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Abstract 

Flowflelds associated with one-dimensional free-air 
explosions are well known both for the point-source case 
and for the case of a blast 'wave driven by the detonation 
of a high-explosive (HE) charge. Considered here i8 the 
two-dimensional case of the reflection of a spherical, HE­
driven blast wave from an ideal plane surface. The evolu­
tion of the flowfleld was calculated with • nondiffusive 
numerical algorithm for accurately solving the Euler equa­
tions. This algorithm is based on a second-order Godunov 
scheme and a monotonicity algorithm that is designed to 
give sharp shocks and contact surfaces while smooth 
regions of the flow remain smooth yet free of numerical 
diffusion. The incident HE-driven blast wave was accu­
rately captured by a fine-zoned one-dimensional calcula­
tion that was continuously fed into the two-dimensional 
mesh. The latter incorporated a fine-zoned mesh that 
followed the reflection region and accurately resolved the 
complicated flow structure occurring on multiple length 
scales. Major findings in the regular reflection region 
were as follows. Portions of the main reflected shock 
reflected within the channel formed by the wall and the 
dense HE products, thus creating additional pressure 
pulses on the wall. Coherent vortex structures formed Oft 

the fireball as a result of the interaction of the re­
flected shock with this contact surface. The flow did 
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indeed make a transition to a double-Ma~h structure. but 
this transition was delayed 1.S to 3.8 deg beyond the two­
ahock limit of regular reflection because the nascent Ma~h 
stem was less than one cell high in this region. The 
double-Ma~h structure with ita two moving stagnation 
points was similar (but not identical) to an equivalent 
sho~k-on-wedge case. A key feature of this flow was a 
supersonic wall jet (velocity of 3.5 to 4.3 km/s) consist­
ing of a free shear layer and a wall boundary layer. The 
wall jet was laminar in thea~ calculations, but should 
actually be turbulent due to Reynolds number considera­
tions. Nevertheless, calculated peak pressures were found 
to be in excellent agreement with experimental data at all 
ground ranges. 

I. Introduction 

Considered here 1s the two-dimensional axisymmetric 
reflection of a spherical (high-explosives-driven) blast 
wave from a plane surface. The temporal evolution of the 
flowfield was calculated with a second-order Eulerian 
Godunov scheme that accurately solves such inviscid com­
pressible flow problems on a very fine computational mesh. 
The accurscy of the solution was confirmed by experimentsl 
pressure data for the same problem. 

The details of flowfields associated with one-dimen­
sional free-air explosions are well established. Con­
sider. for example. the similarity solutions for spherical 
blast waves: the point explosion solution of Taylor (1941) 
and Sedov (1946). and all classes of blast waves bounded 
by strong shocks (Oppenheim et al. 1972a) and by strong 
Chapman-Jouguet detonations (Oppenheim et al. 1972b). 
Other*examples are the non-self-similar solutions of the 
decay of a point-source explosion: the orlgins1 finite 
difference calculation (Von Neumann and Goldstine 1955). 
the method of integral relations solution (Korobeinlkov 
and Chushkln 1966), the method of characteristics solution 
(Okhotsimskii et al. 1957), and the Lagrangian finite­
difference calculations (Brode 1955). Also well estab­
lished are non-selt-similar solutions of the decay of 
spherical blast waves driven by a aolid. high-explosives 
(HE) charge (Brode 1959). 

However, when one ~onsiders the reflection of such 
spherical blast waves fro. a plane surface, a detailed 
description of the flowfields is not generally available. 
Such flows are inherently two dimensional. They are driv­
en by decaying blast waves. and hence they are intrinsi­
cally non-lelf-Iimilar. They depend parametrically on the 
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scaled height of burst (HOB) of the explosion, the blast 
source. and the equation of state (BOS) of the medium 
(e.g., y varies for real air). Hence, such flowfields are 
not amenable to general solution; each represents a par-
ticular case. 

Much of our knowledge of such reflections cornea fro. 
considering the flowfleld in the near vicinity of the 
reflection point. By neglecting the rarefaction wave 
behind the incident shock, one can equate the flow to that 
produced by a plane, square wave sho~k reflecting from a 
plane surface. This is. of course, a good approximation 
when the flow behind the reflected shock is supersonic 
(relative to the reflection point). Many tools then 
become available. For example. one can use the shock 
polar technique (Courant and Friedrichs 1948) with an 
appropriate equation of state to predict peak pressures in 
the regular reflection regime; whereas in the Mach reflec­
tion regime, one must resort to experimental data of shock 
reflections from wedges (e.g., Bertrand 1912). One can 
use experimental shock-on-wedge results and their asso­
ciated empirical theories to predict the transition to 
Mach reflection and the approximate shock structure.­
Indeed. such analysis predicts that for strong shocks. 
transition will proceed from regular to double-Mach 
reflection. One can even view the height-of-burst problem 
as a continuous sequence of shock-on-wedge configurations 
for which the wedge angle varies from 90 deg at ground 
zero to 0 deg at an infinite ground range. Nevertheles8, 
such techniques have a limited utility. They are always 
approximations to a truly non-sell-similar problem, and 
they do not describe the entire flowfield. To overcome 
such limitations, one must resort to height-ot-burst 
experiment. and two-dimensional numerical simulations. 

Height-of-burst experiments utilizing HE blast wave 
sourceS have been conducted (Baker 1913). Typically, 
flowfleld measurements are limited to near-surtace static 
and total pressure histories at a saall number of ground 
ranges, and high-speed photography. Often there i8 much 
scatter in the data due to nonrepeatability of the HE 
charges; this scatter limits the scientific usefulness of 
the dats. Some of the most repeatable data come from 
tests performed with 8-1b spheres of PBX-9404 (Carpenter 
1974). Nevertheless, such measurements are not sufficient 

·See, for example, Ben-Dor and Gla •• (1978, 1919). Ando and 
Gla •• (1981). Shirouzu and Claa. (1982), Lee and CIa •• (1984), 
Deacha.bault and Cla •• (1983). lazhenova at 41. (1984). Hu and 
C 14.. (t 986). "or-nun, (t 985) t ,and Nor-nunl and Taylor (t 982). 
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to allow one to reconstruct the entire flowfleld. Por 
that. a numerical simulation of the flow is required. 
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Today, one can simulate the reflection of a spherical 
blast wave from a plane surface with numerical codes that 
80lve the inv1scid two-dimensional Euler equations of gas­
dynamica: for example, a simulation of the Tunguska mete­
orite explosion at an HOR • 30) m/ktl (Shurshalov 1978) 
and the calculation of a point-source case detonated at an 
HOB. 31.7 m/ktl (Fry et a1. 1981). How accurate are such 
calculations? One of the difficultiea in numerical simu­
lation of such flows is the disparity of length scales in 
the problemj for example. the height-of-burst scale vs the 
Mach stem height (typically leBs than 1/10 the height-of­
burst Bcale) vs the boundary layer scale (which is much 
smaller than the Mach stem height). One must take special 
care to design the computational mesh to take such dis­
parate length scales into account. With the memory size 
and speed of class VI computers such 88 the CRAY 1, such 
large-scale computations are now possible (although expen­
sive). Of course. one needs a minimal-diffusion numerical 
algorithm to maximize the information per grid point. A 
noteworthy example 1s the second-order Eulerian Godunov 
scheme of Colella and Glaz (1984, 198). This code has 
been used to simulate shock-on-wedge experiments in the 
regular reflection regime and in the simple, complex, and 
double-Mach reflection regimes. Excellent agreement with 
data was obtained for those cases for which viscous and 
nonequiltbrium effects were negligible in the experiments 
(Glaz et ale 1985a, 1985b. 1986). In Bome of the double­
Mach reflection cases for which such effecta were not 
amall, qualitative agreement was still found for flowfield 
features such as contact surface/second Mach stem interac­
tion and subsequent vortex rollup. Nevertheless. the 
question remains: How accurately can on~ numerically 
simulate the truly nonateady height-of-burst case? 

The objective of this work was then to perfor. a 
highly resolved numerical simulation of the two-dimen­
sional reflection of an HE-driven blast wave with the 
abovementioned Godunov scheme and to check the accuracy of 
,the solution by comparing it with precision experimental 
data. An 8-lb PBX-9404 charge experiment detonated at 
HOB • 51.66 ~ (Carpenter 1974) vas selected for that pur­
pose. A zoning convergence study (with a fine grid mesh 
spacing of 1.2. 0.6, and. finally, O.l mm) was performed 
to demonstrate that the results were independent of cell 
size. 

The computational technique including the second-order 
Codunov scheme, the equations of state. the initial condi­
tions, and the grid dynamics are.described in Sec. 11. 
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The numerical results. such as the incident one-dimen­
sional blast wave. the regular reflection regime. transi­
tion, the double-Mach reflection regime, comparisons of 
surface data, and comparisons with an equivalent shock-on­
wedge case. are presented in Sec. III. Conclusions and 
recommended improvements are offered in See. IV. 

11. Computational MethOd 

The equations of compressible hydrodynamics in one 
space variable, written in conservation form, are 

a a a 
at !! + aV A.!, + ar .!! • 0 

where 

( la) 

~ -I ~~). leU) - U1~ + up) !(U) -Ill (lb) 

'2 2 
Here, P is the density; E • (1/2)(u + v ) + e is the total 
energy per unit mass, where e is the internal energy per 
unit mass. u is the component of velocity 1n the r-direc­
tion, and v 1s the transverse component of velocity; p 1s 
the pressure; X represents an arbitrary advected scalar 
quantity; and V = VCr) - ra+I/(a + 1) Is a volume coordi­
nate, A = A(r) - dV/dr • r~. The values G • 0.1,2 corres­
pond to Cartesian. cylindrical, and spherical symmetry, 
respectively_ This particular representation of the equa­
tions follows Colella and Woodward (1984) and corresponds 
closely to the finite-difference equations that follow. 

The pressure 1s given by an equation of state: 

p :: p(p,e) (2) 

for single-fluid hydrodynamics. For the calculations pre­
sented here. it is necessary to use a two-fluid model. 
where the two fluids are the detonation product gases an~ 
air. Each of these materials has associated with it an 
equation of state of the form of Eq. (2). We let X denote 
the volume fraction of high explosives (HE). so that in a 
mixed cell, 0 ( X (I. Then our two-fluid treatment is 
defined by the last equatlon in Eq. (1) and by setting 

(3) 

'\ , 
( 
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wherever a pressure i8 needed by the numerical method. 
This relatively crude treatment (in particular. our reli­
ance on the mixture density and internal energy precludes 
referring to the model as a true two-fluid model) turns 
out to be sufficient for the present problem. This is 
largely due to the fact that the dynamics of the material 
interface are not of major interest and they do not 
directly interact with the Mach stem region flowfield. 
which is the focal point of this study. Our treatment 
here will be superseded by a true multimaterial algorithm 
based on the simple line interface calculation (SLIC) 
algorithm of Noh and Woodward (1976) and the Eulerian 
second-order Godunov scheme for single-fluid hydrodynamics 
(Colella et al. 1986). 

The numerical method used in this study 1s the version 
of the second-order Eulerian Godunov scheme described in 
Colella and Glaz (1985). This version was especially 
designed to handle general equations of state of the type 
encountered here. The modifications necessary for non­
Cartesian symmetries {i.ee. a • lt2} are described in 
Colella and Woodward {1984}. Operator splitting 1s used 
to solve multidimensional problems; in the axisymmetric 
calculation of Sece III, this means that Eqs. (1) with 
a • 1 are solved 1n the radial direction with u set to the 
radial component of velocity; and then Eqs. (1) with a • 0 
are solved in the axial direction with u set to the axial 
component of velocity. A brief overview of the method for 
solving Eqs. (1) is presented below. 

Let Un • {uj} represent the cell-averaged solution at 
time level t • tn, i.e., 

n 
Vj-l/2 

(4) 

n+l 
The computational objective i8 to define U in terms of 
Un. The conservative. second-order-in-tiae. finite-dif­
ference representation of Eqs. (1) 18 

AVn+1 un+1. AVn Un _ AtnrAn+l/2 ,n+l/2 _ An+l/2 ,n+l/2 
j j j j L j+l/2 j+l/2 j-l/2 j-l/2 

+ (Hnj++l1'/22 _ Hjn+11',22) 2.0 _ ] - n n+l 
Arj + Arj 

(5) 
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where 

AVj • Vj+l/2 - Vj-l/2. 

n+l/2 n -1 fl [ n 
Aj+l/2 • (At) 0 A rj+1/2 + 

D+l n ] 6 (rj+l/2 - rj+l/2) dB 

n+l/2 0+1/2 n+l/2 
Here, typical Fj+l/2 • F(Uj+1/2), and Uj+l/2 represents 
the average of n along the (j.j+l) interface, 1.e •• 

t n+l 
un+1/2 • n -1 f [ n n+l/2 1 j+l/2 (At) t D U r j +1/ 2 + aj +1/ 2 (t - tD) ,t dt 

where 

0+1/2 (n+l/2 n )ll n 
Sj+l/2 - r j +1/2 - r j +1/ 2 ~At 

Evidently, a computational scheme in the form Eq. (5) is 
n+l/2 . n 

defined by specifying Uj+l/2 aa a function of U • 
The first-order Godunov scheme is defined by setting 

n+1/2 n n 
Uj+1/2 to the solution of the Riemann problem (Uj' Uj+1) 

n+1/2 
evaluated along the line r/t - aj+1/2e The high-order 
scheme is conceptually aimllar in that a Riemann problem 

n n 
(Uj+l/2.L, Uj+l/2,R) ia constructed and solved in the same 
way. However, the left and right states are now functions 

n n 
of (Uj-2 ••••• Uj+2) and (Uj-l, ••• ,Uj+3), respectively. 
These additional data are used to create monotonized 
piecewfse-linear profiles in each computational zone, from 
which a version of the aethod of characteriatica is based 
to get new valuea centered on the interface. The overall 
construction, including the solution of the Riemann prob­
lem, is equivalent to the method of characteristics (up to 
aecond order) for •• ooth flow in determiniDl the interface 
fluxes. Further details, such as monotonietty constraints 
and additional constructions necessary near strong discon­
tinuities, asy be found in the references mentioned. 

An important aspect of our numerical .ethod is that we 
do not require equatlon-of-state evaluations at each atep 
in the Riemann problem iterative solution; it is only 
necessary for the approxiaate .ethod that the equation of 
state be evaluated for each uj. The information required 
by the algorithm ia the dimensionless quantities Y = 
y(p,e). r = r(P.e) such that 

p • (T-l)pe (6) 
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and (7) 

f d Note that Y • r for a non-where c is the speed 0 soun. 
polytropic equation of state. 

The equations of state used in the calculations of 
Sec. III are the equilibrium air tOS of Gilmore (19)5) and 
Hansen (1959). and the Jones-Wilkins-Lee (JWL) EOS for 
PBX-9404 detonation product gases (Dobratz 1974). The 
caloric JWL equation of state takes the form 

-R p /p -RZP /p (8) 
P _ A(l-~po/RlP)e 1 0 + B(l-wPo/RZp)e 0 + wpe 

whereas the isentrope is given by 

pS • AI! 
-RIPo/p + Be-a2Po/ p + C(Po/P)-(w+l) (9) 

where P is the inltial charge density snd the JWL param­
eters f~r PBX-9404 are A • 8.545 Hbar9; B· 0.Z049 Mbar9; 
C • 0.00754 Hbars; R1 • 4.60; R2 • 1.35; w - 0.25. The 
behavior of y for the JWL EOS may be found by fitting 
Eq. (6) to Eq. (8). and r(p,e) can be calculated from the 
isentrope using Eq. (9). in this case, c2 is obtained in 
closed form (Glaz 1979) and Eq. (7) may be used to calcu-
late r. 

The calculation was run in two stages: first as a 
one-dimensional free air burst until ground strike, and 
then as a tvo-dimensional reflection proble.. The one­
dimensional calculation was initialized when the detona­
tion wave reached the charge radius Rc. The flowfield 
inside the charge at that time was assumed to be that of 
an ideal Chapman-Jouguet (CJ) detonation (Taylor 1950; 
Kuhl and Selzew 1978) with no afterburning. Using the JWL 
parameters for a PBX-9404 charge with an initial density 
of Po - 1.84 g/c.3 • the CJ state 1s PCJ - 370 kbars; PCJ -
2.485 g/cm3 j ecJ - 8.142xl0 10 erg/g; WCJ - 8.8 ka/s; UCJ -
2.28 km/s; qCJ - 5.543xl0 10 erg/g; r • 2.85; X-I. 

For an 8-1b sphere the charge radius was Rc • 7.76 em. 
The ambient atmosphere vas initialized as Pa • 1.00 bar; 
Pa - 1.1687x10-3 g/ea3; ea - 2.1390xl09 erg/g; u • 0; 
X _ O. A flne-zoned grid (Ar • 0.3 ma) vas dynamically 
moved with the shock to accurately capture the complex 
flow in that region. Coarse zones (Ar • 1 mm) were used 
near r - 0 and for large r; and a transition region con­
nected these cells with the fine grid. After initializa­
tion, the evolution of the one-dimensional blast wave vas 
calculated by solving Eq •• (1) with G • 2 until the shock 
radiul val equal to the height of burst (51.66 ca. t -
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97.44 ~s). This solution was then conservatively interpo­
lated onto a two-dimensional mesh. 

The two-dimensional mesh covered a region 0 < r < 
100 cm and 0 < z , 20 cm (617 r cells by 214 z cells). 
Note that the top of the grid was below the height of 
burst to pack as many cells near the wall as possi~le. 
During the computation. the reflected shock never reached 
the upper boundary; conaequently. it could be treated with 
a time-dependent Dirichlet boundary condition. The 
Dirichlet data were provided by continuing to update the 
one-dimensional solution for each step of the two-dimen­
sional calculation and feeding this solution into the top 
boundary. The bottom boundary was treated as an ideal 
(slip flow) reflecting plane. The left and right bound­
aries were treated as a symmetry line and an outflow 
boundary. respectively. A uniform fine-grid region (267 r 
cells by 140 z cells) with Ar • Az • 0.3 mm was dynami­
cally moved to follow the rlghtmoat shock (the incident 
wave at early times and the Mach atem at late times). 
Again. transition and coarse cella (Ar • Az - 3 mm) were 
used around the fine-grid region. The tWo-dimensional 
calculation was continued until the Mach reflection point 
reached 80 Cm (270 ~s). This required 3200 coaputational 
steps and about 9 h CP time on the ClAY 1. 

III. Results 

A. Incident HE-Driven Blast Wave 

In 1959. Brode performed a pioneering calculation of a 
spherically symmetric blast wave driven by the detonation 
of a spherical TNT charge (initial charge density of 
1.5 g/cm3• detonation pressure of 157 kbars). The one­
dimensional Lagrangian finite-dIfference scheme used the 
artificial viscosity technique (Von Neumann and Rlchtmeyer 
1950) to capture shock fronts, and variable gamma equa­
tions of state to describe the air and detonation products 
gases. He found that an extremely strong rarefaction wave 
was created when the detonation wave reached the radius of 
the charge. This rarefaction accelerated the detonation 
products to a velocity of about 5.5 km/s. The interface 
or contact surface, CSt between the air and the detonation 
products acted like a spherical piston--thus creating an 
air shock (maximum peak pressure of about 400 bars). The 
reSUlting blast wave behaved like a decaylng pia ton-driven 
blast wave (Sedov 1959) for shock pteaBures greater than 
about 7 bara. and approached the point-source similarity 
solution thereafter. The aforementioned rarefaction wave 
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caused the detonation products to overexpand to a velocity 
larger than that induced by the air shock. This tnc~~-h 
patibility was resolved by an inward-facing shock. w c 
eventually imploded and created a series of secondary 

pulses at late times. 1 PBX 9404 
Our calculation was performed for a sph~rica -

charge (inittal charge density of 1.84 g/cm detonation 
pressure of 370 kbars). The resulting blast wave was 
qualitatively similar to Brode's results; hence, the 
results will not be reported here in detail. Quantitative 
differences were as follows. Peak velocities reached 
about 17 km/s, whereas the maximum peak air-shock pres8ur~ 
reached about 1 kbar. owing to the larger detonation pres 
sure of the PBX charge. The blast wave approached the 
point-source solution at a shock overpressure of about 
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13 bars vs 7 bars for TNT. The air shock arrived at 
ground zero (i.e •• at a shock radius corresponding to the 
HOB - 51.66 cm. or 6.78 charge radii) with an incident 
over-pressure of 98.86 bars; hence. the flowfield corre­
sponded to a piston-driven wave throughout the entire 
regime of the two-dimensional calculation. This led to 
shock interactions that are unique to the HE case. 

B. Overall View of the Two-Dimensional Reflection 

An overall view of the two-dimensional reflection of 
the spherical HE-driven blast wave from an ideal plane 
surface is depleted tn Fig. 1 in terms of isodensity, 1so­
internal energy, and lsopressure contours at different 
times. Thirty equally spaced contour values were used • 
with the minimum and maximum value and step size ldentt-
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fied on the plot. This technique gives a concise display 
of the major features of the two-dimen8ional flowfield: 
Discontinuities appear as heavy dark lines (where many 
contours group together). rarefaction waves appear as a 
fan of contour lines. while platesu regi,ons are contour­
free. Contact .urfaces may be identified as discontinui­
ties in density and internal energy. without any jump in 
pressure or velocity; slip lines may be distinguished as 
contact surfaces with a discontinuous change in velocity; 
shocks are denoted by discontinuities with sharp jumps In 
pressure. 

In Fig. 1, the incident shock (I). the contact surface 
(CS) separating the detonation products and air. snd the 
inward-facing shock (I') of the incident blast wave are 
clearly visible. Reflection of the incident shock 1 from 
the plane surface creates the main reflected shock R, 
which effectively 8tops the contact surface CS. At 8mall 
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ground ranges, the reflected shock propagates upward very 
slowly because of the large, downward-dtrect~d dynamic 
pressure of the detonation products gases of the incident 
wave. This is markedly different from the case of the 
reflection of a point eKplosion blast wave in which the 
reflected shock propagates very rapidly through the low­
density, high-sound-speed region neaf the blast center 
(Fry et a1. 1981) • 

Interactions of the reflected shock R with the contact 
surface CS and the shock I' create additional shocks near 
the ground and generate vortex structures on CS and SL'. 

,t,_ 2a Interaction of the reflected .. ve I with the contact 
aurface CS and ahock I' 10 the regular reflection re,l .. 
(t • 171 ~.i reflecttoD potDt at 50 ca). 

... 
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13.1 

r 'eml 
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, .em. 43.' 4'" 632 

I 

j 

'1,. 2b IntaractioD of the reflected vaVA R with the contact 
.urlace CS and ahock I' 1n the regular reflection reBl.e 
(t • 111 ~.; raflaccion point at SO ca). 

as shown in Figa. 1a and lb. The reflected shock also 
deflects tbe conta~t 8urface away from the Macb stem 
region 80 that in this calculation, the detonation prod­
ucts are not entrained In the Mach stem flow. 

C. The Regular Reflection Region 

A detailed view of the flovfield near the end of the 
regular reflection reaion (t • 111 ~8. r.fle~tion polnt 
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at 50 ca) il Ihown in Pi,l. 2. and Zb. The weaker dllcon-
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P.,_ 2c. Interaetton of the raflected .. va a with tha contact 
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Scha .. tic ahovln, vave interacttona: (a) t • 124 ~a. r • 3D c.; 
(b) t • 145 Pat r • 40 c.j (c) t • 171 pat r • 50 ca. 

tinulties are somewhat diffieult to pi~k out when they are 
loeated in the eoarae-zoned region; hen~e they have been 
depIcted achematleally in Fig. 2~. 

The reflected ahock R interacts with tbe incident-wave 
contact surface CS at point A. creating a reflected shock 
RCt and deflecting CS. Shock RCI refle~ta off the wall at 
point B aa a regular reflection, thus creating • seeond 
peak pressure on the wall. The reflected portIon of RCI 
reflects off contact surface CS at point C, creating 
reflected shock RC2. and further deflect. eontact surface 
cs. Shock RC2 reflects off tbe vall at point D as a regu­
lar reflection. thus creating a third peak pressure on tbe 
wall. The reflected portion of shock RC2 reflects off 
contact surface CS at point E, creating a third reflected 
shock RC). 

Tbe transmitted portion of abock R emanating fro. 
polnt A interacte with the incident abock I' (oblique 
ahock interaction) at point 'I cr.atlftl a _lip l1n. IL'. 
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The transmitted portion of shock l' emanating from point P 
interacts obliquely with the transmitted portion of shock 
RCl emanating from C at point G; transmitted shocks from 
this reflection interact with the contact surface CS at 
point H. and with Blip line SL' at J. At earlier times, a 
transmitted shock from point J interacted with the main 
reflected shock at point L. Density/internal energy gra­
dients in the incident wave cause kinks in the main 
reflected wave at points K and K'. 

In suamary. the following feature8 were found in the 
regular reflection region. The main reflected wave R 
reflects within the channel formed by the wall and the 
dense detonation products (CS), causing additional pres­
sure pulses on the wall. Shock interactions with contact 
surfaces at points A and F Inviscldly generate positive 
and negative vorticity. respectively, which rolls up into 
vortex structures shown in Figs. 1a and lb. Finally, the 
main contact surface CS is idealized in this calculstion 
as a discontinuity. We know experimentally, however, that 
this surface is irregular and diffused--perturbations on 
this surfsce grow owing to a Rayleigh-Taylor mechanism and 
these lead to local turbulent mixing during the evolution 
of the incident blast wave (Anisiaov et al. 1983). The 
strength of reflected ahocks RCl and RC2 will depend on 
the mixing across the contact surface CS. TheBe inviscid 
calculations, which do not take Into account such turbu­
lent mixing. no doubt overestimate the strength of shocks 
RCl and RC2. 

Table 1 eo.paTison of regular double-Mach transitions 

Incident 

Souree 

Vedge 
.n81e. 8 

(de8) 

Li.tt of r.gul.r reflection 

Xuhl. 1982 
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GI .... 1982 
(Hansen t
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[Hanaen 19 S9}) 

HOI calculation 
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ahock 
angl., G 
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44 
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46.8 

Transition 
8round range 

(ell) 
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D. The Transition Regime 

A detailed view of the shock structure 1n the tran­
sition region 1s given In Fig. 3. In thIs calculation 
transition from regular reflection (RR) to double-Mach' 
reflection (DMR) occurred at a ground range of greater 
than 52.5 cm and less than 55 cm t with corresponding inci­
dent shock angles of 44.5 and 46.8 deg, respectively. 
Comparison with the limit of existence regular reflection 
(i.e •• the so-called deflection criterion) for real air tn 
Table 1 indicates that the calculated regular reflection 
region persisted in this helght-ot-burst calculatIon for 
1.5 to 3.8 deg beyond the theoretical limft. Note that a • 
similar persistence of regular reflection (PRR) has been 
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,tg. J) Pre •• ure contour •• hovlR1 tr.nsition fra. regular to 
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observed for abock rafl.etton. !rom vedlsa. both .xperl­
mentally (Bleackney and Taub 1949; Henderson and Lozzl 
1975) and numerically, with the same hydrocode used here 
(Glaz et a1. 1985a. 1985b. 1986). 

405 

One can identify three potential reasons for persis­
tence of regular reflection: 1) real viscosity. 2) numeri­
cal viscosity, and 3) inadequate zoning. Real viscosity 
must be rejected for this case because it was not included 
in the calculation. The second-order Godunov scheme used 
here leaves essentially no numerical viscosity in the 
smooth regions of the flow. However. all shock-capturing 
schemes introduce numerical dissipation at shock fronts to 
allow a smooth transition between preshock and postshock 
states. When such algorithms are used to calculate shock 
waves near a wall. a "numerical wall boundary layer" is 
formed (Noh 1976). The primary effect of this 1s to 
create an artificial "wall heating"--typically a few per­
cent. This effect can be seen in the density and radial 
velocity contours of Fig. 2. which exhibit a kink at about 
the 3-mm height (about ten cells). 

A concerted effort was made to minimize computational 
cell-size effects. The 617 by 214 grid used essentially 
all of the one-megaword fast core space available on a 
CRAY 1 computer. The ftne-zoned grid (267 by 140 cells) 
that slid with the reflection region used cells of 0.3 by 
0.3 ma. This resulted in 83 radial cells between the 
reflection point at 52.5 em and the 55-cm point, and one 
would think that would constitute adequate zoning. How­
ever. the Mach stem grows from a point (in the inviscid 
theory) and is never captured computationally until the 
shock structure grows large enough to be resolved on the 
mesh. Note that at the 55-cm location, the Mach stem was 
only about four cells high. If a Mach stem existed at the 
52.S-cm ground range, it would be less than one cell high. 
hence, it would not have been resolved. A more detailed 
inviscid calculation of transition using a local adaptive 
grid refinement (e.g_, Berger and Colella 1986) is 
required to conclusively resolve this zoning question. We 
speculate that such inviscid calculations will indeed con­
firm that double-Mach reflection will exist immediately 
after passing the RR limit. Therefore, we believe that 
the persistence of regular reflection in these calcula­
tions is caused by inadequate zoning and the numerlcal 
wall boundary layer, while the persistence behavior 
observed in experiments 1s due to a viscous wall boundary 
effect. To conclusively prove the latter, a viscous cal­
culation of the oblique shock structure at the wall is 
required. 

t 

t 
I 
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'.cult., .a~dyn •• 'o _tf.otl war. ab •• rvld In tnt. 
calculation in the PRR region. It ls' well known that aa 
the incident shock angle increases in the regular reflec­
tion region, one encounters the sonic criterion (where 
sound waves can reach all the way to the reflection point) 
about 1 deg before one reaches the RR limit (Henderson and 
Lozzi 1975). In such a case, the reflected shock is no 
longer straight but continuously curved near the reflec­
tion point. The present calculations also exhibit such 
effects. Figure 3 ahows that the reflected shock i8 
straight at a ground range of 45 cm (RR) but curved near 
the reflection point at 52.5 cm. As shown in Table 2. the 
angle of the main portion of the reflected shock increases 
smoothly through transition; however, at the wall 1t jumps 
from about 24 deg at the 50-cm range to about 37 deg at 
the 52.5-cm range. 

The pressure and velocity prof tIes on the wall also 
changed dramatically 1n the PRR regton. When the reflec­
tion point was at 4S cm, the pressure and velocity gra­
dients were well behaved. However, in the PRR region 
(e.g •• with the reflection point at ,52.5 cm), the pressure 
and velocity gradients on the wall become very large as 
one approaches the reflection point from the left. 

In summary. the limit of regular reflection for this 
case 1s 43 to 44 deg (depending on the particular equation 
of state used for air) with a corresponding ground range 
to transition of 48.2 to 49.9 cm. In this calculation. 
regular reflection seemed to persist to a ground range of 
about 52.5 cm (a • 44.5 deg), but the reflected shock 

Table 2 Shock angles near transition 
; 

Incident Reflected shock ansle 
Cround shock 
range angle. (1 Off w.U. Near wall. 
(ea) (deg) &(deg) 8o(deg) Regi_ 

45 42.S 19 19 RR 

50 44 24 24 PttR 

52.5 46.S 26 -)1- PRR 

55 48 28.5 -31 II1R 

57.5 49 33 -37 IJofR 

60 51 34 -37 IIfk 
; 
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angle near the surface at this range was consistent w1th 
that of double-Mach reflection (8 ~ 37 deg). Hence, we 
believe that it was indeed a nascent double-Mach structure 
that was not computationally resolved on the mesh. As we 
shall see in the next section, both local adaptive mesh 
refinement and turbulence modeling are required to prop­
erly model certain details of the flow in the double Mach 
region and. by implication. to accurately predict transi­
tion, 

E. The Double-Mach Region 

A detailed view of the complex flowfield in the 
double-Mach region Is presented In Fig. 4 (t - 270 ~B, 
Mach stem at 80 em). The domain of these figures repre­
sents the flne-zoned region of the calculation (267 r by 
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.u 

Fla- 4. Shock atructure 
In the double-Mach reflec­
tion rea1.e ~t • 270 ~'. 
Mach ate. at 80 ca). 
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140 z cells with a cell size of 0.3 am). The incident 
shock (I), the reflected shock (R'). and the main Mach 
stem (Ml) meet at the main triple point (TPt). generating 
a slip line (SL!) that has positive vorticity. Air flows 
along SLI and impacts on the wall. thus creating a large 
local pressure. This point actually corresponds to a 
moving stagnation point (SPl), which is particularly evi­
dent In the relative vector velocity plot of PIg. 4c (the 
coordinate system is moving with the velocity of SPi at 
2.308 km/s). The flow overexpands from SPI (about 145 
bars) by means of a strong rarefaction wave (RW) and foras 
a low-pressure (-la-bar minimum) supersonIc wall jet (8ee 
the Mach number contours. relative to SPit of FIg. 4c). 

The gas velocity in the wall jet (3.S to 4.3 ka/s) is 
larger than the wave velocity of the Mach stem (-2.75 
km/s) , so the jet rams into the rear of the Mach atem. 
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Fig. 4c Shock structure 
in the double-Mach reflec­
tion regime (t • 270 ~8. 
Hach stem at 80 em). 

This interaction pushes out the foot of the Mach stem and 
forces the jet to expand upward two dimensionally, thus 
forming a rotational flow and a main vortex VI. which has 
positive rotation. The rotational flow near VI is locally 
supersonic. and embedded shocks (5', 5". and S"') can be 

seen. 
The toeing-out of the Mach atem creates a second 

triple point, TP2. This is actually an inverted Mach stem 
structure with an incident shock HI'. a reflected shock 
S'., a Mach atem H1, and a slip line SL2 that has negative 
vorticity. This slip line flows up and over the main vor­
tex VI. approaches the wall and stagnates, thus creating a 
second moving stagnation point (SP2). which is also evi­
dent in the relative velocity vector plot of Pig. 4c. At 
a range of 80 em, SP2 has shocked-up on the wall. All of 
slip line SL2 and some of SLI are entrained in a second 
vortex structure V2. which baa negative rotation (see 
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Fig. 4c). All of the fluid entering the main Mach stem HI 
between triple points TPt snd TP2 is entrained in vortex 
V2 (see the vorticity contour plot of Fig. 4c). 

The gas velocity is supersonic above slip line SLl and 
subsonic below it. Pressure waves from SPl coalesce. 
forming the second Mach stem M2. The latter interacts 
with the reflected shock forming a third triple point 
(TP3). This also appears to be an inverted Mach structure 
with an incldent.wave R', a reflected wave HZ. a Mach stem 
R, and a slip line (SL3). A fourth triple point (TP4) can 
be seen on shock M2. It appears to be a remnant of the 
interaction of the embedded shock S'" with SL1. It has 
an incident shock M2, a reflected shock R". a Mach stem 
H2'. and a slip line SL4. Shock a" terminates on slip 
line SL3. while shock HZ' terminates on slip line SLI. 

Secondary vortex structures are evident on slip line 
SLl (caused by shock H2 and local rsrefaction waves) and 
slip line SL2 (induced by shock S"ll. and near vortex VI 
(the entrained part of SLI that was shocked by 5' '). 

The rarefaction wave behind the incident shock propa­
gates through the DMR structure (see. for example, the 
density. internal energy. and pressure contour plots of 
Fig. 4a) just as in the regular ' reflection case; but this 
appears to be a weak effect, since the main discontinui­
ties (R', SLI, and H2) are basically straight lines. 

Even at the aO-cm range, the wall jet was quite thin 
(1.8 mm) and not well resolved (about six cells high); 
although very flne zoning was used here, it was still too 
coarse for adequate numerical resolution. The slip line 
SLl on top of the jet is a free shear layer subject to 
Kelvin-Helmholtz instabilities. Here the Reynolds number 
of the jet was about 3xl04 based on jet height. It will 
no doubt develop vortex structures, leading to turbulent 
mixIng. Also, the wall boundary layer will reduce the 
radial momentum of the jet. Hence, turbulence effects 
will influence the entrainment of the main vortex Vl and 
the toeing-out of Ml' (i.e., there will be less pushing). 
These effects were not modeled in this calculation and 
may. in fact, influence transition. 

F. Surface Data 

Figure 5 gives a detailed snapshot of the complete 
flowfield on the 8urface at the end of regular reflection 
(t - 171 ~8, reflection point at ~o cm) and in the fully 
reaolved double-Mach region (t • 270 ~8. Mach stem toe at 
80 em). Such plots augment the interpretation of the con­
tour plots 1n Flga. 2 and 4. The reflected shocks a. aCI. 
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and RC2 (as well as additional wave structures near the 
origin) can be seen. Both RCt and RC2 reside 1n the 
cORr~e-zoncd region at these times; hence they appear 
somewhat diffused. 

In the double-Mach region, the matn features of the 
flow are sharp and well resolved. Hoving stagnation 
polnt6 SPl and SP2. the shocks HI' and S'. and the slip 
surface SLI are clearly visible. The gas overexpands from 
stagnation point Spt. reaching a maximum velocity of about 
4.2 ka/s (Mach number of about 5.4) before it is shocked 
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by SI. thereby becomtng compattble with conditions behind 
HH 

In effect, the double-Hach structure focuses the blast 
energy toward the surface, thereby greatly extending the 
high enthalpy flow region. For example. dynamic pressures 
of 600 bars, pitot pressures of 1200 to 1400 bars, and 
total enthalpy of nearly lOll erg/g seen in the regular 
reflection region at ~O em are extended to a ground rAnge 
of 80 cm as a result of the double-Hach flowfleld. 

The calculated surface-level peak overpressures of the 
various shocks are plotted as a function of ground range 
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in Fig. 6. The incident overpressure at ground zero of 
98.86 bars reflects to a peak value of 880 bars. The cor­
responding theoretical reflection factor for real air Is 
9.43. which results 1n a theoretical reflected pressure of 
932 bars (vs 880 bars for the two-dimensional calculation, 
or 6 percent low due to zoning). The reflected pressure 
curve R agrees very well with the experimental data of 
Carpenter (1914). thus indirectly confirming that the cal­
culated incident blast wave closely simulated the experI­
mental blast wave. Near ground zero, the shocks RCI and 
RC2 are much stronger than the reflected shock Rt but they 
decay more rapidly. As mentioned before, calculated 
values for RCl and RC2 are expected to be too large 
because of the sharp contact surface In this calculation. 

Note in particular that the pressure range curve for 
ahock R suffers a jolt at 49.5 cm (i.e_, near the RR 
limit) and locally increases at 53 cm--thls behavior per-

j 
~ 
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I. 

GR leml 

'ig. 6) Co.pari.one of calculated peak pre.sures OR the surface 
with experlaental data (Carpenter 1914). 

haps being a consequence of the arrival of the sonic point 
singularity and the formation of a nascent Mach stem. 

In the double-Mach region, the main stagnation point 
SPI decays from 290 bars at transition to a value of about 
100 bars at 80 cm. Stagnation point SP2 and shock HI' 
decay rather slowly from about 100 bars to 75 bars. In 
general, the calculated peaks in the double-Mach region 
are In excellent agreement with the expertmental data 
(Carpenter 1974) even at 53 em, where the grid points were 
inadequate to resolving the double-Mach ate •• 
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G. Comparisons witb DKR on Wedges 

Considerably more ia known about the details of 
double-Macb shock structures created by plane sbock 
reflections from wedges. Such flows have many useful 
festures: 

1) The flows are self-aimilar (two-dimensional 
Cartesian). and bence are more amenable to analysIs. 

415 

2) Experimental photographic results (e.g., Schlieren, 
sbadowgrapb, and interferometric data) are available to 
verify code calculations. 

3) The complicating effects of a rarefsction wave 
behind the incident shock are absent. 

In addition. wedge results (e.g •• reflection factors) 
are often used to approximate tbe beight-of-burst case. 
Hence. it 1s useful to explore the equivalence of the DMR 
flowfleld for the wedge case corresponding to the beight­
of-burst case. 

The double-Mach structure at a t1me of 270 ~s (Mach 
ste. at 80 em) from the present calculation was aelected 
for comparison. At this time the incident sbock Mach num­
ber (MI) was 5.46 witb an incident shock angle of about 
57 deg. The equivalent wedge caae was constructed as fol­
lows. A 500xlOO y-cell two-dimensional Cartesian mesh was 
chosen with square zones (Ax • Ay • 1 unit). The shock 
properties corresponding to an HI • 5.46 real air shock 
were continuously fed 1nto the left side of the grid at a 
shock angle of 57 deg (wedge angle of 33 deg). The 
second-order Godunov scheme (with Gilmore's equation of 
state for real air) was then used to calculate the 
reflected flowfield. 

The results of the wedge case are shown in Fig. 7. By 
design, the calculations ace identical at tbe main triple 
point TPl. Tbe overall features of the wedge flowfield 
are quite similar to the height-of-burst case (Fig. 4). 
considering that the wedge case was about 2.4 times more 
coarsely zoned. Peak pressures on the wall (SP1) were 
133 bare (instantaneous value at 75.2 ca) for the beight­
of-burst case and 122 bars for the wedge, yielding 
-reflection factors- of 3.8 and 3.5, respectively. 

The principal differences are the reflected shock 
angle and the location of triple point TPJ. The reflected 
shock angle of 49 deg for the beight-of-burst case is con­
siderably steeper tban the 22-deg angle for the wedge 
case. In the beight-of-burst case. the rarefaction wave 
behind the incident shock allows the reflected shock R,to 
move upward more easl1y into the incident wave. Tbis 
causes the second Mach stem (H2) to be more vertical and 
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Plg. 7) Double-Mach reflection fro. a ra.p (HI. 5.46, 8v • 33 des, 
Cl1.ore'a air lOS (Cilmore 1955): (a)'Overall den.tty contours; 
(b) denstty contours 1n the double-Mach region {daahed linea cor­
respond to the HOI reaulta at 270 ~')i (e) wall pre •• ure distribu­
tion. 

the length of the reflected shock R' to be about half the 
value found for the wedge case. (To elucidate tbese 
points. shocks H2 and R for tbe height-of-burs~ case are 
depicted as dasbed lines on the wedge results.) Conse­
quently, the distance between points SPI and HI' (i.e., 
the DHR duration) is somewhat shorter in the beigbt-of­
burst case. 

In summary. we may conclude that the beight-of-burst 
case is truly nonsteady, and hence not amenable to sImi­
larity analys1s. The rarefaction wave behind the incident 
sbock modifies the reflected shock angle at TP3 and there­
by influences the location and shape of the aecond Mach 
ste. HZ, compared to the eqUivalent wedge case. Because 
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peak reflected pressures and "reflection factors" are a 
consequence of the gasdynamic state at the main triple 
point. they are similar for the two cases. However. the 
height-of-burst "reflection factor" (R-IlPSP1!IlPI) must be 
based on instantaneous values (with SPlt TP1, and Ml' all 
being at different radii from the explosion center). 

IV. Conclusions 

The present calculation demonstrates that the reflec­
tion of a spherical HE-driven blast wave from a plane sur­
face creates complex flow structures on multiple length 
Bcales. In the regular reflection region, portions of 
shock R reflect within the channel formed by the wall and 
the dense detonatlon products, thus producing additional 
pressure pulses on the wall. The interaction of shock R 
with contact surface CS and Blip line SL' inviscidly gen­
erates vorticity, whieh leads to the formation of large­
scale vortex structures (l.e •• turbulent mixing) on the 
interface between the detonation products and the air. In 
the double-Mach flow structure, slip lines emanating from 
triple points TPI and TP2 are directed downward. The flow 
is forced to turn parallel at the wall. thereby converting 
some of the flow kinetic energy into pressure and creating 
stagnation points SPl and SP2 that move with the DHR 
structure. This also creates a supersonic wall jet con­
Bisting of a free shear layer and a wall boundary layer. 

The Reynolds number of the jet is quite large. ranging 
from lxl04 for this case to 107 for large-scale explo­
sions. Bence. one would expect strong turbulent mixing at 
the free shear layer; however, the wall jet in these cal­
culations was laminar. The second-order Godunov algorithm 
used here is nondiffuslve enough to be able to calculate 
the evolution of discrete vortex structures started from 
inviscld Kelvin-Helmholtz instabilities (Glowacki et ale 
1986) if adequate zoning is used in the jet (about five 
times finer than that used here). The vall boundary layer 
was not modeled. Both effects will influence the horizon­
tal momentum of the jet. the toeing-out of the Mach stea, 
and the rotational flow of the main vortices Vl and V2. 
Adaptive grldding and a viscous wall boundary layer capa­
bility are needed to accurately model these details. 

A double-Mach shock structure appeared in this calcu­
lation at a ground range between 52.5 and 55 ell, which was 
1.5 to 3.8 deg beyond the ltmit of regular reflection. We 
believe that the so-called persistence of regular reflec­
tion in this calculation was caused by inadequate computa­
tional zoning. whereas the persistence in experi.ants is 
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due to viscous wall boundary layer effects. Adaptive 
grlddlng and a viscous wall boundary layer capability are 
again needed to accurately calculate such flows. 

The double-Mach shock structure directs some of the 
blast energy toward the surface. and thereby extends the 
high enthalpy flow to larger ground ranges. The calcu­
lated surface-level peak pressures are in excellent agree­
ment with experimental data at all ground ranges. 

A shock-on-wedge calculation was also performed to 
simulate the double-Mach flowfield from the helght-of­
burst case at t • 270 ~s (Mach stem at 80 em). Overall 
features of the flow were quite similar in both cases. 
The principal differences were the reflected shock angle 
which was larger in the helght-of-burst case; and the • 
location of triple point !Pl. which was closer to TPI in 
the height-of-burst case. These effects were attributed 
to the incident wave rarefaction effects and true non­
steadiness of the height-of-burst case. 
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