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We present a class of second-order conservative finite difference aigorithms for solving
numerically time-dependent problems for hyperbolic conservation laws in several space
variables. These methods are upwind and multidimensional, in that the numerical fluxes are
obtained by solving the characteristic form of the full multidimensional equations at the zone
edge, and that all fluxes are evaluated and differenced at the same time; in particular, operator
splitting is not used. Correct behavior at discontinuities is obtained by the use of solutions (o
the Riemann problem, and by limiting some of the second-order terms. Numerical results are
presented, which show that the methods described here yield the same high resolution as the
corresponding operator split methods.  © 1990 Academic Press, Inc.

INTRODUCTION

Over the last several years, there has been considerable development of upwind-
type numerical methods for solving nonlinear systems of hyperbolic conservation
laws in several space dimensions. These methods, generally speaking, are all second-
order extensions of Godunov’s first-order method [11]. They incorperate into the
numerical sclutions the nonlinear wave propagation properties of the solution, in
the form of Riemann problems and characteristic equations, leading to algorithms
which are robust and accurate, even in the presence of nonlinear discontinuities.
However, all of the methods currently in use are derived using the characteristic
form of the equations in one space dimension, with most of these aigorithms being
extented to several space dimensions using operator splitting. Nonetheless, these
algorithms, particularly the operator split ones, have been quite successful in resoiving
complex patterns of interacting discontinuities and smooth waves; for furiher
details see [22] and the references cited there.

In this paper, we will consider a class of conservative finite difference algorithms
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for hyperbolic conservation laws in several space variables which do not make use
of operator splitting, for which the multidimensional wave propagation properties
of the solution are used to calculate fluxes. Unsplit schemes are customarily used
in a variety of applications, including petroleum reservoir simulation [18],
ionospheric physics [24], and Lagrangian hydrodynamics [1]. Thus, one of our
goals is to provide algorithms which have the same robustness and resolution as the
existing operator split algorithms, but which have the same unsplit structure as the
existing algorithms used in the applications codes in those areas. In addition, there
are two specific applications for which these methods were developed which are the
subject of our current research. One is as a method to be coupled with a front
tracking method [3], where the tracked front is represented locally by a polygonal
line which divides the cells into two pieces. In each piece, the solution is updated
by a method that is necessarily unsplit, in order to preserve the Rankine-Hugoniot
relations for the tracked front. The second application is as a starting point for the
extension to more than one space dimension of implicit/explicit methods of the type
discussed in [10]. In these methods, propagation along each of the characteristic
families is treated implicitly or explicitly, depending on whether the CFL number
for that characteristic is greater than or less than 1. Thus we require an explicit
algorithm with properties similar to those of the 1-dimensional algorithms in [7],
but which can be hybridized continuously to an implicit algorithm, in order to have
steady states which are independent of At

The design of the algorithm described here is broken into two steps. First, we
specify an algorithm for a linear scalar advection equation, which. in smooth
regions, is second-order accurate, to which a monotonicity condition, related to
those used in [20] for advection algorithms in one dimension, is applied. We then
construct the algorithm for systems by introducing a predictor-corrector formalism
and by replacing various derivatives in the predictor step by finite differences, using
the advection algorithm as guide: upwind differences for advection become
differences of Godunov fluxes for systems, and monotonized central differences for
advection become monotonized central differences with monotonicity constraints
applied to the appropriate choice of transformed variables. Independently of the
present work, van Leer also derived multidimensional upwind methods for hyper-
bolic conservation laws, following a similar line or reasoning; in particular, both
methods lead to the algorithm for advection given in the next section. However, his
extension to systems is rather different from the predictor-corrector formalism
described here; for details, see [21].

A major problem in the program outlined above is the specification of design
criteria which guarantee osciilation-free results, even in the one for a linear scalar
equation. The principal criterion in one space dimension is that the scheme be total
variation diminishing [13]; however, a straightforward generalization of this
criterion to more than one dimension has been shown in [12] to imply that the
scheme is at most first-order accurate for smooth solutions. The approach taken in
the present work is to specify cetain necessary conditions that the scheme must
satisfy, and which are satisfied by the schemes described here. These are:
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(1} For a !-dimensional problem aligned with oae of the grid directions, the
algorithm should reduce to a second-order Godunov method of a type described
in [7].

{2) The second-order scheme without limiting, and the first-order scheme
obtained by imposing the full limiting of the fluxes at all mesh points, should have
as linear difference schemes, the same CFL stability limit on the time step. This
CFL stability limit should be the same as for an operator split scheme, with the
component 1-dimensional algorithm as in [7].

{3) In the case of linear advection, the fully limited scheme should satisfv a
maximum principle.

In the following, we will restrict our attention to the case of two space variables.
Although the formalism developed here carries over to higher dimensions, the
trade-offs between performance and cost change as the number of dimensions grow
a proper evaluation of what those trade-offs are can only be made by numerical
experimentation. In three dimensions, such a study would strain the capabilities of
present computer technology. Some discussion of these considerations will be made
in the final section of this paper.

1. ADVECTION ALGORITHMS

We consider the scalar advection equation in two space variables

ép
ot u-ve
(11

x={x, v}, p=p(x.,1) V=(i,£— = (i r) u, v>0.
ox’ dy)

We want to solve numerically initial value problems for (1.1}, To this end, we
will attempt to construct algorithms which generalize upstream-centered aigorithms
in {207 to two space variables, without replacing the operator approximating the
time evolution of (1.1) by the product of l-dimensional evolution operators. Our
strategy wili be to start from a well-behaved first-order upwind algorithm for
solving {1.1). We add to the evolution operator the terms necessary to make the
algorithm second-order accurate in a way such that thev can be limited. ie.
subtracted off, at discontinuities.

Let 4x, 4y be spatial increments, A7 a time increment. We assume that we know
25 the average of p at time r”:

Here 4, = {(i—3) 4x, (i+ ) AxIx[(j—2) Ay, (j+ 5 4y], o, ,={area of 4, 1
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We wish to calculate p;.f_,-“, the solution to (1.1) at time ¢"*!=¢"+ Az. A natural
algorithm for doing this is to trace backward in time from " -+ 4r the set 4, ;, along
the characteristics of (1.1), to obtain 4. Then pi7 ! is set equal to the average

over 4; ; of the trivial interpolation function p’(x) = p” ;ifxed, ;:

1 "
97.71=T} pllx, yydxdy
Pz

o-iv.l oy

n n n n 1
= (Alpi,j+ Azpi,_;‘—l + A3P1—1,1+A4Pi~1,jv1) - (1.2)

L
L)
where the 4,’s are the areas in each of the four upstream zones swept out by u, as
indicated in Fig. 1.
We can put this scheme in explicit conservation form

n i u At n > n v At et 12 i la
PRt Ax (p"jll"vl_\/_piill,/’zz,j)-fd—y(pf,}rj'f-z*Pi,Ll'ﬂz) (1.3)
n+ 12 __ n uAT n .
p"’;‘*l/z_pi,f_km(pi—i‘j‘pi,j‘
(1.4)
n+1/2 " UAI " o
Picia =Pl it pPl_1— P

24y

One way of deriving the formulas for p7 /7 ., p7 7., is to notice that they are the
averages of P’ over the region swept out by the characteristics through the zone
edges centered, respectively, at (i +3,/) and (i, j+3) (Fig. 2). We shall refer to this
scheme as the corner transport upwind (CTU) scheme, since it takes into account
the effect of information propagating across corners of zones in calculating the flux.
This scheme is first-order accurate. It also satisfies a maximum principle, since
prils .. pittT, are weighted sums, with nonnegative weights, of values of the
solution at time #".

F16. 1. The region over which we average p’ to obtain the new value for p is outlined with a dotied
line. It is obtained by following the integral curves of the vector field u (in this case, straight lines) back-
wards in time by A¢ from points in 4,,.
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FiG. 2. The shaded region is the region over which one averages p’ 10 obtain the CTU flux at the
zone edge bounding that region. It is the set of all points from which characteristics can reach: that zone
edge between time " and " + Az,

One fact that is immediately seen from the formula given above for the floxes
is the difference between the CTU scheme and the conventional donor cell
differencing. In the latter case, p7* |5 =p} , pi 7, =p” . Thus, in this scheme, we
are adding a time-centered correction term to the dono;-cell flux which estimates
the effect on the flux of the gradients in the transverse direction. This corresponds
to subtracting from the donor cell algorithm a term which. to leading order in the
truncation error, is always destabilizing. This is reflected in the differing CFL time
step limits for the two schemes:

udt vAn
CTU: ma}\( i< (15
Ax’ A}‘/
udt var
Donor-cell: — et ——< i, {16y
Ax A‘r\ o

where (1.5) is a sufficient condition, and (1.6) is a necessary condition, as is eas:ly
checked using Fourier analysis.

Omne can view schemes of the form (1.3)~(1.4} as being predictor-correcior
schemes. One regards the calculation of p} 7 . p77 /7, as the predictor step, with
the conservative differencing as the corrector step. Thus, if p7[ /] were to be
calculated in such a way as to have a local truncation error of O Az”) in smoo*h
regions, then the scheme would be second-order accurate. To obtain such an

estimate for p7!7 one must have
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The only terms in (1.7) missing for the CTU flux (1.4) are the ones involving 2p/dx.
Thus, we add that term to p”*!? . to obtain a second-order flux:

i+ 1,25
n n Ax AN A%p,; vdr
pI:1122j pij <7'—H“‘2"‘) ij Z‘Av(pz_/‘pll—l) (18)

Here 4%p; ;/Ax should be a difference approximation to (@p/0x) (1 4x. jay)» and 4%p
should also be limited to suppress oscillations at discontinuities. The simplest choice
is a central difference approximation to (ép/dx), with the 1-dimensional limiter
given in [207:

(A p)z/”‘mln( |p1+1j P,_1,| zlpz+1J pt_]l ‘)ipl_j—pl—ljl)
xsgn(py, ,—Pi_y ) if (pr'+l.j——pi.j)(pz'.j——piwl,,/‘)>0;
=0 otherwise. (L.9)

Similarly, we define

Ay At (A~"p)i4j At
Pl (pl]”pl-lj)

n+1:2 "
o ————
plj+17 pz,_/ <2 2 v A_}' ZAX

where 4%p is a monotonized central difference formula, such as the one given by
(1.9) with the roles of i and j reversed. Because of the nonlinear switch in the defini-
tion of 4*p, 4*p, one cannot perform a formal error analysis on this algorithm.
However, in smooth regions, one expects A*p, 4%p to be given by the central dif-
ference operators (4%p);;=4pre1;—Pi-1;)h (4°0),=Hpie1— pe,— ). In this
case, one can perform the linear error analysis and find that the scheme is second-
order accurate. We have also calculated the amplification factor and evaluated it
numerically ; we have found that, as long as the time step satisfies (1.5), the second-
order algorithm does not amplify any Fourier modes.

There is not a great deal one can say about the monotonicity properties of this
algorithm, save that, when the slopes are fully limited, i.e., 4*p = 4*p =0, it reduces
to the first-order CTU scheme described above. In order to have this property, it
is necessary to treat the spatial derivatives in the predictor step in a non-symmetric
way: the derivatives in the direction tangent to the zone edge are approximated by
upwind differences, and are not subject to monotonicity constraints, while the
derivatives in the direction normal to the zone edge are approximated by
monotonized central differences. For linear advection of a discontinuity oblique to
the grid, the algorithm appears to produce monotone results.

A different approach to the one taken here, more in line with the geometric
constructions in [20], would be to construct piecewise linear interpoiants of p,
suitably monotonized, and to integrate over surfaces swept out by the characteritics
to obtain fluxes, similar to what was done to obtain the flux form (1.4) for the CTU
scheme. We have not done so here: for a development along such lines, see [21].
However, for strongly nonlinear problems, we find that a somewhat more elaborate
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treatment of the transverse derivatives than simply using first-order upwind
differencing will be required, leading to an algorithm which is intermediate in
complexity. This algorithm will be discussed in the next section.

2. SySTEMS OF CONSERVATION LAaws

In this section, we will consider algorithms for solving numerically the initiaj
value problem

al
—+V.F=90
ot

Ux,)=U:R*x[0, T] - RY
F — (F_r‘ F\) e R.l[ X RM’

[

U(x.0)= Uglx)

For each ne R* we define the projected equations (along n) to be the {-dimensicnal
svstem of conservation laws

ct  OF"
-

it =0 Flti=nFO) (221

We say that the system (2.1) is hyperbolic if, for every n the projected equations

——— -

F1G. 3. Characteristic surfaces in two space dimensions. [ is a curve in the spatial plane with normai
. - fial ;o £ ol ; : . N
vector field n. and $” is one of the Af characteristic surfaces in space-time passing throvgh 1
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(2.2) are hyperbolic, i.e., that the linearized coefficient matrix V, F™ = A" has M real
eigenvalues A" < --- < 4™* corresponding to M linearly independent left and right
eigenvectors (/™" r™"), v=1,.., M. We also have 4”=n-A, where A= (4%, 4%),
A*=V_ F* A'=V/ F"' The left and right eigenvectors can be chosen so as to be
biorthonormal, ie. /™*-y™"'=§, ., so that the expansion of a vector weR"Y in
terms of the r™ s is given by w=3 _, ™™, with a™" =/["" .,

Our algorithm for the calculation of conservative fluxes is motivated in part by
a version of the multidimensional theory of characteristics, which we review briefly
here; for a more extensive discussion, see [8, 16]. If £ is a curve in the plane
{(x,t):t=1,}, then there exist surfaces S, .., S called characteristic surfaces,
passing through 7, such that the normal to S” at a point (x, ) is of the form
(n, —A™"), where A™" is the vth eigenvalue of the projected equations in the
direction of the unit vector n (see Fig. 3). The significance of these surfaces is that
along each of these surfaces, a continuous, piecewise C' solution to (2.1) satisfies
the following interior partial differential relation:

o= (Ui vu)
ot

o [ou
:/"4.(5_;_ (n-A)n-VU) +(t-A)(t-VU)>

:[n-\'.(é;_(t]+ l““'n-VU+(t-A)(l-VU)>, (2.3)

where t is a unit vector orthogonal to n in the plane. Since (A™’n, 1) and (t, 0) are
tangent to S°, then (2.3) contains only derivatives in directions tangent to S*. In
particular, if we define d/do* to be differentiation in the direction of the vector field
(A™"m, 1), then (2.3} becomes

dUu

do

i.e., we obtain the ordinary differential relation from the theory of characteristics in
one dimension for the system projected in the n direction, with the derivatives in the

t direction acting as source terms.
Finally, we assume that the Riemann problem for the projected system (2.2) is
well posed for all ne R?, ie., that the initial value problem for (2.2) given by

Uy, 0)=U, for x<O
=Upg for x>0

has a unique solution with appropriate entropy conditions, for any choice of U,,
U, for which (2.2) is hyperbolic. This solution is a function only of the similarity
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variable y/1: throughout this paper, when we require the solution to a Riemann
problem, it will be at the point z/r=0.
We assume, as in the scalar case, that we know U”

» , the average of the solution
over 4, , the zone centered at (i Ax, j 4y}):

“yo

1 +
Ur.=— J' U(x, 1"} dx.
T 05Y4,,

We want to extend the algorithm described in the previous section to calculate
urr ! The difficulty here is that the different modes of wave propagation can carry
gradient information from different sides of the zone edge where the flux is tc be
evaluated. We solve this problem by using predictor calculations similar to {1.8) to
calculate two states at a zone edge, representing the propagation of signals coming
from the left and the right of the zone edge. We then obtain a single value for the
flux by solving a Riemann problem given the two states, with the jump assumec (o
be paralle! to the zone edge.

The algorithm can be broken up into the following four steps:

(1} the calculation of monotonized central difference approximations tc

AU _3U AU U .

/ 1 A
4x ax (idx, j4y) A,’ C) (rax. 4

(2) the construction of time-centered left and right states at the zone
edges: U7/\5, . UiS'T, p at ((i+3)dx,j4y), and U 7)0, . Ul 0, at
(1 dx, (j+3) 4r);

{3) the solution of the Riemann problem at the zone edges for the projected
equations along the normal to that zone edge, given the left and right states com-

puted in (2}, to obtain U"} L2 UM+ 12,

P12 Y1

=Fx(L7u+ I ),

{4) the conservative differencing of the fluxes F7 Nt

t+ 1,2,
. — ¥ +1.2 : L.
] N F (U;ij-l-l,'z} to obtain U:lj :

LA . ar
U?;rl= Uif,r+Z;(F;"—|;2.j_ f+1:2.;)+;;(F:)‘,-~1 Z_F.ﬁ)1+i'2)'
We will describe the details of only the calculation of £}, |, ;; the other fluxes

are calculated along the same lines, interchanging the roles of 7 and /. x and .
The calculation of slopes follows the pattern seen in the scalar case: we use cen-
tral difference to approximate the spatial derivatives of I/ and constrain them using
a l-dimeasional monotonicity algorithm. In imposing monotonicity constraints,
there are two strategies which have been used successfully in one dimension. The
first is to perform a nonlinear change of variables such that the new dependent
variables are the Riemann invariants, ie., a set of variables {¢'. ... »™}7 such tha*

!".V, v =4, and interpolate those variables componentwise using monotonized
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interpolation such as the one given for the scalar case in the previous section. This
procedure can be done only for special systems, since such a set of Riemann
invariants does not, in general, exist when M > 2. A variation on this procedure is
done for Euler's equations for compressible flow, where the primitive variables are
interpolated; this is discussed in Section4. The second approach, due to
Harten [14], is to expand the central difference approximation to the spatial
dertvatives in terms of the right eigenvectors of the coefficient matrix of the
linearized equation and constrain the amplitudes in that expansion. Since the latter
procedure is well defined for general systems of conservation laws, we will describe
it here.
To calculate (4*U/); ; we define the expansions,

Uy, Ui l.j):z L
U, o, — 1; ZO‘ r (2.

2( (jl',j 1—-1 j) Z aV o V

Lvh
~—

where /%%, r©Y, %" are the eigenvectors and eigenvalues of the equations projected
in the x coordinate direction. Then (4*U),, is given by

= z o'’ (2.6 )

o = min{jo ), 1o |, ok ) < sgn(oy) if ajal>0
=0 otherwise.

Next, we define the left and right states at the zone edges U7}, ., UTHS o

We extrapolate from the zone centers on either side of the zone edge at
((i+ 1) 4x, j Ay), using a formula similar to (1.7):

I ; AxeU  41dU
Ul+l2jS U!+/\j— 2 LQY 2 at

_yr G AxeU i (oF gf_)
= Uit 2 x 2 ax | dy |
Ax  AtA™\ U A4t OF”
U AL |t iy 2.7
= Uit (iz 2 )(?x 2 (27

Here, and in what follows, we use expressions such as (2.7) involving the symbols
(S, +, k) to mean a pair of expressions: one with (S, +, k) replaced by (L, +,0),
the other with (S, &, k) replaced by (R, —, 1} In calculatmg Ui s we
approximate dU/0x by the monotonized central dlfferences A*U/Ax and the 0F”/dy
term by a difference of Godunov fluxes, the extension to nonlinear systems in one

dimension of upwind differencing for linear scalar equations.
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: : : . 7 i3 yrn- 4.2 T 1

It is convenient to view the calculation of UZ) /5 ,. U7 5 ¢ 2 consisting of

two steps, the first involving the monotonized central difference approximations ¢
AU/8x, the second involving the transverse derivatives:

’ ¢ \ s
0 oy N Ax  ar 55_ ;s
i+ 1,208 YVigk -3 / A .- Rt
J X
¥
L‘rn+1-’2 =0 _4_!@}? {"’c}\
T L2 ST M LS s A -

In order to calculate U,, 2,5 for linear problems, it would suffice simply ¢
replace dU/dx by (4™U), ;/4x. However, we make two changes in (2.8), which. foyr
constant coefficient problems, are redundant operations leading to identical values
for U7, but which have been seen to lead to a somewhat more robust
algorithm for strongly nonlinear problems. This first is to discard in the U/ term
the components corresponding to characteristics which do not propagate towards
the zene edge. The second is to introduce arbitrary reference states & 0,, Uy taking
advantage of the fact ihat the characteristic projection operators appearing in bath
the construction of the left and right states and in the solution of the Riemann
problem act on increments of U. The resulting algorithm is given as follows:

T 7T 17 7 1 41 T 31 \\" [ AXTT
L"*"i 28 L’5+P5(L?1+1‘ L,S)—*—Ps-(i;.— 2 A‘(A' (I’fl-rh’»j)/) 4j & ;z+k,>_f

1210
T B A x,v
Pow= T (R, e,
v Lk )0
The reference states U,, Uy are chosen so as to reduce to as great an extent as
possible the size of the sum of the terms multiplied by the characteristic projection
operators P¢. One possibility is to take

) i _
L=U',»ij+(§*maxu""’( N By
& 208
n 1 ‘/JE \ X5
Oe=Ury, ,— 3 S+min(A (T ), O}zﬁ_r/lﬁ‘b,ﬂl

The additional cost of applying the characteristic projection operators is small.
Because of the monotonicity algorithm. we already know the expaunsion of 471 in
terms of the right eigenvectors. Applying the characteristic protection operators to
{4*U} 1s accomplished by setting to zero the coefficients of the sigenvecior expan-
sion of (4°U} which have associated propagation speeds with the wrong sign.
Finally, the caiculation of the terms involving A" is easily accomplished using the
fact that the projection operators are sums of eigenproiections of A%, implying that
PeA™ A U=3 | jue o A% ar™". Using this fact, and with the above choice of ..
U ., we obtain the following explicit expression for (2.10j:



182 PHILLIP COLELLA

- ~ At
Uisra0= UL+——2A Z (i\M ix‘) ar ey

¥ >0

(2.12)

- ~ Ar
! _ x 1 X, v Xy x
L'+17’R-‘UR+‘)A Z (Al+1] /{I+l_[) X+lj’!-121]’

vt <0

where the a[}’s are the expansion coefficients of (40U )., given by (2.6). This proce-
dure is essentlally that given in [7] for computing the left and right states for the
1-dimensional algorithm, applied to the case of piecewise linear interpolation.

To complete the calculation of U;f 7 ¢ we approximate (@F[2y) 14z, jay) DY
some appropriate upwind flux difference. The SImplest choice is to use Godunov’s
first-order method to evaluate ¢F*/2y. If we define U ;41 to be the solution to the
Riemann problem for the projected equations along the y-direction, with left and
right states

(UTJ+1/’L’ UI}’+1_,'2,R)=(UZJ’ Z]q_l) (213)

then

U2 5= Urinis =5 g (FUUF ko) = FUT ) (20
is a sufficiently accurate approximation to (2.9} to yield an algorithm that is
second-order accurate. For problems involving moderately strong nonlinear discon-
tinuities which are oblique to the mesh directions, it is necessary to use a slightly
more complicated algorithm to evaluate the effect of the transverse derivative term
(CF*/2y)(A4/2) on the left and right states. This term estimates the change in the
solution due to the y-gradients. In the case of an oblique discontinuity, if the
estimate is sufficiently different from the actual change calculated in the conserva-
tion step, the solution will overshoot, or the discontinuity will spread, depending on
the relative signs of the gradient and the error. To alleviate this problem, we use an
estimate for @F?*/dy which is closer to what we will actually use in the conservation
step, by taking UIH 1» to be the solution to the Riemann problem for the
equations projected along the p-direction with left and right states

(U;'I:j—%—l,.Z.L’ UI}HQ. R)= [01,j+1v2,La 01’.j+ 1v2,R)> (2~15)

where 0i,j+1,‘2,L’ U,—_jH‘,»Z,R is computed using the analogue of (2.10) for the zone
edge at (i Ax, (j+ 3) 4y).

Given the left and right states defined as above, we solve the Riemann problem
for the 1-dimensional equation projected along the x direction to obtain U7} /7 o
In the case of constant coefficient equations, it is easy to check that U7} ; satisfies

the following linear equations, independent of the choice of U,, Ug:

lx‘”'(l”,’If/:]-U,+x,fz‘j.vJ—*2*A—1“ (FUN g je12) = FUT 10 =0,
(2.16)
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where
T TH 1 x. v At ( XTIT) N X
L‘f+zz.,'_\-:L’,;,-+(§~/ 3 Ax A.‘() (4*01, ;. if A" >0
T /1 JR Y 'J’ R o 1
=l it (\5 + A §?> “_1 U }‘._'_ s otherwise.

This is a finite difference approximation to the characteristic form of Egs. {24 on
the M characteristic surfaces intersecting the line {{x, v):x={i+4)dx] at ttme
"7'? The proof is a routine calculation using the characteristic projection
operators ; the key fact that is required is that the solution to the Riemann probiem

for (2.2} with left and right states W', , W', is given: by
W=P, W,+P,W,.

where P,, P, are the projection operators defined in {2.10). in the case where the
equations are nonlinear, but the solutions are smooth. U7 satisfies (2.16)
modulo terms which are second order in the mesh spacing, provided that
Og—U", «,; is of the order of the mesh spacing, where the eigenvectors and eigen-
values are evaluated at U7} . This fact describes one sense in which the
algorithm described here is upstream-centered for smooth solutions: the value of
the predictor T’} is given as a solution to M linear equations which are finite
difference approximations to the characteristic equations.

Finally, we need to specify a bound on the time step for stability, We expect that

the CFL condition should be given by

’ Lo At
max | |47 —
1 v l Y Ax

by analogy with the stability condition (1.5) for the advection equation. In the case
where A* and A" commute, the above stability condition holds in the sense that iz
held for the scalar equation, ie., that the fully limited scheme, and the scheme
without limiting. both have (2.17) as necessary and sufficient conditions for Fourer
stability. This follows easily from the analogous result for scalar equations, plus the
fact that the system can be diagonalized. We have not proven (2.17} for any
problem for which 4~ and .4* do not commute. However, we have used the above
condition as a time step control for our gas dynamics calculations and have seer
no evidence of mstability,

3. QUADRILATERAL GRIDS

The above algorithm can be extended to the case of arbitrary quadrilateral grids.
For the purposes of deriving the algorithm we wiil assume that our grid comss {rom
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a smooth coordinate mapping, although the final difference algorithm will be
expressed only in terms of differences between coordinates of the corners of the
quadrilateral mesh.

We now assume that our computational domain is divided into quadrilaterals
4, ; with corners located at (X4 .5 ;419 Yiy 12, ;+12) Furthermore, we assume
there is a smooth map (¢, 1)« (x, y) between some coordinate space and physical
space, with a rectangular mesh in (&, ) space with corners located at (&, ..,

’7j+l,"2) such that (—’Cf+1;2<1+ 12r Yie 12,5+ 12) = (-\’(*fiﬂ,fza Hit12)n Wiy 'Ij+1:2))-
We can transform the system (2.1) to the (£, ) coordinate system:

o(JU) OF% oFn
— e ——=
at ¢é o on
J = Det(V‘;-,,,)(xe }.))
F;jzn:;'F, Fl=n¢.F

y (8}‘ 6,\') : Oy ,x)
n=|——,—=1 n=| -z =%z
oy oy ot o¢

Without loss of generality we assume here that J>0. We define finite difference
approximations to the derivatives of the grid mapping function:

0 (3.1)

E ax -
(Al’x)i,j\#1,2:xi+1r2.j+lf2—'"xi—l,"2.j+l'2QF 4E,

51«']]-#[1

o ox

(4 x)i+1vz,/‘:Xi+1‘2,_/+1.2_xi+1r2.j~1'zza_ An;

i NESON 7

. T .
(Asx)i.jzi([A x)i,j+1'2+(A‘=x)i.j—1;2v) (3.2)

(47x), ;= 5(4"x), L2 (A4™%), s )

R 3 - N N
0 =3((Xie 12 12— X a0 Vir 22— Fim v, j—12)

F(Xipra e =X a2 i 1 12— Vi1, - 12))

Using these finite differences, we can make the connection between the mapping
derivatives appearing in the transformed equations (3.1) and the geometry of the
finite difference grid in physical space (Fig. 4): o,; = J(£,, ;) 4¢, 4n; is the area of
the (i, j)th zone, and n® 4¢, > —(A*‘x)if_,.+ Lo WAy = (47x)F, 1.2,; are normal to the
zone edges, where we use the notation (w,, w,)™ = (4, —w,).

As in the previous section, we will assume that, at time step #, we know U7, the
average of U over 4, ;. The procedure for calculating U7 ;' follows the same basic
outline as that for the rectangular grid case. We construct time-centered left and
right states at the zone edges, solve the Riemann problem, and difference the fluxes
conservatively, taking care that, at each step, the effect of the quadrilateral mesh is
accounted for in a suitable fashion.
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Fig. 4. Geometric interpretation of the difference approximations to the derivetives of the grid
mapping.

Our conservative difference step will be of the “finite volume” type:

41 : |
7rn-'-1 Lll +'_((A"(],_17 ( :x_o—ll_),)__ Jr,*x)+171 F(Lm-rl '

12
I,]

— ) PO ) + (A0 UL )

j+120k

JJ

3 .

PuES N

This formula can also be obtained by integrating (2.1} over 4, ;x {¢%, "', apply-
ing the divergence theorem, and approximating the resulting surface integrals using
the midpoint formula. From that point of view, each of the terms multiplied by
Atjo, ; represents a time- and space-averaged flux through one of the edges of 4, .

Our strategy for obtaining values for U7/, U717, follows the pattern used
in the rectangular grid case. We extrapolate time-centered left and right limiting
states al the zone edges using (3.1). We then solve the Riemann problem using these
states for Egs. {2.1) projected in the direction of the normal to the zone edges in
physical space. We consider, for example, the zone edge centered at {i+1/2, j} and
we wish to construct UJS 3, ,, UiFls , s, the left and right states at that zoane
cdge. The starting point for this is to consider the extrapolation formulae analcgous
to {2.7) for the system (3.1):

it is ciear that this formula is a conservative finite difference approximation to {2 1)

E A7 7
Fru+ L2 = [ AEH—’C cl il
L/)-rll,j,‘) I‘L/\/-— ) af+ ) (Qt

_yr pAGekdU 4 aF~ e ad
B ‘*k'ﬁ_z—BE 7] o
1 At cU At on’ A1 SF1
=Ul o, t5— 57— A) Ay =575 F—555— 134
ik ( 22048, oz Ttk oy as 2J o ’
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where A°=n"-A. The term (4t/2J)(on"/0¢)-F comes from putting AF%/a¢ in non-
conservation form and is equal to zero in the rectangular grid case. We break this
procedure into two steps:

- " 1 At ou
Uivrajs=Ul 0+ (ii‘m- > & A4S 1k (3.5)
I+ Kk
" . At fén" . OF"
Uirll,-‘zz.j,s: U1+I,v'2,j,5h5j<5_é“'F+W). (3.6)

We approximate dU/3¢ by monotonized central differences and ¢F"/dn by upwind

differences. The term (én"/¢¢) - F is differenced in such a way as to exactly cancel

the difference approximation to 0F"/&y if there are no gradients in the » direction.
We first consider the calculation of U, 12,55 We approximate

1 At p 1 At et L rn
(3757042 (B3 W AL 6)

where we have replaced J and w¢, n” by the appropriate difference approximations
from (3.2). By analogy with the rectangular grid case, we want to approximate
(@Uja&) 4¢,; with (4°U), ;, a central difference approximation to which some form
of monotonicity constraint has been applied. If the coordinate mapping is smooth,
then the formula (2.5) for equally spaced zones can be used without modification,
while retaining sccond-order accuracy in regions where the solution is smooth.
However we replace the eigenvectors in the monotonicity constraints in (2.6) by
(57, U) v=1, .., M, the left and right eigenvectors corresponding to the eigenvalues
AL { </lfj" of (4"x);5;- A(U? ). As before, we can also discard terms in (3.7)
corresponding to signals propagating away from the zone edge and allow for an
arbitrary choice of reference state U, obtaining the following analogue of (2.10) for
a general quadrilateral grid:

0i+l-’2,j,S: Us+PS(U;fj* fjs)

]. AI . =
+P5(i—— (A”x)z vk, A(Ul-l»l\ /)> '(AK-U)i+k.j’ (38)
2 2‘7H—k/
where
Pow= Z (IH,” u)er!
e >0

4+A/

We approximate (A:/2J)(J0F"/én) by an appropriate upwind difference
approximation. In general, it is of the form of the corresponding difference
approximation in the conservative difference step (3.3):

AtﬁF” At
Y 6;1 20

((Aix)fj+1':'F(L[T,+1 ) —(4° X)U—l 2 'F(L,TJq 2 (39)

L
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Here U, ., 18 calculated by solving a Riemann probiem for the projected egua-
tions along — (4%}, ., with left and right states (U,T,T 1L U, 1+ 12.2) As in he
rectangular grid case, L,JH . may be set to U7 ., or Uuﬂlz_g. Finally, we
approximate (41/2J)(én"/én)-F using the finite difference approximations {3.25:

At on” At
——-F=x 4"
2z ¥R, ™

3B (3100

!j/

N
2, AT )

o+t

Collecting our difference approximations, our final value for T0; ¢ is given by

At
— [(4% FUL )
20—1’.»/ [( )1+£1 12 kop— b2

w12 Y
Ui, s=Uiia,st

—(A*x,,“t r—12 Ff['l,‘ S

(%)
s
e

RE S Sk

(A oy (ATRYE a3 FLUE 0,

We obtain U/]/;, by solving the Riemann problem for the projected equations
along (4"X)/, 1, ‘with left and right states &7 )5 . U} . UTHls, satisfies
finite difference approximations to the characteristic equations (2.4) for the charac-
teristic surfaces through the (i+ 1/2, j)th zone edge in physical space, similar o
(2.14}.

The appropriate generalization of (2.17) as a CFL condition on the time step s
given by

max(lb‘iL )).j";'i{w }Sl.
g e

1, j.v N I}'./

i
e

This is dimensionally correct since 47}, A7} contain factors of 4™x, 4°x. In the case
of advection, and if the coordinate transformation is & linear map, one can
demonstrate by numerical evaluation of the Fourler transform, as was done for the
rectangular mesh case, that this is the correct CFL condition. In general, the time
step bound (3.12) has the following interpretation in terms of characteristics: At
must be less than the time it takes a wave propagating in a direction normal o 2

zone edge to reach an opposite zone edge.

4. GAs Dynamics

We give in this section a detailed description of an algorithm of the ty ype
described above for the case of Euler’s equations for inviscid compressibie flow in
two space variables, in planar geometry, on a general quadrilateral grid. The system
we wish to solve is of the form (2.1), with M =4, and

581/87/1-13
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p pu pv
u u” + ‘
v=|", Fn=""TP |, =] P (4.1)
pr puv pv-+p
pE puE + up pvE+p

where p is the density, (#, v) =u the x and y components of velocity, and E the total
energy per unit mass. The pressure is derived from these quantities via an equation
of state, p=p(p,e), where e is the internal energy per unit mass, given by
e=E — 3(u” + v*). In this section, we will describe an algorithm suitable for use with
a polytropic equation of state, ie, for p given by p(p, e)=pe(y—1), and the
adiabatic speed of sound c¢ given by ¢*=yp/p. The case of a general convex equa-
tion of state is a straightforward extension of ideas in [6].

The projected equations for the system (4.1), are essentially those of gas
dynamics in one dimension. If we project the equations in the n direction for n a
unit vector, we can make a change of variables to obtain the following system
equivalent to (2.2):

oW oG(W)

il ~0 42
FP o (4.2)

p pu™

N Njy2
pu p(u™) +p
W= N G W =
pu’ () pu™Nu”
pE pu™NE +uNp

Here N =u-n, ur=u-n' with the other variables defined as before. Since n is a
unit vector, u* +v* = (u™)* + (u")? so the formula for the internal energy e can use
either quantity. From these equations, it is clear that the eigenvectors and eigen-
values of the linearized system, as well as the solution to the Riemann problem, are
given by those for the 1-dimensional gas dynamucs equations, with u” being treated
as a passively advected quantity. Hence, we can use the techniques of [4, 7] for
calculating solutions to the Riemann problem and for manipulating characteristic
variables.

Although the algorithm described here follows the same basic outline as those
given in the previous two scctions, there are some differences, mainly with the
calculation of U, 12, .s- For the purpose of calculating U, 1,2, .5, We make a non-
linear change of variables, performing the difference calculation of (3.5) in terms of
the primitive variables p, u, v, p, as was done in [7] for gas dynamics in one space
variable. We then transform back to the conserved variables to calculate U7} ¢.
This procedure enables us to perform our central difference calculation com-
ponentwise on the primitive variables, using formulas similar to (1.9), rather than
on the amplitudes of an expansion of 4°U in terms of the right eigenvectors. Also,
since we are working in terms of the primitive variables, we can use the more
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elaborate central difference algorithm given in [67], which gives rise to a steeper
representation of dicontinuities than (1.9).

In order to justify the use of the more elaborate algerithm for computing ¢l/6J
and, more generally, to understand the errors introduced by using difference

o

approximations to ¢U/0¢, such as (2.5), it is useful to make a local change o:

variables (&, 1) < (a, &)
- 63(\2 (51,\2 12 .,
+| = 4ac
I ((k) ) ) i

The coordinate (a, b) measure arc length along the grid lines {n=const}

f&=rconst}, respectively. It is easy to check that, for (£, #) sufficiently close (0
(é, u;) the Jacobian of the above map is nonsingular, since the cross derivatives
Cajdn, 0b/6E = O((E—¢,), (n—n;)). Using the chain rule, we compute dU/6¢ to be

aUA _auaadﬂa_v_afd;
6T adltv  peETT

sy

Thus, the central difference approximation to ¢U;¢¢ used in {3.8) can be viewed as
using a central difference approximation for ¢U/éa and dropping the term propor-
tional to ¢b/CE, since it is of one order smaller in the mesh spacing. In terms of the
mesh in physical space, this corresponds to the assumption that the arc length
along each of the coordinate directions is a smoothly varying function of the other
coordinate. This is a condition satisfied in a wide variety of applications, even when
the grid mapping as a whole is not smooth, such as in the case of highly siretched
grids used in aerodynamics calculations. In the latter situation, one can retain the
formalism developed here but use an approximation to the derivatives appropriate
for a strongly varying mesh in the ¢- or b- direction.
In terms of the coordinate system (4.3), we can express U7 (7 ¢ in the form

/ 2y i

28 Ce=U" l % o )\‘LJ (A AN
Yivr2gs L - nr+k./ 4-1\ a, Ve

2 2a,+k_.,

- At

n+1.2 _JTr _ T
[’H»l:,, “Li+l2.j.s*f>0_ [Aay+k/+l“n +hoj+12 ’F L1+A ;f17)

=Yivk.j

/T
Ja,_,,kj, 1’n1+k/_[7AF(L,+A }41")

- n n
+[“sz + k. 1) (Abi+l 2+kni+1 3+k.1_—jbl* if‘*lxn:—l 2yk, /? "

‘where
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(Aa)i,j[+lx'2] = ((Aéx),%,-[ ot (A:y)iz,j[-;-l.‘z])l :

(Ab)i[+1s2],j= ((Anx)?[ +127,F (A”)’)?[“ 2]_]-)1'2

41
nb _ (A"x)l. L1275 (4 6)
T+1,21 = :
TN by oy,
2oyl
¢ _ X))
Lif+12] 7 - .

Aai.j[H,z]

We calculate U, 412,55 by transforming to the variables V= (p, u, v, p)’ before
applving (4.5):

Vi, =V,

, - ~ 1 drdb,, ;.. _ "
Vi vv2ps=Vs+Ps(Vi,~Vs)+ Pg (ii——;ﬂ T,:k,,»A,-mT,-H,,-)
201k, j
av
x—Aa;, . ; (4.7)
da )

Ui+ 1,2,i,8§= U( Vi+ 1;2.;',5)-

Here T; ;=V, Ul,» and Py is defined by Psw=3 1o, >oll7) W) ril, ;> where

i . : itk itk j
197, r2), A%}, v=1, .., 4 are the eigenvectors and eigenvalues of T} - 47,- T, ;:

[ A R A ]
l”"=u-n”~—c, /l“*2=i"‘3=u-nb, A”’4=u-nb+c
1 1
_me 1 0 nbe
a,l ’0 a2 0 a3 —hn v a4 '0
reT= b . ¥ = 0 " ¥ bb N ¥ = b
_HVC x n.c
p 0 0 p

o
N

o
)
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Here a”=(n%, n”) and the subscripts i, j are suppressed. The time step conirol

v

£3,12) in terms of the above eigenvalues, is given by

max
(VAN

The approximation to (¢V/éa)|, , Aa; ; we use is obtained by using a formula like
i 1.9) for cach component of V. For example, we define, for ¢=p, p. 1, v.

a.xv o
AT

/

4b, Az\ !A”"' Aa i, j At
|

N\
)<i,

i b

2 i‘j
iy { G

(v‘j;imq}i. =2 mln(lqz+ 1.7 q?]" iq:]# Qi}— 1./"| )
if ‘ql+l_} q'zl,/)(q;r/—q:l-lj}>(}‘
=0 otherwise,
(45g%,,=min(zlgl, ;= g7, b (A5ng): ) xsgalql, ;—ab, 1
and set {47q); ;= (47q), ; to obtain the algorithm anaiogous to (1.9} In the calcuia-

tiens presented in Section 5. we use the following algorithm, taken from 5], which
vields a steeper representation of discontinuities:

i, f—(l’i4)((du‘q)i+lj+(A;]‘q),_.l_ ifdu,, Cga
(da;_, ;+4 da, ;+ 4a;, . ) ’ B

!'."Jaq:i,-_-*‘n‘ln( )QI+I 7
‘o n ; .
xsgnlgi =47 1 ,}

Given the values for 4°V, we can give explicit formulas for ¥',, 5

. { , At db, .
Vo=V + (-“max(ufj'“i/""’:{fs 0)“—1{) 4V,

h A2 20,
~ At 4b 3
7 b i+~ 1.j
Ve=¥]_1,— K +mm(u,+” n = Cie, 0) wg——math,
=Yg

" . LV
!iJr‘L'leS VS+Zﬂi+lv2.j.S"i+k.j
N

At Ab;
v —_ k) fsad_ cavyigjavy o gars . T ~
ﬁ,*”_ﬂ-— 5 (ALJ APINUE A7V ) if A9 >0,
<G,
=9 otherwise
41 4b
v i+ 1, Ju.v i . H I
/3:'4»1'2./'.}2 B ();4.1, 1+1j)( i1,y —'JHI“,'_F;”.'; if A?41|v<€.i.
Jl+[}

=0 otherwise.
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The formulas for If’,-’ j+1n,s are identical to those given above, with the interchange
of i and j, n® and o’

ThF: calculation. of Urtl3 s given U, is given by (4.5), with U], 41 the
solution to the Riemann problem for the equations projected in the nf; ., direc-
tion, with left and right states given by U7, (5 s=U, ;s 1ns0r U, 5, =U; .
In the calculations shown below, we use the latter choice.

The final conservative difference step is given by (3.3). We define

n+1;2
P+ 1/2,)
n+12 _n+1'2 n+1:2 His
¢ | Mivia; 2, F P A Y iv 1,
i+ t2.j— n+12 . n+12 n+ 12 (I
My is O ta,— Pt A w10

n+12 n+1:2 n+1:2 n+1:2
mi+1/2,j(E:+ 12,1t Pig V2P 1,-2,,')

m

n+ 472
USTNE
n+1,2 n+12 _ an+172 &
F1 M M e i Pl 2 AV i1
Lj+127 n+12 r+12 n412 42 »
My a0 TaPi 12 47X 412
n+1:2 n+ 112 n+1,2 )on+1.2
mi,j+1'2(Ei.j+1sz+pi,j+1,2/)0i,j+1,z)
n+1/2  __ n+4/2 b n+ 12 n+12 n+1:2
where mil 5, = db;, 5 ;0785 000 00 5 ,), ml = Aa; ;0 102P7 40

(0745w f,) are the mass fluxes through the zone edges at (i+3,j) and

(i, j+ 1). Then (3.3) is given by

i—1:2,7

L

n n at g ¢
uir'= Ui.j+;_(F? —F i F] = F )

Dissipation Mechanisms

In [7], it was noticed that, in one space dimension, and near strongly nonlinear
shocks, the dissipation implicit in monotonicity constraints such as (3.6) and (4.8),
was insufficient to guarantee the correct jump in the Riemann invariants trans-
ported along the characteristic families which cross the shock. For that reason, it
was suggested that additional dissipation be added to the algorithm near such
discontinuities in the form of flattening of the interpolation functions and by adding
a small viscous dissipation term to the fluxes. Since both these forms of dissipation
were required for 1-dimensional problems, it is expected that similar dissipation
would be required for the present algorithm, since, for 1-dimensional problems, it
is similar to the algorithm in [7]. The second-order artificial viscosity used in [7]
can be applied without modification to the present algorithms simply by adding the
dissipative flux to each of the four fluxes, prior to the conservative differencing step.
The form these dissipative fluxes take in the case of a general quadrilateral grid is
also standard; see, e.g., [19]. The simplest flattening algorithm in [7] can be used,
with one important modification: in each zone, the slopes corresponding to the
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derivatives in each of the grid directions should be flattened by the same amount.
We define flattening y“. ¥°,

N

|
) if(w,_, ,—w,, ;)-n,>0

|pis i P

min( Py y s Piong)

Su _v((plriﬁj-pi—-l,j'
X =s\ T
BRI N

=0 otherwise

> 6

,q
4
3

7 s sa ~ua
A= mln((:——x,}.j’ 1iih

where
zy=90 if =>zy,
=1 if <z,
:1—5__2_0 if co<z<zy,
Zi— %o
and

S, =Sign(p, ., Pio):

We define y; , similarly. with the roles of i and j reversed. Then the slopes 4“g. Ag
obtained from (4.8) are reset to

A°q, Abqi,J = 10y A% X A"q,-'/-. .10y
where
Xi.jzmin(X?,j’ J(b/)

In the runs discussed in the next section, the parameters in the above algorithm
were set to be § =033, z,=0.75, z, =0.85. In addition, we used the 2-dimensional
Lapidus viscous flux discussed in [7] with a coefficient of 0.1. These were the choice
of the parameters used in the corresponding algorithms for operator spiit calenla-
tions described in [7] and have been found to give adequate results when used with
the present algorithm over a wide range of problems.

Boundary Condirions

It is straightforward to impose various continuation-type boundary conditions
(inflow, outflow, periodic, etc.) in regions where the grid has a natural extension
beyond the computational domain. Since the numerical domain of dependence of a
grid peint is contained in the 9 x 9 block of grid points containing the point at the
center, then one can extend the original computational mesh by four grid points in
each direction and set the values of the extended part of the grid at the beginning
of each time step using the boundary conditions, thus supplying sufficient data tc
calculate the values on the original grid.
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The most common situation where one cannot extend the grid is in the case of
an impermeable surface, particularly on a body-fitted grid. Let us assume, for exam-
ple, that the curve {{(x)=¢, _,,} is a reflecting surface, with the fluid contained
in the region {&(x)>¢; _y,}. The algorithm described above can be applied
without modification, if we specify values for the slopes A, Gi1,2, ) A% G- 1.2.; and
for the fluxes F(Um, 12 )b F(U7* %5 ). The slopes are given by !

ip—12.7

Aqio.j:zd'qio j=0’ q p’p’ mfl?/ -u

b b
l,2 '(“m g ) "iof- 1;2,,—’ )sgn(u,, ;-n; 12.)

b
nio—l,'z.j'Afuio /-——mm([u,o J 10—1 2, j

i b
if (g, ng )Wy =y ) emg 5 >0

=0 otherwise. (4.11)

Given the slope information, it is possible to calculate U, ; z, UL*42 .. To

obtain the states U} _, ;, U;'}3 ,, we solve Riemann problems projected in the

n}_ ., direction, with left and right state given by
A n+ 12 A n+12
Qio—12. 40D~ 12. 50 =i~ 128 Dig— 172, j, &> q=p,p.n 10—121 -u (4.12)
n® i n® gt —nt A N ’
12 W20, Wy W Z (5 50= ~ Wy Wy 10,8 — By 58

With this choice of left and right states, it is clear that w,_,, ;=0, so that the
advective terms in the fluxes at (i;— 3, j) vanish, leaving only the pressure terms in
the x- and y-momentum equations. Whatever approximate solution to the Riemann
problem is used should guarantee that the advective terms vanish in the flux
calculation at the wall.

5. NUMERICAL RESULTS

The gas dynamics algorithm described here has been used in a variety of applica-
tions in two dimensions, including flow in cascades and channels with body-fitted
meshes [9], in adaptive mesh refinement calculations [2], and in a conservative
front-tracking algorithm [3]. In addition, various forms of the algorithm for scalar
equations have been used to calculate flow in porous media [15].

We will present here two gas dynamics calculations, both done on rectangular
grids. The first is the calculation of a steady state regular shock reflection described
in [23], which has been used extensively as a test problem for numerical methods
used in aerodynamic calculations [25]. The second test problem is the double
Mach reflection of a shock off an oblique surface, used in [22] as a test problem
for comparing the performance of various difference methods on problems
involving strong shocks. Since our purpose is to demonstrate that the current
method has the same resolution as the corresponding operator split algorithm, we
present also a calculation of the latter problem performed by using in an operator
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29°

FiG. 5. Steady state regular reflection problem.

split formulation the 1-dimensional algorithm obtained by restricting the algorikitm
described in Section 4 io one dimension.

In the first test problem, the computational domain is a rectangle of length 4 and
height  (Fig. 5). This domain is divided intc a 60x 20 rectangular grid, wiih
4x =15, 4y = 3;. The boundary conditions are that of a reflecting surface along the
bottom boundary, supersonic outflow along the right boundary, and Dirichlet
conditions on the other two sides, given by

{p.u, v, pliov.n=1(1,29,0, 1/1.4}
(oo, 0, P et = (1.69997, 2.61934, 50632, 1.52819}.

Initially, we set the solution in the entire domain to be that at the left boundary:
we then iterate for 500 time steps using a CFL condition of 0.9, at which time the
sofution reaches a steady state.

In Fig. 6. we show a contour plot of the pressure. The contours are egually

FiG. 6. Numerical solution to regular reflection problem: {2} with flattening: by without flattemng.
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F1G. 7. Comparison of pressure profiles for regular reflection problem atong the line y»=10.525
(j=11): x—with flattening, *—withont flattening.

spaced, with contour levels of 0.1, beginning at 0. The shocks have a nearly
monotone transition, and are [airly narrow, with some slight spreading on the high
pressure side of each shock. This spreading is due to the flattening algorithm (4.10).
We see this in Fig. 7, where we plot profiles of the solution at y =0.525, computed
with and without flattening. The width of the shocks is about 2-24 zones in the
normal direction, where this figure is obtained by counting the number of points in
the transition in Fig. 7, and multiplying it by sin(tan~'({4x/4y)|tan(«)})), where
o is the angle between the direction tangent to the shock and the x direction. The
shock transition with flattening is slightly broader; however, the transition without
flattening has some low-amplitude oscillations, which are not present in the
solution obtained with flattening. Even though the shocks are supersonic on both

30°

s
e 4

/

vy

b

FiG. 8. Ramp reflection problem: (a) initial configuration; (b) double Mach reflection at later times:
solid lines are shocks: dotted lines are slip surfaces.
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FiG. 9. Numerical solution of ramp problem using the method described in Section 4. The mesh is
a rectangular mesh of 400 x 100 zones, with the reflecting wall beginning 20 mesh fengths from the lowe-
left corner. 4x = Ay = k. and the time shown is 1=0.2; thus this calcuiation corresponds to the firest
grid vesults in [22]

sides, there is no difficulty with uncontrolled diffusion of the discontinuities. This is
in contrast to the results obtained with first-order upwind methods, where steady
shocks remain quite sharp if the transition is supersonic/subsonic, but which spread
over many zones if the transition is supersonic/supersonic. Indeed, the main
difficulty for the present method is to ensure that the shocks are broad enough sc
that sufficient dissipation occurs across the shock, as was the case with the operator
split second-order methods.

The second test problem is unsteady shock reflection problem. A planar shock is
incident on an oblique surface, with the surface at a 30° angle to the direction of
propagation of the shock (Fig. 8). The fluid in front of the shock has zerc velocity,
and the shock Mach number is equal to 10. The solution to this problem is seli-
similar, with U a function of (x, y, ¢) only in the combination {(x/¢, /¢ In Fig. 5.
we show the results of calculation of this test problem performed with the present
unsplit second-order method; in Fig. 10. the corresponding results obtained with
the operator split method. The results of the two calculations are essentially identi-
cal, supporting the assertion that the unsplit method has the same resolution as the
corresponding operator split method. However, a considerable degree of care was
required in the unsplit scheme for this to be the case. The cheice of (2.15], rather

TTTT T 1]

{‘. R NS A O U W W A

Fic. 10. Numerical solution of ramp reflection problem. using operator split method. with numerical
parameters the same as for Fig. 9.
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than (2.13), in calculating the transverse derivative in the predictor step is essential ;
otherwise, one obtains considerably lower resolution in the jet along the wall in the
double Mach region. The accuracy in the double Mach region is also sensitive to
the reflecting boundary conditions. The former difficulty has no analogue in the
operator split method; as for the latter problem, the operator split method gives the
same results which much simpler boundary conditions. Finally, the multidimen-
sional flattening algorithm given by (4.10) was required to eliminate low-amplitude
noise behind the shocks, whereas the operator split algorithms required only the
I-dimensional flattening algorithm in [7] to be applied in each sweep.

6. DiscuUsSION AND CONCLUSIONS

In this paper, we have derived explicit second-order Godunov-type methods in
two space variables by using the wave propagation properties for multidimensional
hyperbolic equations and by limiting some of the second-order terms to suppress
oscillations. The calculations in Section 5 indicate that we have been successful in
the goal stated in the Introduction of producing an algorithm with comparable
performance to the operator split second-order Godunov methods, at a comparable
cost. In retrospect, this is not surprising, since the multidimensional algorithm
consists of combinations of the 1-dimensional operators which appear in the
operator split schemes. In particular, the same Riemann problems appear in the
present method as in the operator split methods, since in the former case averaging
the solution to the characteristic form of the equations over a zone edge provides,
via (2.4), a natural choice of a direction in which to project the multidimensional
equations for solving the Riemann problem. However, there are differences between
the present algorithms and the operator split approach. The algorithms discussed
here are somewhat more expensive, requiring twice as many solutions to the
Riemann problem as the corresponding operator split algorithm, Since the cost of
solving the Riemann problem for a polytropic equations of state constitutes half the
cost of the calculation in one dimension [6], this leads to an algorithm which takes
50% more time than the operator split algorithm. In the regular reflection problem,
the vectorized implementation on the Cray | advanced about 24,000 zones by one
time step in each cpu second, consistent with this estimate and the timing figures
for the corresponding l-dimensional algorithm given in [6]. Also, the multi-
dimensional algorithms appear to be more sensitive to various details of the
implementation, requiring a greater degree of care, such as for the reflecting
boundary conditions (4.11)~(4.12), and for the flattening algorithm (4.10).

There are a number of straightforward applications and extensions of the
methods described here. It is possible to introduce quadratic interpolants, as in [7],
to evaluate U in the predictor step in order to improve the resolution of linear
discontinuities by means of contact detection and steepening. Conservation laws for
which the fluxes have an explicit spatial dependence, such as for incompressible
multiphase flow in porous media, can be easily treated using similar techniques to
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the ones used for the general quadrilateral meshes. The treatment of a general equa-
tion of state via the techniques in [6] is accomplished by introducing an additionat
transport equation for y= p/pe+ 1 for use in the predictor step for the transverse
derivatives. Thus introduces some additional complication into the method, which
is more than offset by the fact one need only evaluate the equation of state once per
zone per time step.

There are some problems for which the formalism given here is attractive, but for
which the extensions are not entirely straightforward. One of these is the extension
of this method for calculation of problems in Lagrangian coordinates in two dimen-
sions. The difficulty here is that the motion of the grid must be obtained from the
soiution itself; unlike in one dimension, neither the solution nor the fluxes are
defined at the corners of the mesh, where it is most natural to specify the motion
of the grid. Consequently, some form of averaging of the velocities must be intro-
duced in order to move the grid, but one which does not degrade the resoiution of
the method [177. Finally, there is the question of the extension of these ideas to
three dimensions. If we just take as our advection algorithm the 3-dimensionai
anaiogue of (1.2), we arrive at an algorithm for systems which satisfies the proper-
ties {£)—(3) in the Introduction, but requires 12 solutions to the Riemann problem
per zone per time step; this is in contrast to the 3 solutions required by an operazor
split method. The large number of solutions to the Riemann problem comes frot
the fact that for each coordinate direction in three dimensions, the analogus of he
predicior step for the transverse derivatives (2.9) requires a calcuiation comparaols
to the full 2-dimensional calculation described in this paper. However, 17 we are
willing to relax the third requirement somewhat, we obtfain an algorithm which
requires only 6 solutions to the Riemann problem by using the extension of donor-
cell differencing to systems to evaluate the transverse derivatives in the predictor
step: equivalently, we would be ignoring the contributions due to transpor: from
zones offset by one mesh length in all three directions, which correspond te third-
order terms in the truncation error. In both cases, we would obtain aigerithrus
which, for 2-dimensional problems aligned with one of the mesh directions, giv:
identical resulis vo the algorithms described in this paper. The question as i¢ wha
the appropriate formulation is for problems in three dimensions is undoubtediy
problem dependent, and probably can be resolved only by numerical experiments.

s
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