in the Lagrangian frame.

In the eighth section of the paper we present numerical results to verify the
analysis and the method. The examples involve finite deformation of a nonlinear
elastic-plastic metal undergoing various levels of compression, tension, and shear,
As expected, the Godunov method is able 10 resolve strong shocks without devel-
oping destructive oscillations or excessive smearing of discomtinuities and clipping
of peaks. We observe a variety of nonlinear wave behavior in the various regimes
tested, including compound waves due to local linear degeneracies in the charac-
teristic structure. In compressions we find that the elastic precursor shock and the
plastic shock are both in the same wave family and are separated by a constant
state that has associated with it a discontinuous change in characteristic speed. This
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behavior is due to the fact that states on the yield surface have two charqcleﬁstic
speeds associated with them, depending on whether the material response is elastic
or plastic. In a second set of examples, we compare the numerical results from the
second-order Godunov method to the analytic solution for spherical wave propa-
gation in solids with pressurized inner cavitics. Here the numcricgl resglis do not
show any of the oscillations commonly produced by standard finite difference or
finite element methods, and the time lag between the pressure rise and the peak
response is small.

Even though our numerical method only uses information about the local wave
structure, it is still possible 10 solve problems with complicated global wave structure.
Our numerical results show convergence 10 solutions involving. far example, local
linear degeneracies, partly as a result of our conservative difference scheme and
judicious use of numerical viscosity.

1.2. Previous Analyses _

The charactenistic structure of the equations of motion in elastic solids hasl !?een
studied by a number of authors. Truesdell and Noll in {47] cxalinincd the conditions
for real characteristic speeds in isothermal isotropic elastic solids and related tho;e
conditions to the S-E (strongly elliptic) condition; an analysis of lhermmlastxc
solids can be found in [1]. A number of authors (who were surveyed well in {27])
studied the shock jump conditions in various frames of rcfcrence‘ for gbstrat;t con-
stitutive laws. Cristescu in [11] considered a variety of applications in sohd me-
chanics, from vibrating strings and membranes to solids described in a conservative
Eulerian framework. He examined the jump conditions for shoc:ks. but a\{oxdgd a
discussion of analytical or numerical results for problems involving cpmphcahons
due to coincident characteristic speeds (i.¢., loss of strict hyperbolicity) or to the
existence of extrema of the characteristic speeds along the individual wave curves
(i.e., local linear degeneracies). _ ) .

In recent years, the structure of solutions to problems involving local linear
degeneracies or Joss of strict hyperbolicity has been addfcsscd by several mathe-
maticians. Wendroff (see [48]) constructed the global solution to Rncmann problems
for strictly hyperbolic systems with local linear degeneracies or linearly degenerate
waves, and Liu (see [29]) proved the existence of these solulions: They found ,lhm
the individual wave curves could involve compound waves consisting of rarefacnon‘s
and shocks. Keyfitz and Kranzer (see [25]) examined Cristescu's mo@cl for a vi-
brating string and constructed the solution to the Riemann problem in 'tcrms of

strains and velocities. In this model, the square of onc of the characteristic speeds
is the derivative of the tension with respect 10 the strain, while the olhcf speed
squared is the tension divided by the deformation gradient. Thus it is possllblc l_‘or
the two characteristic speeds to be equal at one or more values of the strain, with
a coincidence of the wave characteristics. As a result, the solution of the Riemann
problem is more complicated than for strictly hyperbolic systems. Recgntly. Tang
and Ting (see [ 41]) examined the charactenstic structure of general nnc-dxmcnSIOQaI
deformation of nonlinear elastic solids. Unlike Keyfitz and Kranzer, Tangand Tll}g
inverted the stress-strain relationship and examined the interaction of waves in
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terms of the components of the stress tensor. They found that the characteristic
speeds can become equat at umbilic points, around which the structure of the
solution of Riemann problems is quite complicated. Unfortunately, the work by
Tang and Ting does not gencralize to many of the most-commonly-used material
maxdels, because the stress-strain relationships for these models are not invertible,
In passing. we note that additional work on the structure of solutions (0 general
hyperbolic 2 X 2 systems is under study by Shearer in | 38]: also. there is work by
Shearer in f 39] and Holden in [19] 10 determine the structure of the solutions 10
systems with finite elliptic regions, such as occur in strain-soficning materials or
matenals with non-convex strain encrgy functionals.

1.3. Other Numerical Methods . o

The standard numerical approach for computing the dymamic response of solids
has been to solve the equations of motion in non-conservation form using centered
differences coupled with additional artificial viscosity. There is a significant dis-
advantage to this approach. In order to guarantee stability of the scheme and con-
vergence to the entropy-satisfying solution of the equations of motion, an appropriate
amount of anificial viscosity must be added. Typically. it is impractical to add
enough anificial viscosity to suppress all of the oscillations. since this smears dis-
continuities too much, These oscillations are a cause of significant concern in prob-
lems involving elastic-plastic solids, since they can icad to unphysical ratcheting of
the material response alternately on and off the yield surface. One could consider
using flux-corrected transport (see {8].{51)) to control the introduction of artificial
viscosity, but this method has been known to produce entropy-violating disconti-
nuities for conservation laws with local linear degeneracies.

Another approach that has been receiving increasing attention by the engineering
and mathematical communities in recent years is streamiine diffusion (see [21).
[23}). This method has provable convergence properties for problems in which a
transformation to “entropy variables" is available, so that the selection of the phys-
ically meaningful solution to the equations of motion is natural. However, the
entropy variables for general constitutive models in solid mechanics are unknown;
as a result, some analytical work still needs 10 be done 10 guarantee the convergence
of this method to the physically realistic solution for problems involving strong
shocks.

2. Notation

The notation of solid mechanics is by no means standardized; as a result, we
have adopted conventions that are particularly well-adapted to the use of linear
algebra in the characteristic analysis below. We shall denote scalars by lower-case
Greek letters, vectors by lower-case Roman letters, and matrices by upper-case
{Greek and Roman) letters. Somewhat in contradiction of this convention, we shall
retain the same lower-case character for the entries of vectors and upper-case letiers
for the entries of matrices. Vectors will always be understood to be “column vectors.”
Also, we shall use summation conventions when convenient.




>

48 J. A. TRANGENSTEIN AND P. COLELLA

As an example, the vector a will be writien

The gradient with respect to a s

aay

da,
9
éa,

We shall assume that the gradient operates only on objects to its right. ™ Row vectors™
are formed by taking the transposc of vectors:

a® =1a), &, o).
Thus the inner product of two vectors a and bis
a'b = ab,.

Note that the order of the vectors @ and b in the inner product does not matter.
However, the divergence of a vector v is written

av,
V‘T”=a—f-‘
d

In this expression, it is crucial that v appear to the right' ot.' Y, ) _ o
Matrices are arrays of vectors. One very useful matrix 1s thg identity matnx. 0
which the columns are the Euclidean axis vectors and the individual entries are the

Kronecker deltas:

3y b i
I={e,enes}= |80 bn bn
Sy by by

The trace of a matrix A is the sum of its diagonal entries:

tr(A) = e] Ae; = Ay
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Another matrix invariant is the determinant, which will be denoted by | 4| or by
det A,

The outer product of two vectors is

ay af, afy abs
abT = | ay |[Bi. Ban B3] = | @By aiB; aafs
ay aBy afy ayfs

In panicular, the matrix of derivatives of a vector x with respect to a vector a4 is

I o 9x
60, aa; daj

H_ gyt | 20 dn 0
du ¢ da, 8a; da,
9y 0xy 9%
60. 601 603

Throughout the remainder of this paper, time will be denoted by the Greek
letter 7. We shall et a denote the Lagrangian coordinate, namely the location of a
panicle in its onginal Cartesian configuration. (Curvilinear coordinate systems,
such as cylindrical and sphericat coordinates, can be treated with the inclusion of
the appropriate metnic coefficients. We have omitted these terms for simplicity.)
Obviously, « is independent of 7. We shall let x denote the Eulerian coordinate,
namely, the current location of the particle. In Lagrangian coordinates, we consider
the current position .x of a panticle to be a function of time r and its original position
a. The notation d/ dr denotes the material {total time } derivative, while 3/8r denotes
the partial time denvative; this distinction is important only in Eulerian coordinates,
where the dependent variables are taken to be functions of r and x. We shall denote
the velocity of a particle by

In Lagrangian coordinates, the velocity is a function of g and 7, while in Eulenian
coordinates it is a function of x and 7. In Lagrangian coordinates, we can also
define the deformation gradient

We assume that the determinant of F is positive, so that the motion has not turned
the matenial inside-out and so that the correspondence between Lagrangian and
Eulertan coordinates is invertible. The inverse of the deformation gradient can, by
application of the inverse mapping thecorem, be considered a function of x and
for applications in Eulerian coordinates.
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3. Conservation Laws

The motion of a solid is determined by the conservation of mass, momentum,
and energy. together with the equations of state for the material. In this section of
the paper, we will state the conscrvation laws without derivation. The interested
reader can find a useful discussion of the derivation of these conservation laws,
together with their expression in conservation form for Eulerian coordinates, in
{11]or{12].

In the equations to follow, we shall denote the mass density by p, the force per
unit mass acting on the body by /, the stress by S, the internal energy per unit mass
by ¢, and the radiative heat transfer per unit mass and unit tme by . (More
generally, fand w might include diffusive terms, such as viscous forces and heat
ditfusion, that depend on the conserved variables.) As appropriate, we will subscript
these variables by E or L to denote the relevant frame of reference.

3.1, Eglerian Forms
Conservation of mass in Eulenan coordinates can be written as the continuity
equation or in conservation form:

d N ,
0=2PE peVTv  continuity equation,

dr
(3.1)

8 .
0= % 4+ VT(vpg) conservation of mass.
T

Conservation of momentum can be written as Newton's second law or in conser-
vation form:

rodvT o .
ft= - o UISe Newton's second law,
E
(3.2)
T apEVT T T .
pef' = 3 + VIi(vpev' — 8;) conservalion of momentum.
T

Finally, conservation of energy can be written as the first law of thermodynamics
or in conservation form:

w = — — ——— first law of thermodynamics,

(33) .
puti s 1) = 2l 1)
T

+ VI (vpele + §vTv] — Sgv) conservation of energy.
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3.2. Lagrangian Forms
Given a system of conservation laws written in the Eulerian frame of reference
.
du’

___+VT T o LT
o LG r,

we can rewrite the system in the Lagrangian frame of reference as follows:

8| FiuT
(3.4) —T+V§(IF1F"[GT—W7])= {FIrT.

These re;u!ts suggest that the Lagrangian density and stress should be related to
the Eulerian density and stress by

= ,-‘*
(35 o1 = pg| Fl

Si

L}

FISeFTHE,

(S, is commonly called the second Piola Kirchhofl i
- stress, and S¢ is commont
called the Cauchy stress.) Then the Lagrangian form of conservation of mass is Y

0= dp, f, .
= I continuity equation,

0 9 -
=5, conservation of mass.

The Lagrangian form of conservation of momentum js

dv“’__i

fT= i o VI(S.FT) Newton's second law,

(3.6)

x_ OpvT
T . i 4
o ST = Fie VI(S.FT) conservation of momentum,

The Lagrangian form of conservation of energy is

lr(S.‘F'T —a—v)
de da

3.7) w = i e first law of thermodynamics,
dp( (e + fvTv)
T _ ]
pilw+ fTv) = e~ VIS Fv) conservation of energy,

v . “CH—
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4. Equations of State

There are two kinds of equations of state \hgt are needed to help to ctosc‘(he
system of conservation laws. The first is called a kinetic equation of state, and rclates
stress 10 other important variables in the motion, such as the deformation gradnclnt
The second is the caloric equation of state, relating the lmcrna_i energy to quanm;:s
such as temperature. Under ideal circumstances, these eq_uauons of state obeyr the
second law of thermodynamics, which requires that the time rate of change of the

ion is non-negative. -
emrgg! 53::?:‘:;;0;::4 sm’vefjl of the literature on constitutive models ff)r elastic
materials, we refer the reader to the books by Malvern (see (30)) anq l—un‘% (see
{131]). We shall attempt to adopt as general an_gpproach to lhc‘ equations ol §1a:c
as possible without sacrificing clarity of exposmon.‘Funt’lcf. since our go?ﬂ_ is to
examine the structure of waves in solids, we shail avoid a dlscu§snon of the di usn‘:(e!
effects present in real matenials. The inclusion of su(}h effects in thg mor}cls woul
tend to obscure the degree to which we are controllmg ll)e numcncal_dsifus:w in
our computational schemes and would not introduce significant complications into

the numerical method. . . ‘ ) o
We assume that the kinetic equation can either be differentiated in time or

expressed directly in the rate form

dSee, _ o pOF'e 5 d6
“n o - W R

Here. # is the absolute temperature. If the derivatives of Sg with respect to F~* and
# exist, then we can formally identify the matnces

_— 8Sge; .,
(4.2) H,=- '_—aF“’e, F,

{note that fl;, is 2 matrix, not the i, j entry of a matrix), and the vectors

i! _aSE?.‘
(4.3) el

The equivalent form for the kinetic equation of state in tt_xe Lagrangian frame is
(1.2), where we formally idemtify (when the derivatives exist)

_ BFSLe.

_aFSe,
(4.4) Hy = r, .

a6

, b
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These forms {1.2) and (4.1} arc broad enough to encompass a very large class of
constitutive models; in panticular, it allows us to treat the models used most often
in the numerical study of plasticity.

Constitutive theory makes very specific demands on the form of kinetic equations
of state, demands that we are not able to display in (1.2) or (4.1). One is that the
constitutive law should be frame-indifferent, so that a time-dependent orthogonal
rotation of the frame of reference induces the correct similarity transformation in
the stress, This requirement forms the basis of simple (elastic ) matenals; see [47].
Another useful notion is that there is a strain energy function, formed with respect
to a homogeneous stress-free natural state, so that its time derivative is equal 10
the trace term in the first law of thermodynamics (3.3) or (3.7). This requirement
forms the basis of hyperelastic materials; see [47). The notion of a hyperelastic
matenial is very useful in developing variational principles that are impontant in
finite element analysis for static problems. Furthermore, this notion can be gen-
eratized to include thermal effects and plasticity; see [40]). Unfortunately, hyper-
elastic models have not been used as extensively in applied computations involving
plasticity. Nevertheless, the constitutive laws for these kinds of elastic models could
easily be differentiated with respect to time and expressed in the forms (1.2) or
(4.1), for the purposes of developing the quasilinear forms in Section 5.

Another useful class of constitutive models is given in rate form. This class of
models is most easily fit to laboratory data, where the data commonly take the
form of measurement of changes in stress due to changes in strain (or vice versa)
in the Fulerian frame of reference. These models rarely satisfy the second law of
thermodynamics, but they are able to reproduce the laboratory data; their propo-
nents suggest that these models are accurate even though they are thermodynam-
ically inconsistent.

Even though the models used for plasticity may violate thermodynamics, for
our purposes they may be acceptable if they satisly two fundamental principles.
One is that they must lead to hyperbolic systems, so that initial value problems are
well-posed, This point is seldom addressed in engineering literature, and serves as
the focal point of the discussion in Section 6 below. Our other requirement is that
the models must be frame-indifferent.

There are other useful properties that stress rates should possess; see | 24]. One
is due to Prager, who suggested in [37] that if the stress rate is zero, then the
eigenvalues of the stress should be constant, Two such stress rates are the Jaumann
stress rate and the Green-Naghdi stress rate. The former is easy to compute (see
[20], 122}]), and its effect on the acoustic tensor, although nonsymmetric, is easy
to determine (see Section 6.1 below). However, the Jaumann stress rate has no
conjugate measure of finite strain (sec {3]), and does not lead to0 a symmetric
stiffness matrix; see {31]. Further, kinematic hardening causes oscillatory response
in the back stress during simple shear; see [ 241, [ 34]). For this and other reasons,
the faumann stress rate has been replaced by the Green-Naghdi stress rate in some
numerical computations. However, the Green-Naghdi stress rate is significantly
more expensive in three-dimensional computations, and its effect on the acoustic
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tensor { also nonsymmetric) is difficult 10 analyze in three dimensions. Mehrabadi
and Nemat-Nasser in | 32] have shown how 10 relate the spin (ensor in the Green-
Naghdi stress rate 1o the spin tensoc for the Jaumann stress rate; this formula is
complicated, but proves that the required derivatives of terms in the acoustic tensor
for the Green-Naghdi stress rate actually exist and can be employed in computations.
Another objective stress rate is the Truesdell stress rate; sce [351, [46]. This stress
rate arises naturally from hyperelastic constitutive laws and leads to a symmetric
acoustic tensor; however, it fails 1o satisfy Prager’s condition of constant eigenvalues
of Cauchy stress for zero stress rate. This is one reason why it is not commonly
used in computations.

Our demands on the caloric equation of state arc less stringent. We assume that
the internal energy is a function of the absolute temperature 8 and the deformation
gradient F, in such a way that the partial derivatives

0 ¥ Oe
I — N c F o=
3 ! dFe,

(4.3) ¥

are available. This class of caloric equations of state includes, for example, ideal
thermoelastic solids.

5. Characteristic Analysis of the Equations of Motion

In this section we shall write the complete systems of equations in first-order
conservation form, and determine the characteristic speeds and characteristic di-
rections of the motion. Our purpose in this section of the paper is not to reproduce
at length the classical results relating the characteristic speeds to the square roots
of the eigenvalues of the acoustic tensors, We have other needs that are not met by
the existing literature.

In order to apply modern numerical techniques for shock-capturing, it is nec-
essary to write the equations of motion in first-order conservation form, and to find
associated quaslinear forms with the cosrect wavespeeds for characteristic tracing.
Our approach to writing the equations in first-order conservation form requires the
use of the deformation gradient as a conserved quantity; however, the constraint
that the deformation gradient be the gradient of a deformation introduces compli-
cations into the selection of the conservation forms and quasilinear forms of the
equations of motion, as we shall see below.

For each frame of reference, we shall follow the same order of presentation.
First, we shall assemble the system of conservation laws in the form appropriate
for a conservative difference method. In addition to this system of conservation
laws we shall write a stress-rate equation, the careful integration of which could
determine the value of stress at various time levels. (Here, we are more concerned
in selecting a form for the stress-rate equation that is instructive for our characteristic
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nnal_ysts. rather than one appropriately structured for frame-indifferent time i
gratxon,) Afterward, we shall rewrite the system of conservation laws in terms'mfe-
:::;](;fs;.lsn:rn:;’wnshlhat are useful in evaluating the flux in the conservation law. '?‘h:
e characteristi i i :

with reacert o “t]ui‘fa:it;:f:::e of the conservation laws will be performed

5.1. Lagrangian Anslysis

5.L.1. Conservstion Form

OUII' Lagrangian‘system of equations consists of four equations, (3.7)-(3.8)
govgrnmg consc(valnon of momentum and energy, as well as nine equ;atic;ns ( 1‘3 )'
also n conservation form, expressing equality of mixed partial derivatives ir‘\ §| ace
and (ime. This allows us to write a system of thirteen conservation laws pace

ul

(5:0) 5, PViGE =1,
where
VoL ~FS, I
(e+ {viv)p ~vTES, pTL
(5.2) Uy = F¢’| N GL = —v‘)‘Y t L= (w +£ V)pl
Fe, —ve] 0
Fe, —ve] 0

In adq;uon to this system of conservation laws, we also have the ordinary differential
equations ( 1.2) for the stress. These ordinary differential equations can be considered
tobe a prescription for evaluating the stress and its derivatives; indeed, if the str

were described by a hyperelastic model, there would be no ne;d o im' te { 16235
in the course of solving the equations of motion. (See {40] for a discug‘:n of l'h)
advamz,gcs of an approach of this form in the context of plasticity.) At any rat :
the u_rdme,ry differential equations ( 1.2 ) do not comribute to issues (\;oncerni’t; 1hc’
c)ass{ﬁ_catlon of } the system of conservation laws. Finally, we note that theg (;
;::r:imor; (1.4)is assumed to hold; this is an initial-valye condition that may n?r::zl
(o be ozn orced occasionally during the time-stepping procedure of a numericat

Note that all of the entries of . and Gy can be considered 1o be functions of

we = | Fe,
[‘482
Fey
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Thus the system of conservation laws (5.1) is hyperbolic if and only if the matrix

0Gym. _ 8Gum (du \™!
auL BwL a“’L

has real eigenvalues for any unit vector n_. Equations (5.1) and (5.2) pose the
proper form for purposes of conserving the appropriate quantities in our numerical
algorithm, and for purposes of bequeathing the correct shock speeds to the com-
putational results, However, another step of the second-order Godunov method
requires the computation of monotonized slopes in characteristic quantities for the
purposes of constructing lefl and right states in a Riemann problem. (See Section
7 below,) We want the resuits of the characteristic tracing step to provide the in-
formation needed to construct physically meaningful fluxes at the cell interfaces.
For this step of the computation, it is useful to write the equations of motion in
non-conservation form. This form of the equations obtains the same characteristic
speeds as in (5.1) and (5.2), but the characteristic directions we shall determine
below are far more simple.

5.1.2. Quasilinear Form
We can use the equality of mixed partials ( 1.3) to write the system of equations
(5.1) and (5.2) in the form

Iop, 0 0 0 O v
0 py 0 0 0 3 ]
0 -h, I 0 O Fw FS,e,
0 "‘h; 010 FSij
0 -h O 0 I FSpe;
(5.3)
0 0 —’6U ",52; "‘]63‘- v fpl
-pvd] 0 O 0 0 3 (] wpyL
+ -H,; O 0 0 0 % FSie, | = 0 ,
~Hy 0 0 0 0 1 { FS e, 0
‘”Hy 0 0 0 0 FSiey 0
where v and ¢, are defined by (4.5), and
' 1
5.4 b= — (] S FT - pyc]).
(5.4) i TPL( 9L pLE) )

Also recall that when the derivatives exist, we can formally identify H, and h; as
in (4.4). In order 1o analyze the hyperbolicity of this system, we assume (without
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Ios§ of gcnerali}y) that the coordinate system has been rotated so that the normal
n is aligned with the first coordinate axis. Then hyperbolicity requires

e 0 0 00| 0 0 -1 0 0
0 p;vy 0 0O -pvd] 0 O 0 O
B=10 -h I 0 O -Hy 0 0 0 O
0 -h, 0 I O -Hy 0 0 0 0
0 —-hy 0 0 ! ~Hy 0 0 0 0
1
0O 0 ~-I— 0 ¢
AL
| T 0o 0o oo
Tl -A, O 1] 00
~-An 0 L] 0 0
—-Ay 0 0 00

to have real eigenvalues. Here we have used the notation

(5.5) A, =H, +hbT.

It is obvious that seven of the eigenvalues of B are zero, with right cigenvectoss
corresponding to the appropriate columns of the identity matrix. This deflation
process can be continued, reducing the problem to finding the eigenvectors and
eigenvalues of A,:

(5.6) ApX = XA,
Afterward, we can assemble the eigenvectors of B:

L

0 == 001 xA 0 -xa 00
' 0 0 00 bfx 1 BfX o0 O
A, 0 0 00 XAy, 0 XA, 0 O
Ay, 0 0 0 0 AuX 0 AyX 1 0
Ay 0 O 00 AyX 0 Ayx 0 I
(5.7)

XA 0 -XA 0 0][-A 0 0 00

TX 1 bIX 0 O 6 0000

= [XA%, 0 XA, 0 0 0 0 A 00

AnX 0 AxX 1 0 0 00 0 0

AyX 0 AyX 0 [ 0 0 0 00
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In summary, if the system is hyperbolic, then there are seven characteristic specds
equal to zero, and six other characteristic speeds occurring in plus/minus pairs.
An eigenvector deficiency occurs if any of the speeds in the plus/minus pairs is
equal to zero.

From this analysis, we can determine the circumstances under which the system
(5.3) is hyperbolic. In order to do so, we shall use the definitions (5.4} and (5.5),
as well as an orthogonal change of coordinates, to rewrite equation (5.6) in the
form

(58) A Xm [H,,n,-n, ;,l— + h, ;l- nbT | X = XA}, (summed over i)
L L

where n; are the entries of an arbitrary unit vector. The equations of motion are
hyperbolic if and only if equation (5.8) holds with a real matrix A, for any unit
vector my . If we can assume that the derivatives of the first Piola-Kirchhoff stress
FS; exist with respect to F and 0, then we can rewnite this result in the form

d¢

3FSum 1, aFSym | e
“oFm L P aFn,

niS FT
Fm py a6 ’70{( B

\
(5.8%) Au\’-[ ”X’Xﬁ.'

This condition for positive eigenvalues is consistent with Truesdeil's notion of a
strongly elliptic function for isothermal isotropic elastic solids (see [47]), and must
be verified for the individual constitutive model and calonc equations of state. In
the discussion to follow, we will call A; the Lagrangian acoustic tensor, even though
the conventional acoustic tensor in the continuum mechanics literature ignores
thermal effects.

Before concluding the Lagrangian characteristic analysis, we note that in some
applications {such as gas dynamics ) the stress is formulated directly in terms of the
internal energy. In other applications, the caloric equation of state may be difficutt
to sotve for temperature. Thus, there are cases in which it may be advantageous to
perform a characteristic analysis using ¢ instead of 8. The form of the characteristic
analysis in such a case can be related to the analysis above by taking y = | and
¢, = 0; that is, no separate characteristic analysis is nceded.

§.2. Eulerian Analysis

Next, we turn to the problem of identifying the characteristic speeds for the
Eulenian formulation of the system of conservation laws. Here, we need to make
sure that we have all of the variables needed to evaluate the flux in our quasilinear
equations. We shall also need to be careful about the correct form of the equality
of mixed partial derivatives, in order for the Eulerian characteristic speeds to be
properly related to the Lagrangian speeds.
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5.2.1. Conservation Form
The Eulerian form of the conservation equations is

ul

(5.9) 2y rGr=4,
where
e pev’
er vppvT — S
P R LT R O T PR an
F e ) Flvel- .
Fle F-ive]
Fles F've]
(5.10)
0
Spe
re (w"'fTv)ﬂE
1]
0
0

Th§ ta§t nine equations in this system come from the equality of mixed partial
chnvaluvcs (1.5}, which has been chosen from several alternatives in order to min-
imize the number of variables needed in the quasilinear form (5.11) below. In
addition to this system of equations, we have the stress-rate equation (4.1).

Note that there is a difficulty with this formulation of the conservation laws in
lh{: Eulerian frame of reference. The stress-rate equation (4.1) uses the equality of
mixed partials in the form (1.7), while the sysiem of conservation laws (5.9) and
{5.10) uses the form (1.5). Further, a direct charactenstic analysis of (5.9) and
(5.10) produccs some charactenistic speeds that are not the proper analogues of the
Lagrangian speeds. 1t would have been tempting to apply the equation (3.4) for
change of frame of reference to the Lagrangian equation (1.3) for equality of mixed
partial derivatives, and derive

NF e/ F!
Y UIIF el FT - FeF'[vT) = 0

for thf: F.ulcrifm form .uf equality of mixed partial derivatives. This is the form of
equality of mixed partial derivatives chosen by Plohr and Sharp in [36]. However,
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direct characteristic analysis of this conservation law, by itself, does not obtain the
proper characteristic speeds, either.

1n both the Lagrangian and Eulerian frames of reference, the system of conser-
vation laws must be augmented by equations representing equality of mixed second-
order partial derivatives in space. The obvious purpose of these consiraints in the
Lagrangian frame is to guarantee that the deformation gradient is the gradient of
a vector field, namely the current particle position. In the Eulerian frame, the
inverse deformation gradient is likewise constrained. The need to impose these
constraints has been observed by several authors, such as Hanyga in [17], and Plohr
and Sharp in {36}, With these constraints, the equations of motion in first-order
form are fully and correctly specified. However, the above authors do not consider
the issue of how to imnpose these constraints properly in a characteristic analysis.

Since we are interested in using charactenstic information in the development
of a second-order Godunov method, we shall determine the characteristic speeds
very carefully. In order to write the equations of motion in conservation form, we
might prefer equation (1.5) for the evolution of the inverse deformation gradient,
whife for purposes of the characteristic analysis we shall find that (1.7) is better.
The curl condition ( 1.6) can be used to show that (1.7) and ( 1.5) are equivalent.
In this regard, we note that if the curl of the inverse deformation gradient is zero
in the initial data, then it is zero for all time. ( The proof of this fact uses the fact
that the curl of the velocity gradient is zero.) Numerically, it may be necessary to
enforce this curl condition occasionally during the computation, much as the
div B condition in magnetohydrodynamics is handled. (In fact, experience with
numerical methods for magnetohydrodynamics indicates that catastrophic failure
of the integration can occur if div B = 0 is not enforced during the timestepping
procedure.) Another option is 1o replace the appropriate equations in (5.9) and
(5.10) with the equations ( 1.7), which are not in conservation form; this necessitates
some modification to the conservative difference step in the Godunov scheme. The
proper form of the Eulerian equations of motion for numerical purposcs will be
the subject of a future paper.

5.2.2.°Quasilinesr Form
Looking at {5.10), we see that the flux depends on ithe variables

Pe
v

[
Wg - Sge I
Sgt’;
SE€3
Fly

Thus the Eulerian frame requires morse variables to evaluate the flux than does the
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lagxangiaq frame, and even more variables than are conserved in (5.9)and (5.10).
We can write the system for these flux variables in matnx-vector form as follows:

| 0 0 0000 PE
0 Jpe 0 0000 v
o 0 b 7 0 0 0| |See
0 0 b 01 00| |Se
0 0 -hy 0 0 71 0 Seey
0O -F' 0 000 71 Fly
v, pee) 0 0 0 0 0 P
0 lpEY,' 0 “l&u "I&v "1531 0 v
0 ‘yp(_sbf 'YQEV/ 0 0 0 0 F) [}
(11 +j0 -H, -hy, N 0 0 0 |— |Se
0 -Hy ~hy, 0 Fy 0 0 | |Se
0 'H;,- —th, 0 0 IV} 0 Sgt;
0 0 0 0 0 Iy F'v
0
Sre
wpe
= [4] .
0
0
0
where

N i Ae
b= -«——(e-’s + pg— F~!

/) Py JOE T PE aF"e; F .
and H, a'nd h{ are given i_n (4:1 ). Recall that when the denvatives exist, we can
formally ldgntﬂ‘y H, and h, as in (4.2) and (4.3). In order for the system (5.11) to
be hyperbolic, we require

[vi pee]l 0 0 0 0 07
o wm o 11 o o o
. PE
B» = 0 bj’ V) [i] 0 0 0
0 -A, 0O N, 0 0 o
0 -Ay 0 0 N 0 0o
0 -A; O 0 0 Iv 0O
- 1
0 F'vy 0 -F'— 9
L ' .13 0 IV'J
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{0 real cigenvalues. Here, we have defined
A,=H, - hb
By shifting the cigenvalues and deflating, we derive the interesting eigenvalues from
(5.12) AuX = XA,

Assuming that we can solve (5.12) with real nonsingular A, we can solve the ci-
genproblem for B:

I ~peel X 0 ~peel X 0 00
0 XA 0 ~XA 000
0 -blXx ! -bTX 000
BloO XAlpe 0 XAZpg 000
0 AnX 0 AnX 10oo
0 Ay X 0 AnX g 10
0 —F'X(Iw—-A) 0 —F'X(Ivy+A) 0 0 [
1 ~peeTX 0 ~peel X 000
0 p)E(j\' 0 ~ XA 000
0 -blX 1 -bTX 000
=|0 XAlpe 0 XA’pe 000
0 AnX ] Ay X I 00
0 Ay X 0 AuX 0110
0 —F'X(vy—A) 0 —F'X(Ilvy+4A) 0 0 ]
vi 0 0 0 o 0 O
0 Iv—A O 0 0 0 0
0 0 v, 0 o 0 o
x10 0 0 IvtA 0 0 O
0 0 0 0 v, 0 O
0 0 0 0 0 v O
0 0 0 0 0 0 Iv

We want to find a condition that is satisfied if and only if (5.11) is hyperbolic. By
a rotation of the axes, we can rewrite equation (5.12) in the form

(5.13) AgX = [l’l,,a,n.-i + b B.T]X = XA}, (summed over i)
PE PE

where n, are the entries of an arbitrary unit vector. The system (5.11)is hypcrbplic
if and only if for any wnit vector #¢ (5.1 3) s satishied with real Ag. The char;ctcnsuc
speeds are either v g of tAg + vTng. We shall call Ag the Eulerian acoustic tensor.

A HIGHER-ORDER GODUNOV METHOD 63

If the derivatives of the Fulerian stress Sy exist with respect to F ™' and 8, then we
can use (4.2) and (4.3) to rewrite (5.13) in the form

aSgnp_ - 1 BSFHE | 3¢
13* Xom—| —EE gt R nlSe + pp e F)
(5 13 ) ALX [BF—!H;; Py 7‘,% HESE DE 6F“n5 ) X

= XA},

5.3. Equivalence of the Lagrangian and Eulerian Formulations

From the analyses of the preceding two sections, we have seen that the Lagrangian
equations are hyperbolic if and only if for any umit vector ng, the Lagrangian
acoustic tensor has non-negative real eigenvalues. We also have seen that the Eulerian
equations are hyperbolic if and only if for any unit vector g, the Eulerian acoustic
tensor has non-negative real eigenvalues. If the derivatives of stress with respect to
deformation gradient and absolute temperature exist, then we can relate the Eulerian
and Lagrangian acoustic tensors quite casily. Since the Lagrangian and Eulerian
unit normals are related by

my= F THE

for some scalar » (see, for example, [27] or {1]), we can use the relationship (3.5)
between the stress and density in the two frames of reference, the formula

L Y |
o - EE

for the derivative of an inverse, and the equation

4TI AL _
aAn

for the derivative of the matrix of co-factors, to show that
ALI’Z = Ag.
{Here, we have assumed that all the required derivatives of Lagrangian and Fulerian

stress actually exist.) Since the matrices 4; and A4g are scalar multiples of each
other, they share the same eigenvectors:

ALX = XAE , A4eX=XAL

Thus we obtain the following refationship between the Lagrangian speeds and the
Eulerian speeds minus the normal velocity:

AL = Ael Firel or Ag = Alm .
L

»
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§. Characteristic Analyses of Specific Material Models

In Sections 5.1 and 5.2 we reduced the characteristic analysis of the equations
of motion t0 an cigenproblem for a 3 X 3 matrix. In the sections below we shall
examine this eigenproblem for a few models of common usage, in order ta determine
whether these models lead to hyperbolic systems of equations. This discussion is
not intended to be exhaustive of models for solids; instead, we are primarily con-
cerned with determining that some of the common models for plasticity lead to
hyperbolic systems. We have chosen models that are used to describe elastic-plastic
solids in practice (such as in the well-known finite element codes DYNA2D and
DYNA3D), in spite of the fact that these models may not obey thermodynamic
conditions such as the second law. For further discussion of the use of these models
in practice see [22). We also note that the analysis in these sections is similar to
that by Mandel {31}, who analyzed the effect of plasticity on the characteristic
speeds, but ignored the effect of the stress rates.

6.1. Elastic Laws in Rate Form
We shall use the Jaumann stress rate

dSE

(6.1) Sg= —L 4+ WIS + SeW,
dr
where W is the spin tensor
1fav [avy?
W=o|—~{—} I.
(62) 2[6)( \ax ]

Since W is antisymmetric, we can use it to generate an orthogonal matrix Q(r),
defined by the initial value problem

(63) M wa , Q=1
dr

As a result, the Jaumann stress rate can be written in the form

TS
(6.4) S = 0 ISR o
dr

This relation shows that the Jaumann stress is determined by rotating the rate of
the unrotated stress,

(6.5) S = (SeQ.
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From (6.4), we can also see that if th i
4). ¢ Jaumann stress rate is zero, th igen-
values of Sy are constant. +{heh the eigen

For clastic behavior, we assume that i
8 the Jaumann stress rate is rel
rate of deformation, defined by ated to the

(6.6) =AMy (avyT
2[ax * a.x,\ :
through Hooke's law in rate form:

(6.7) S, = DZ#+I{x —%ﬂ)[r D.

1}

Here. « is tlhe bulk modulus and u is the shear modulus, neither of which is necessarily
constant. In order to determine whether (5.9 (5.10)is h t
(6.4 10 rewrite (6.7) in the form: ) is hyperbolic, we use (6.2)-

dSe _f[av  favyT 2u\ ov
dr 3x+(5;) ]"*’(“7)“5}

oG-S {E -G

By a straightforward calculation, we see from this equation and (5.13) that the

hyperbolicity of the equations of ion i i
, motion is determined b i
Eulerian acoustic tensor v the elgensaloes of the

As =H+ C,
where
&+ =
(6.8) Heattyp 3,1
PE
(6.9) C = [ InlSeng + Spnent — nenE Se — Sg11/2pe.

Thg acoustic tensor is the sum of a symmetric matrix /f that is derived from the
Strain rate terms, and a nonsymmeltric matrix ¢’ that comes from the stress rate
terms.lEvcn though the acoustic tensor is not symmetric, we can perform a careful
analysis to show that it has real positive cigenvalues,
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We note that ng is an eigenvector of the acoustic tensor, with cigenvalue
(x + (u/3))1/pg. We shall use deflation to determine the remaining eigenvalues.
Let Q be an orthogonal matrix, the first column of which is ny:

(6.10) . 0 =1In. Ol

As 3 result, 4 is similar to
4
K+ ~;~‘ —nESeQ; |

Q’A Q = .
F 0 Hu + niSenel) — 018:0:4 Pt

The remaining eigenvalues of the acoustic tensor are eigenvalues of the 2 X 2
symmeiric matrix

p+ nlSenel
PE

1
I - Q.{SFQI 2_ ’
PE
and are therefore real; however, the equations of motion are hyperbolic if and only
if these eigenvalues are non-negative. The Rayleigh quotient for this matrix takes
the form

|
(n + nlSene — 27Q1SLOh2) 3
P

where z is an arbitrary unit vector. Note that both niSun: and 2701 S Qa2 lic
between the smallest and largest eigenvalues of Sg. As a result, the remaining ci-
genvalues of the acoustic tensor lie between (1 — a)/ps. and (g + ¢)/py, where o
is the difference between the largest and smallest eigenvalues of S;.. If o < . then
the acoustic tensor will have real, positive cigenvalues, and the equations of motion
will be hyperbolic. Furthermore, if ¢ < « + {4, then the acoustic tensor has a full
set of cigc;weclors, We note in Section 6.2.6 below that o typically hies well below
the value of u.

This model can be rewritten in the Lagrangian frame of reference without any
significant effort. Because of our discussion in Section 5.3 above, we can write

x+£

A = ipi LF(IF- )2 + F Ty | FY nlF
L

PL

1
+ (IESon + FSIm NTF ' = F'mn[S, FT— FS FY|FTn|?) E .
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Furthcrmore, it is straightforward to write the constitutive law in a form involving
Lagrangian variables.

6.2. Plasticity with Isotropic Work-Hardening

6.2.1. Background on Plasticity

When materials are subjected to sufficient applied forces, the individual particles,
grains, or chemical bonds in the material can be dislocated, If the applied forces
are subsequently removed, the material will relax to a permanently deformed con-
figuration. This permanent deformation is also called plastic deformation. The
behavior of the material then becomes a function of the history of its applied loads;
this phenomenon is called Aysteresis. We shall discuss some elementary models
for elastic-plastic materials. Our discussion will not incorporate the very interesting
work on plasticity models for finite elastic and plastic deformations: see [16].[26].
[28]. [40]. We shall also ignore temperature effects in this discussion, even though
it is commonly known that the work done on the material in order to cause plastic
deformations contributes to an increase in the temperature of the material. (For
discussion of a model with temperature effects in hyperelastic plasticity sce [16].)
Furthermore, we shall ignore dependence of the stress on the rate of deformation,
since this will contribute to a diffusive term in the system of differential equations
describing the motion. Finally, we assume that the material is isotropic, even though
finite plastic deformation will usually introduce anisotropies in the matenial response;
see [16 ). These are oficn modeled with kinematic work-hardening, through a back-
stress; we have not included these terms in our discussion below in order to simplify
the exposition.

6.2.2. Elastic-Plastic Model

Our analysis in this section is based upon the general discussions of plasticity
with work-hardening in [13] and [30]. Note that specific application of our nu-
merical method 1o the cap model for plasticity in soils and rocks appears in [44];
the cap mode! involves four yield surfaces, two of which depend on the hardening
parameter.

We assume initially that there is a yield function ¢ depending on the Jaumann
unrotated stress (6.5) and on a work-hardening parameter X. The purpose of the
yield function is to place a constraint on the admissible valucs of stress for a given
level of hardening. Specifically, for ¢ < O the material response is assumed to be
elastic. The material response is also elastic if ¢ = 0 and the rate of deformation
leads to a nonpositive rate of change of ¢. Otherwise, the material response is
plastic. For simplicity, we shall assume that the elastic rate of deformation is infin-
itesimal, so that the rate of deformation is the sum of the elastic and plastic rates
of deformation:

D= D"+ D>

-

W B
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(The correct generalization of this equation 10 finite elastic and plastic deformations
is described in [16].) We also assume (hat the elastic stress-strain relationship is
given by the analogue of (6.7):

S = D2+ I(« - %“)lr D*.

Our next goals are to describe the circumstances under which plastic loading occurs
on the yield surface, and to determine the plastic rates ol deformation.

During elastic response, no additional permanent deformations are introduced.
Thus,

D?=0 and -‘f =0 during elastic response.

Elastic response occurs in two ways: if the unsotated stress fies inside the yield
surface, or if the stress lies on the yield surf{ace and the rale of change of the yield
function is non-positive. Let us give a mathematical representation of the latter
condition. If the stress lies on the yield surface, meaning that &(S, x) = 0, then
unloading (or neutral loading) occurs, and the material response is clastic, if

s\ , o dx

d¢
2 — = et
0= "("‘ o)

2 R .
= !r(@s[{ﬂ D2y + l(n - —sﬁ]lr DD during elastic responsc.

Here, we have used the notation

9
(QS)U = 5%
AW

for the matrix of partial derivatives of the yield function with respect to the unrotated
stress. During plastic loading, the stress lics on the yield surface, and the rates of
deformation are such that elastic response would move the material state beyond
the yield surface:

0 < tr(tbg[ﬂTDm;z + l(« - %&)lr DD during plastic loading,

In order to determine the rates of plastic deformation during plastic loading,
two pieces of information must be specified, First, we must specify the rate of
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change of the hardening parameter. Generally, this is taken to be a linear function
of the unrotated rate of plastic deformation:

ax_ (X, 27 DYQ).
dr

Secondly, a flow rule must be prescribed. We shall discuss associated flow rules,
dernived from Drucker's hypothesis, which basically states that useful net energy in
addition to the elastic energy cannot be extracied from the matenial and the applied
forces. Rather than formulate this hypothesis mathematically, let us fist some of
its conclusions. First, the yield surface must be a convex function of stress. Second,
the plastic rate of deformation must be normal to the yield surface, pointing out
of the region of admissible stresses, at points where the latter is continuously dif-
ferentiable, and must lic between adjacent normals at points where the yield surface
is not continuously differentiable. Third, the plastic rate of deformation must be a
linear function of the stress rate. (A simple derivation of these conclusions appears
in Fung [13]. For finite strains, the normality condition is not a necessary conse-
quence of Drucker’s postulate; see Naghdi and Trapp [33].)

Now we can derive a formula for the plastic rate of deformation from these
conclusions of Drucker's hypothesis. At points where ¢ is continuously differentiable,
the associated flow rule requires that the unrotated rate of plastic deformation
satisfies

QTD = dea
for some positive scalar a. Thus during plastic loading,

0= e ‘r(¢5d1)+6x (X Q' D) = lr[\tb\\- Q DﬂZ,u+l(x 3 )trD )

i) 2
+ [ﬁ tr( Xe. ®y) — lr(dﬁ-[&ﬁu + l(x = ?“)tr @S])}a.

We can solve this equation for « to get

{ 2
a= B lf(‘h—[ﬂ'l)!llu + I(« - —;)tr D]) N

where

2u ao
ﬂ - tr(@x[d‘{dp + I(K - ?)lf(@,\') - l"‘x" Xg]) .

»
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6.2.3. Acoustic Tensor
This equation allows us 1o write the stress rate in terms of the rate of deformation:

ds 2
- = + - = D
Qdf Q D2u l(x 3 )ll‘

- [905912;4 + l(x - 27“)[]’ 'Ps] lf[‘bg[(ﬂDﬂZy + I(K — %ﬁ)tr D]) E .

Note that we can use the ordinary differential equation (6.9) for the rotation matrix
Q 10 rewrite this equation in the form

éﬁ‘*_lﬁr_ﬁs.‘.s ﬂ_ﬂTl=.a_v+(.a_v.T
dr 2l\ax) TaxPET % ax \ax) |27 [ax T \ax) M

2uY av T 2;4) t
L. PP AR L PR
+ l(( 3 ]lr ax [ﬂ‘l’s(l 2u + I(x 3 tr & 3

v [av\" 2u\ dv
X J ol — +|— + - Zlhr—1]).
tr(‘h[ﬂ ax (6):) ]Qp l(x 3 )tr 3)(])
In this way, we find that the acoustic tensor is

1
(6.11) Ae=H-m—m" + C,
I2x:]

where I and C are given by (6.8)-(6.9), and

2
mm Qb0 ng2u + ﬂt’(l( - —;)lr [: 8

Again, we must perform some analysis to show (hat this matrix has real positive
eigenvalues.

6.2.4. Analysis of Hyperbolicity

The eigenvalues of 1/ are u/pg. p/pg. and (x + 42/3)1/p¢. Standard estimates
from linear algebra (see {15]) can be used to show that the eigenvalues A, of
H— m(1/pe B)mT satisfy

X+ -
®_m'm 3

saysE=asas
pe  Pef PE Pe

If we can ignore the contribution C to the acoustic tensor from the stress rate terms,
then the characteristic speeds for the material undergoing plastic yield cannot be
larger than the characteristic speeds during elastic response. We could also use the
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first incquality to determine a sufficient condition for hyperbolicity; however, we
shall perform a different analysis to derive a necessary and sufficient condition,
Note that congruence relations preserve the signature of matrices; in other words,
two congruent matrices have the same number of positive, zero, and negative ei-
genvalues. Our goal will be to use a congruence transformation to develop a necessary
and sufficient condition for the positivity of /{ — m(1/p8)m". Let Q be the
orthogonal matrix in (6.10). Then I/ — m(1/py 8)m7 is congruent to

m
«t -
3

”-11201 Ii+n[ n'[l__mLﬁmT Q”-Ilz

143 PE

= 1= H22QUm(1 /0y B)mTQH 12,

Two of the eigenvalucs of this matrix are one; the other eigenvalue is positive if
and only if

R»
| «+ =
1> —m'OH 'O'm = 1 _ 3 . T
P OH'Q'm #p;-,ﬂmo 1—-e +4ne. O™m
«+ =
(6.12) 3
1 l+§
= Tor — (T )2
up B mem = (mne) 4u
K+T

This gives us a necessary and sufficient condition for the positivity of the matrix
H—m(1/p,8)m".

'6.2.5. Von Mises Yield Surface
As a spectal case, we consider the von Mises yield surface

Sy = lir &~ p?,
where S’ is the unrotated stress deviator

s=s-1"3
3

This is a perfectly plastic yield surface for which
‘l’s =9 N XE = 0,

m=QS'm2p . B =2u1r 5 = dpy?,
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Condition (6.12) for the positivity of the eigenvalues of H — m(1/p¢ B)mT becomes

x+‘-‘

ftr 82> nlasWng — (n2QS'Q e )’
[ 3 it

3
for all unit vectors n;. Let us define

S$=0"as'a7Q,

where Q is defined in (6.10). Then the inequality (6.12) is equivalent to

x+§ x +§
15,8, = 4 1ir §t > ] S%, — (e] Se1)? = §,8, - Sk -
x+ -3— x+ “3-

After expanding the sums in this expression and canceling terms, we obtain the
following necessary and sufficient condition (if we can ignore the contribution C
of the terms from the stress rate in the acoustic tensor ) for real characteristic speeds
during plastic loading with a von Mises yield surface:

x
|
w

> 0.

$h+ Sh+ Sh+ S+ St

Y
+
i

This inequality will be true if Poisson’s ratio,

is non-negative. For most metals, Poisson"s ratio is approximately 0.3, and the
hyperbolicity of the equations of motion is closer to being established.

6.2.6. Nonsymmetric Stress Rate Terms

We have postponed until now the discussion of the effect of the matrix C on
the cigenvalues of the acoustic tensor (6.11) for plastic loading. Since C, defined
by (6.9), is linear in Sg and zero if Sg is a multiple of a diagonal matrix, it can
only depend on the deviatoric stress S°. The yield funciion ¢ typically bounds the
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deviatoric stress, keeping its norm typically two orders of magnitude smaller than
the shear modulus u. Thus, C contributes only a small perturbation to the acoustic
tensor, and will not destroy hyperbolicity of the equations of motion unless the
eigenvalues of H ~ m(1/p, #)m’ are near zero or nearly equal.

We could try other stress rates that lead to symmetric acoustic tensors, such as
the Truesdell stress rate, since reasonable thermodynamic assumptions require this
symmetry. However, these stress rates lead 1o problems in numerical implemen-
tations, since zero stress rate does not imply constant invariants of siress. We would
try hyperelastic models. since they do not involve the complications of objective
stress rates, but they have not been successful in reproducing laboratory data. Our
choice of models reflects the goal of our research: 10 study wave propagation in
maodels of practical interest. The propagation of waves dominates our model re-
quirements: the models must generate hyperbolic systems, so that initial-value
problems are well posed. Given this caveat, we have shown that the models in this
paper are acceptable for our numerical work below.

7. Numerical Method

Our next step is to describe a numerical method for solving the Lagrangian
equations of motion. The basis of this method is to use the local hyperbolic structure
of the equations of motion to upstream-center the differencing and to resolve the
interaction of waves at cell interfaces. We acknowledge that there may be global
pathologics in the wave structure that the current method may not be designed 1o
handle. Our approach is to use this method 1o examine the structure of finite-
amplitude waves, while proceeding with care due to the limitations of the numerical
method.

We will use a second-order vanant of Godunov’s method, which is described
in Colella and Glaz; see [10]. The reader interested in a survey of Godunov-type
schemes for hyperbolic systems of conservation laws should read the paper by
Harten ¢1 al. (see [18]); a recent survey of numerical methods for hyperbolic con-
servation laws can be found in Yee; see { 50].

The sccond-order Godunov method has been very successfut at computing the
correct entropy-satisfying solutions to problems in gas dynamics, even in the pres-
ence of strong shocks. Lately, the second-order Godunov method has been applied
to problems outside the realm of gas dynamics. The most notable of these appli-
cations has been petroleum reservoir simulation; see [4], [5]), (42], [43]. This
application involved considerable additional difficulties not present in gas dynamics,
but found in solid mechanics. In reservoir simulation, the characteristic speeds are
not necessarily hyperbolic, and they can be locally linearly degenerate. Furthermore,
it is possible for the wavespeeds to be discontinuous at points where new fluid
phases are formed. Because of the significantly greater complexity of the hyperbolic
wave structure of the reservoir flow equations, it has been necessary to develop a
stable and appropnately accurale approximate solution to the Riemann problem
for general hyperbolic systems; see [6|. The success of the second-order Godunov
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method on these very complicated problems gives some degree of confidence in
extending this method to shocks in solids.

Since our numerical results in this paper will be restricted to one dimension,
we shall restrict our review of the second-order Godunov method to one dimension,
as well. The method consists of seven steps:

. Characteristic analysis and time-step estimation;
. Monotinized slope computation;

. Characteristic tracing;

. Flux computation;

. Conservative differences;

. Rotation update;

. Stress update.

N B N

We shall consider each of these steps in turn.

7.1. Characteristic Analysis and Time-Step Estimation.

We compute the wavespeeds using the characteristic analysis applied to the
non-conservation form (5.3) of the Lagrangian equations of motion. These equa-
tions involve derivatives of quantities

v
w= [}
Seey

for problems in one dimension. We subscript w by its grid cell index, and superscript
it by its discrete time level. With respect 1o these variables, we have shown in
Section 5.1 how to compute the eigenvectors and eigenvalues of the lincarized
coefficient matrices. The maximurmn stable time step for the second-order Godunov
method on a uniform grid is governed by the Courant-Friedrichs-Lewy condition

Ar
Anex v s 1

Here, N is thie largest absolute value of the eigenvalues of the lincarized coefficient
matrix B, as shown in (5.7). This condition must be satisfied for all the cells in
the grid. Because the maximum wave speed of the continuum may not be sampled
well in the discrete calculations, we usually require the left-hand side of this inequality
to be less than 0.9,

7.2. Slope Computation

Our next step is to compute slopes in the flux variables w, to expand these
slopes in terms of the characteristic directions, and to limit these characteristic
expansion cocfficients to preserve monotonicity. The effect of this is to selectively
introduce numerical viscosity only in the individual cells and individual charac-
tenstic families that are attempting to oscillate. As a result, the amount of numerical
viscosity added to the computation is greatly reduced.
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We hegin by using the eigenvectors from the characteristic analysis (5.7) to
compute the vectors of expansion cocflicients for the jumps in w:

XA 0 -XA
Xtml blx 1 BlXx |,
XA, 0 XA,

) 1
(7.1) G =™ (XY Hwh - W,*)K;.

. . 12
crm et )

Next, we modify these stopes in order to avoid the introduction of any new exirema
in the piccewise-linear profile for the characteristic quantities. For the j-th wave
family. the slope in the j-th cell at the k-th time level is given by

(7.2) (‘5258““‘1))"\"“{&;101., vl o el Byleiainlls

where 8, < 2. For genuinely nonlinear conservation laws, it is permissible to take
B, = 2. However, if the system of conservation laws possesses local linear degener-
acies, it is sometimes necessary to take 8, to be smaller; see [6]. In the examples
of this paper, we found that 8, = 2 was sufficient. However, in other applications
to solid mechanics (sce {44]) we have found it useful to compute 8, as described
in [ 2]: if differences between eigenvalues of the same family in neighboring cells
indicate that the gradient of the characienstic speed has changed sign, then g8 is
reduced to 1.5. -

Also note that the characteristic speeds and directions can change abruptly
when plastic loading begins or ends. These discontinuities in the characteristic
structure are associated with shocks in the matenial response. In order to ensure
that the computational scheme produces the correct discontinuities, we introduce
additional numerical viscosity by setting 8, = 0 in cells whose neighbors are not
undergoing the same loading conditions.

1.3, Characteristic Tracing

The next step in the second-order Godunov method is 10 use the piccewise-
lincar profile described by (7.1) and {7.2) to approximate w at the cell edges and
half-time level. From Taylor's theorem, the guasilinear form of the equations of
motion (5.3). and the characteristic analysis we have

(v i\t
wia, + JAa. 7" + A7) = wi + [———) {Aa + (—m) iar
4 / da f or A

= w} + XiJAa ~ A} Ar)chis.

b
\
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This approximation forms the edge-centered values of the flux variables by tracing
the characteristics with positive charactenistic speed into the j-th cell, and the char-
acteristics with negative characteristic speed into the (j + 1)-th cell. In order to use
only upwind information in constructing the edge-centered states, we shall take

(1.3) whp=wh+ 3 Xie(da— MAr)c,.

ry>0
In a similar fashion, we trace

(1.4} wh=wh = T XA elAa+ Nar)eh, .

13,0

Even though these states ignore some of the terms needed to maintain second-
order accuracy in the Taylor expansion. the solution of the Ricmann problem in
the next step will recover the accuracy.

7.4. Flux Computation

By tracing characteristics from the lefi and the right, we have used the piecewise-
lincar profiles to establish two distinct states at the cell edges. The interaction in
time of these traced states can be resolved by solving a Riemann problem and
evaluating the flux at the stationary state in its solution. Unfortunately, the analytic
solution of the Riemann problems for the matenal models in this paper are not
known; further, even if they were known, they would very likely be very complicated
to evaluate. (Sec, for example, [25], [39], [41], and [46].)

Our approach is to approximate the solution of the Ricmann problem. We note
that the second-order Godunov method does not require that the local interactions
of the waves be handled any more accurately than the underlying discretization
errors. Our basic construction of the solution of the Riemann problem is motivated
by the results of Wendroff in [48] and Liu in [29]. They showed that the left and
right states in the Riemann problem are connected by a series of curves in stale
space corresponding to each of the charactenistic families. It is well known that the
eigenvectors are tangent to these wave curves for the appropriate families. This
suggests that we expand the jump between the left and right states in terms of the
eigenvectors. In one-dimensional Lagrangian coordinates, two or three of the char-
acteristic speeds are posilive, two or three are negative, and the remainder are zero.
There are always two linearly independent characteristic directions corresponding
to the zero wavespeeds; further, these directions are constant (since they are just
columns of the identity matrix). I plastic yielding generates an additional pair of
zero characteristic speeds, then there is only one linearly independent characteristic
direction for this pair, with a corresponding eigenvector deficiency.

For simplicity, we shall ignore the eigenvector deficiency and reorder the eigen-
values and matrix X of eigenvectors

XE=1xXHh X0 (xh )
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corresponding 10 the signs of the characlenstic speeds. Next, we decompose the
jump between the left and right states in terms of the eigenvectors from the upwind
cells by solving for the expansion coefficients ¢, , 4,3 in

R ol vhy. 0.0
whin=win =)o+t Xlon+Xh e

We want to compute the flux at the intermediate state that moves with zero speed.

Since the information that moves with zero charactenistic speed forms a contact
discontinuity, its characteristic speed and its Rankine-Hugoniot speed should both
be identical. Thus, it should be equivalent 1o usc the flux evaluated at either

¥ by
Wi YAX) 60
or
R oy
Wik (X,n)’(‘fn/z-

We shall use the average of the flux at these two states to compute the approximate
flux in our conservative diflerence scheme:

1A 3 . -
G = MG wh 4 (XD o) Gulwhion — (X )0 o))

In the case that plastic yielding creates an eigenvector deficiency in one cell
bordering the edge where we are computing the flux, then we use the existing
characteristic direction for the degenerate zero speed to construct the approximate
phase-space path. For example, if A, is singular, we decompose the jump wf, ,,, —
w!, 1 as before, and evaluale the flux at w5 ;2 plus the sum of the parts of the
approximate phase-space path corresponding to negative characteristic speeds (the
part of the path corresponding to the degenerate zero speed is ignored). If both
cells bordering the vdge where the flux is being compuied have eigenvector defi-
ciencies, then we compute the leasi-squares projection of the jump onto the char-
acteristic directions coming from nonzero wavespeeds, and continue with the flux
evaluation as before. Because of rounding errors in the computations, the latter
case is extremcely rare,

7.5. Conservative Difference

The next step in the second-order Godunov method is to compute the conserved
quantities at the new time level. By applying the divergence theorem to the con-
servation law (5.1)-(5.2) in the time-space box |a — 4,/ < }Aa,0 <71~ 7% < Ar,
and by applying centered quadrature rules for the integrals, we obtain

Ar
{1.5) upti= gk — EE[G:::/; - follf;)-

>
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Note that the charactenistic tracing (7.2)-(7.3) was performed on the quasilinear
form of the equations ( 5.3), while the conservative differences use the form (5.1)-
(5.2). The quasilinear form incorporated the stress-rate equations directly, with
the equality of mixed partials (1.3) used to replace time derivatives of the defor-
mation gradient. However, the conservation form (5.1)-(5.2 ) used in the difference
equation (7.5) gives us new values for the deformation gradient without updating
the stress,

7.6. Roiation Update

For the Jaumann stress rate, we compute the rotation matrix by using the or-
dinary differential equation (6.3). This requires the spin tensor, which in turn
depends on the velocity gradient. In order to compute the gradient of the velocity,
we compute the current position vector x at the cell edges and half-time level by

k+ V2 _x ke /2
Xyr1/2 = Xteip ¥ Vi pArdL

Here, the velocities were obtained by the solution of the Riemann problems at the
cell edges. We compute the first column of the velocity gradient by

o Y2 TV
Ax T ke ke 1/20
J

k172
(av) 2 ain k412
Xye72 T X)-in2

the second and third columns are zero since the motion is one-dimensional. The
rate of deformation is taken to be the symmetric part D of the velocity gradient,
and the spin tensor is the antisymmetric part.

Hughes in [20) and | 22] shows how to integrate the ordinary differential equa-
tion (6.3) for the Jaumann rotation with second-order accuracy in time:

Q= QF + WEHQE 4 02,
1t is easy to sze that { remains orthogonal:
af*" = oo}
where the orthogonal matrix Q is defined by
Q= — Wi " an U + WitV ar).

it is also useful to note that the spin tensor is singular, and its null vector z {which
provides the axis of rotation for Q) satisfies

Wh*ilp = 2 x b forall vectors b.

This allows us to compute the square root of Q for use in evaluating the rotation
tensor at the half-time level:
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QIIZ = (, - w}“ Ilzn-lu + W}" l,lznl
where

- jAr
{ I+ V1 +2Tz(1Ar)?

7.7. Stress Update

The final step in our algorithm is to update the stress at the new time level. For
an elastic or hyperelastic constitutive law, this requires only a direct evaluation.
For constitutive laws specified by a stress-rate equation, it is necessary to integrate
the ordinary diffcrential equation {1.2) for the stress. This integration must be
sufficiently accurate to maintain the global second-order spatial and temporal ac-
curacy of the second-order Godunov method. Also, for plastic loading this ordinary
differential equation needs to be integrated subject to the yield surface inequality
¢ = 0. Because the CFL condition for the conservative difference considers the rate
of change of the stress, we shall not need to concern ourselves with the stability of
our stress integration technique for large timesteps.

Because the constitutive taws are typically specified in terms of the Eulerian
stress, we typically integrate (4.1) rather than (1.2). In order to compute a second-
order accurate approximation to the stress at the new time level, we use an implicit
trapezoidal method with a Lagrange multiplier correction for the yield condition;
see [14]. This method takes the form

Shvt o gk . - v \k+in2
2 79, - & x+iyyf OV .
Af [ %[H!l(S])+ H,](S) )](ax’)i €

k+i _ pk
+ §[hASH) + hy(SE*Y) i'*j‘—-—q'- + 8,(55 )0,
7

Here, o is a scalar chosen so that the yield condition ¢ = @ is satisfied exactly at
the new time level, Note that the coefficients I:I,-,, h,, and &, have been evaluated
at the half-time level by using averages of their values at the full-time levels. Since
these coefficients can be nonlinear functions of the stress, the resulting difference
method defines the siress at the new time level implicitly.

This does not necessarily mean that a nonlinear iteration is required to compute
the new stress. Let us consider this method for a von Mises yield sutface. If D’ is
the deviatoric part of the unrotated rate of deformation, then the rate equation for
the unrotated stress deviator 5’ is

s’ _ . Ar(S'D)2
ar DS e
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Using the implicit trapezoidal method, we obtain the discretization

S;h+ | - Slk

= pik+ gy,
At !

“,(sakQID:k*lil) ‘u.(stkbnkilll)
— 47

" 3 tk + 1
- *[S,lk’ ! “_(S:.H» l) B S) |r(Sj")2 2#] + S) g
J

This gives us the equation

, Artr(S} I DF Y
S,“'[l 2w ) 2u — oAr

Ar tr(SEDE 1Yy R
- s;‘[ ) L:'Ts">_ 2“] + D+ 2l
Thus, S'“ ' is a scalar multiple of the matrix on the right. This suggests that we
compute the matrix on the right, then compute the norm of the updated stress and
scale the stress back to the yield surface. (However, for yield surfaces more com-
plicated than von Mises, we have found it useful to use an implicit midpoint method;
see [44]))

In order to compute the Eulerian stress at the new time level and cell center
using the Jaumann stress rate, we must compute the unrotated stress at the old
time leve! and the unrotated rate of deformation at the half-time level. The former
is

Sk =(ahHT(Se)ray,
while the latter is
(Q)&)T(QIIZ)beo ”20”297.

After we have updated the unrotated stress, we need to rotate it to form the Eulenian
steess at the new time level:

(SE):H - Qﬂlh S;u | (n}‘r)rQT_

We also complete the computation of x at the new time level.

8. Numerical Results

We shall present several numerical results to illustrate the analysis of the char-
acteristic structure for elastic-plastic solids and 1o demonstrate the success of the
numerical method. All of our Cartesian examples are similar to, or modifications
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of, problems due to Wilkins; see {49]. This model uses a von Mises yield surface
to describe aluminum, for which the density, shear modulus, and yicld strength
are given by

L = 2700 kg./m.}

¢

2 =248X10"pa

n=172X%X 10*pa

The pressure is taken to be a function of the strain measure

specifically, the pressure is the following function of  in units of pascals:
p=y(.3X 10+ (172X 10" + ¢4 X 10'%)).

From this, we compute the instantaneous bulk modulus

ap |
K=
| F|
In the calculations below, the Jaumann stress rate was used to describe the deviatoric
behavior of the material.

In our first example, shown in Figures | and 2, we examine the results of one
aluminum plate striking another at a velocity of 200 meters per second. Initially,
the left plate hits the right plaic in the center of the grid. The impact generates two
waves moving left and two waves moving right. By plotting the vaniables versus the
distance [rom the point of impact divided by the elapsed time, we readily see that
both waves moving to the right are in the fast wave family. The fastest wave is a
shock, called the elastic precursor. Because the yield condition creates a discontin-
uous change in the characteristic speeds, the elastic precursor is separated by a
constant state from the slower shock, the plastic compressional wave, Note that
the constant state separating these waves shows a discontinuous change in the char-
acteristic speed, corresponding to the choice between during loading and unloading
for states on the yield surface. In this problem, the volumetric strains ( measured
as the loganthm of the determinant of the deformation gradient) are small (less
than 2% ). Note that the numerically chosen characteristic specds assume a very
large value in the center of the grid. Due 10 computational errors, these states have
fallen just inside the vield surface, and have adopted clastic characteristic speeds.
The results in Figure | were obtained by using 500 cells in the gnd. Figure 2 shows
the pressure profile for calculations using 63, 128, 250, and 500 grid cells.

i
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In Figures 3 and 4 we show two plates striking at 2000 meters per second. In
this problem, the elastic precursor is very small. However, the volumetric strains
become quite large; and because the metal is so compressed in the constant state
around the point of impact, the characteristic speeds reach large values in this
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Figure 3. Infinite aluminum plates striking at 2000 m/sec. plastic region. The plastic characteristic speed is around 8400 meters per second,

but most of the cells contain elastic states near the yield surface with characteristic
speeds around 9100 meters per second. Because of the strong compression, the
plastic shock is very strong and sell-steepening; as a result, a first-order method is
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perfectly adequate for this problem. In fact, a pure second-order version of Go-
dunov's method produces shocks that are too sharp and oscillate behind the wave.
We have used slope flattening (see [9]) to introduce a linear viscosity in those cells
that are in the midst of strong shocks. Figure 4 shows the results of a grid refinement
study for this problem.

In Figures 5 and 6 we show the total stress (first diagonal entry of the Cauchy
stress tensor) in a one-centimeter wide aluminum plate striking a four-centimeter
wide plate. The impact velocity in Figure 5 is 800 meters per second, and 2000
meters per second in Figure 6. Initially, the impact generates an elastic precursor
and a plastic wave in pairs moving left and right. As the waves moving left bounce

off the free surface, they become rarefactions moving right and overtake the shocks

moving to the right. In contrast to the results in (49], the clastic precursor shock
is very well resolved in Figure 5, and there are no noticeable oscillations behind

the slow rarefaction.
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In Figures 7 and 8, we impulsively stretiched an aluminum plate by giving the
tefl half a velocity of 200 meters per second. In this case, elastic precursor and
plastic waves arc both rarefactions, as is clearly indicated by the plot of the eigen-
value. Normally, the metal would have been modeled as reaching failure when the
pressure reached minus one-third the yield strength; however, we suppressed the
failure model in this calculation. Also note that the constant state between the
elastic precursor and the plastic wave has a discontinuous change in its characteristic
speed, due to a change in the direction of loading at a state on the yield surface.
Figure 8 shows a gnd refinement study for this problem.

In Figure 9 we show the results of shearing an aluminum plate with a transverse
velocity of 10 meters per second. This generates a relatively large elastic shear wave
moving at slightly more than 3000 meters per second; the eigenvalue plois identify
this wave as a weak shock, The shearing motion also generates a smatl compressional
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wave, moving at more than 6000 meters per second; this wave is also a shock. The
longitudinal velocity in this wave (Figure 9a) is four orders of magnitude smaller
than the transverse velocity that initiated the motion, and appears from grid re-
finement studies to be correctly resolved in this figure, Figure 9b shows that the
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strains are very small, and the maximum rotation in the polar decomposition of
the deformation gradient is also very small.

In Figure 10 we shear the plate with a transverse velocity of 100 meters per
second. In this case, the material yields in the center, and the smallest characteristic
speed is zero at this point. This corresponds to an eigenvector deficiency in the
characteristic structure {see Section 5 above). There is a compound fast wave,
involving a rarefaction and a shock, moving at more than 6000 meters per second.
This wave generates longitudinal velocities that are roughly four orders of magnitude
smaller than the transverse velocities. There is also an elastic shear wave, moving
at shightly more than 3000 meters per second. The stationary wave is due to plastic
yiclding, and would normally correspond 1o failure of the material. Note that the
material is highly rotated at the center, and that the principal strains { the loganthms
of the eigenvalues of the symmetric matrix in the polar decomposition of the de-
formation gradient) are very large at the center.

Our next set of examples involves a spherically symmetric elastic material un-
dergoing infinitesimal displacements. Although this problem does not exercise the
large displacement aspects of our numerical method, nor the plasticity models, it
does generate interesting results for which there are analytic solutions due to Blake;
see [ 7]. We have made minor modifications to the second-order Godunov method
in order to handle the spherical symmetry. The charactenstic analysis of the models
18 easily incorporated, but the geometric source terms must be accounted in the
characteristic tracing step and the conservative update.

Our material has an elastic modulus

E=6X10"pa.
and a Poisson ratio of 0.2702. This leads to the following bulk and shear moduli:
x = 4,35 X 10'° pa,
p =236 X 10" pa.
The material density is
L = 3000 kg/m’.
At the inner radius of 0.1 meters we impose a constant pressure of 10° pascals for

r>0.

Figures 11 and 12 show a comparison between the numerical solution with the
second-order Godunov method and the analytic solution due to Blake, Blake's
solution is plotted with a solid line, and the cell-centered values of the numerical
solution are plotted with + signs. In Figure |{ we show the profile of the radial
displacement, velocity, 8, 8 component of the deviatoric stress, and the pressure at
1.6 X 107* seconds, for a 200 cell grid. Note that the peak velocity and pressure
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Figure 11, Solutions profiles for Blake's problem.

are less than the analytic values: also note that the Godunov method is placing
about five cells in the discontinuity. This is the case because the discontinuity is
very weak, since the nonlinearities in the mode! are not active. ( The radial dis-
placement at the inner radius is six orders of magnitude smaller than the radial
position, so the volumetric strains are truly infinitesimal.) In Figure 12 we show
the results of a grid refinement study for the pressure. These results show linear
convergence of the peak pressure to its analytic value, due to the errors in capturing
!he_discominuily. Nevertheless, the results at all cell sizes are free of numerical
oscillation and show convergence of the method to the correct answer.
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Figure 12. Grid refinement study for Blake's problem.

9, Conclusions

In this paper we have presented a complete set of equations needed 1o write the
equations of motion for finite deformation of solids in first-order conservation
form, in both the Lagrangian and Eulerian frames of reference. We also examined
the characteristic structure of these systems of equations in both frames of reference,
including thermal effects, in order to determine the circumstances under which the
characteristic speeds are real and to guarantee the correct relationship between the
two sets of characteristic speeds. We analyzed several models of common usage
and showed that both elastic and plastic response with these models leads to hy-
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perbolic systems, under reasonable conditions on the model parameters. We found
the possihility of coincident wavespecds. eigenvector deficiencies, compound waves
due to local lincar degeneracies, discontinuous change in the characteristic siructure
at yield, and multiple waves in the same characteristic family separated by constant
states. Finally, we constructed a second-order Godunov method that successfully
solved a variety of problems in onc Lagrangian coordinate dimension, without
introducing annoying numenical oscillations or algorithmic parameters that require
fine tuning. Our numerical method was able 1o resolve global pathologies in the
wave structure, such as local linear degeneracies and nearly coalescing characteristic
speeds, using only information about the local wave structure.

Two of these results are non-classical. First, we have studied the hyperbolicity
of the equations ol motion using a kinetic equation of state in rate-form, Second,
we have studied the curl condition on the deformation gradient as a constraint
on the hirst-order system of conservation laws. This constraint is similar 10 the
div 8 = 0 condition in magneto-hydrodynamics, and must be periodically re-cn-
forced in order to avoid problems in numerical schemes.

In forthcoming papers, we shall describe the extension of the second-order Go-
dunov method to problems in muitiple spatial dimensions. We have also applied
the method 1o more complicated matenal models; indeed, we have already com-
pleted a numerical implementation of a second-order Godunov method for the
cap model; see [44]. In a paraliel effort, we have examined the structure of finite-
amplitude waves in the longitudinal motion of one-dimensional nonlinear solids
with plastic yielding; sce [45). However, the extension of analytic techniques to
the solution of Riemann problems for systems of more than two equations is, in
general, very difficult.

We acknowledge that there may be global pathologies in the wave structure that
the current method may not be designed 10 handle. Qur approach is to use this
method to examine the structure of finite-amplitude waves, while proceeding with
care due to the limitations of the numerical method. We have, however, observed
locat linear degeneracies, as well as nearly coincident wavespeeds which should
have corresponding eigenvector deficiencies. These pathological waves are shown
in Figure 10, and have been captured adequately using the method described in
this paper.

This work has raised several interesting mathematical questions. For example,
it 15 not clear that the jumps obtained at discontinuities must be independent of
the path of integration for the ordinary differential equations describing the kinetic
equation of state. In our calculations thus far, we have not observed any indications
of any sensitivities in this regard, if they exist, these phenomena could be activated
by changes in the CFL timestep selection parameter. [t is also unknown if correct
jumps occur in the limit of vanishing diffusion or dispersion.

We also note that this work raises some questions about the correct formulation
of material models. Because of the asymmetry of the acoustic tensor for the Jaumann
or Green-Naghdi stress rates, it is possible that complex wavespeeds might be ob-
tained in some circumstances.
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