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THEORETICAL AND NUMERICAL STRUCTURE FOR REACTING
SHOCK WAVES*
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Abstract. Several remarkable theoretical and computational properties of reacting shock waves are both
documented and analyzed. In particular, for sufficiently small heat release or large reaction rate, we
demonstrate that the reacting compressible Navier-Stokes equations have dynamically stable weak detona-
tions which occur in bifurcating wave patterns from strong detonation initial data. In the reported calculations,
an increase in reaction rate by a factor of 5 is sufficient to create the bifurcation from a spiked nearly Z-N-D
detonation to the wave pattern with a precursor weak detonation. The numerical schemes used in the
calculations are fractional step methods based on the use of a second order Godunov method in the inviscid
hydrodynamic sweep; on sufficiently coarse meshes in inviscid calculations, these fractional step schemes
exhibit qualitatively similar but purely numerical bifurcating wave patterns with numerical weak detonations.
We explain this computational phenomenon theoretically through a new class of nonphysical discrete
travelling waves for the difference scheme which are numerical weak detonations. The use of simplified
model equations both to predict and analyze the theoretical and numerical phenomena is emphasized.
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1. Introduction. Through numerical experiments, several peculiar theoretical and
practical computational properties regarding the structure and stability of reacting
shock waves are both documented and analyzed. The waves which we study are defined
by solutions of the compressible Navier-Stokes or compressible Euler equations for
a mixture composed of chemically reacting species in a single space dimension.

The compressible Navier-Stokes equations for a reacting gas are extremely com-
plex, and it is not surprising that simpler qualitative-quantitative model equations for
the high Mach number regime have been developed [5], [7], [11]. These simpler model
equations are a coupled 2 x 2 system given by a Burgers equation coupled to a chemical
kinetics equation (see &2 for a detailed description of the model equations). This
model system has transparent analogues of the Chapman-Jouguet (C-J) theory, the
Z-N-D theory, and also the structure of reacting shock profiles with finite diffusion
and reaction rates, and these are developed in detail in [7]. One of the objectives of
this paper is to use the predictions of this simplified model system both for theoretical
purposes and as a diagnostic for numerical modelling of the more complex equations
of reacting gas flow in the shock wave regime. The authors advocate the use of these
simpler model equations for numerical code development for shock phenomena in
reacting gases in much the same fashion as the Burgers equation has provided both a
wide class of simple test problems and the anlysis of difference schemes for the Burgers
equation has influenced code development for nonreactive compressible gas flow.

In § 2, we begin by listing the equations of compressible reacting gas flow and
describing in detail the simplified model equations mentioned above; then, we describe
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the numerical methods used in this paper. We use very natural fractional step schemes
with three ingredients per time step: 1) the inviscid hydrodynamics is solved by the
Godunov, second order Godunov [3], or random choice [ 1] methods; 2) the chemistry
equation is advanced by explicit solution of the ODE for mass fraction given the
temperature; 3) the ditfusion equation is solved via the Crank-Nicolson or backward
Euler methods. Such a class of numerical schemes is one of the obvious candidates
for use in modelling reacting gases given the current development of methods for
solving the compressible Euler equations. Also, with the simplified one-step kinetics
schemes which we study, the chemistry equation for the mass fraction is linear given
the temperature at each mesh point so that even when the reaction rate is high, this
equation can be solved exactly—thus, no additional errors from solving the stiff ODE
are introduced.

For the calculations in § 3, the shock layer is fully resolved, typical length scales
are on the order of 107° or 107" meters, and the diffusion coefficients on such a length
scale are roughly order one in magnitude. Our objectives are to document the structure
and dynamic stability of reacting shock layers on such length scales where diffusive
mechanisms are important. The wave structure is remarkably complex with varying
heat release and reaction rate, and to our knowledge no time-dependent computations
analyzing this structure have appeared previously. First, we report on detailed numerical
experiments with the model equations which corroborate the rather complex behavior
(see [7]) of the reacting shock profiles as the heat release varies. We use numerical
experiments to predict a bifurcating wave pattern instead of the expected strong
detonation for sufliciently small heat release. This bifurcating wave pattern has a
precursor stable weak detonation moving at a faster speed followed by a slower moving
purely fluid dynamic shock. The above experiments in the model suggest analogous
behavior for the reacting compressible Navier-Stokes equations. Through numerical
experiments for a detonation with fairly small heat release (modelled on an ozone
decomposition detonation), we document the existence of dynamically stable weak
detonations and the existence of bifurcating wave patterns as described above for the
model equations. In fact, with all other parameters held fixed for this detonation wave,
an increase in the reaction rate by a factor of 5 changes the wave profile from a spiked
Z-N-D detonation structure to such a bifurcating wave pattern with a stable precursor
weak detonation. We mention here that weak detonation waves are observed experi-
mentally when initiated through external means [4] and that a variety of theoretical
scenarios for the existence of weak detonations are given in [4, Chap. 3].

Resolving detonation waves on viscous length scales is not a practical option for
a large scale reacting gas computation with many wave interactions such as the problen:
of transition to detonation. In § 4, we set all diffusion coeflicients to be zero and
investigate the problem of computing the spiked Z-N-D detonations of the inviscid
reacting Euler equations on coarser meshes. This problem has practical interest because
the spike in a Z-N-D profile has significantly higher values for the pressure. Any
algorithm which is based on using the Chapman-Jouguet theory alone (such as [2])
automatically will ignore this local pressure spike in the travelling wave structure no
matter how fine a mesh is used. The numerical experiments with the inviscid fractional
step schemes with either the Godunov or second order Godunov methods exhibit the
following surprising behavior:

(1.1
A) For very fine meshes, the Z-N-D wave is completely resolved by these
numerical methods.
B) For moderately fine meshes (i.e. meshes vielding very high resolution for
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the second order Godunov method in the nonreactive case) and either of
the fractional step methods, a numerical bifurcating wave pattern emerges
with a structure qualitatively similar to those documented theoretically in
§ 3. This numerical wave strucure has a discrete weak detonation profile
moving at the mesh speed-—one grid point per time step—with all chemical
energy released in this numerical precursor wave followed by a slower
moving numerical shock wave.

The property in (1.1B) is an unexpected and serious defect in the use of fractional
step schemes based on (higher order) Godunov methods for inviscid reacting gas
calculations in the shock wave regime. On the other hand, for the simplified model
equation the inviscid fractional step scheme for the random choice method yields a
correct pressure spike in the Z-N-D profile with as few as three mesh points resolving
the reaction zone while the split Godunov scheme has the nonphysical monotone
numerical bifurcating wave pattern with as many as twenty mesh points resolving the
reaction zone in the same problem (see §4). However, in this paper, we have not
pursued the use of the inviscid fractional step random choice scheme for the reacting
compressible Euler equations and plan to do this in the future.

Finally, in § 5, we give a theoretical explanation for the computational phenomena
on coarse meshes reported in the previous section for the Godunov methods. We work
within the context of the simplified model and derive a new class of nonphysical
discrete travelling waves for the difference equation for a simplified variant of the
basic fractional step methods which uses the upwind scheme rather than Godunov’s
method. As predicted by the numerical experiments from § 4, these exact discrete
travelling waves are numerical weak detonations which move at the speed §=Ax/Af,
i.e. one grid point/time step and the numerical experiments from § 4 verify the stability
of these purely numerical discrete weak detonations on sufficiently coarse meshes. The
structure of these nonphysical discrete travelling waves is quite different from that of
the well-known discrete entropy violating travelling waves [6], [8] which can occur
for difference schemes in the nonreactive case. Furthermore, in the context of the
simplified model, such discrete travelling waves always exist on a given mesh if either

A) KAx is large enough with K the reaction rate or

(12) B) the heat release ¢, is large enough for a fixed mesh.

The explicit conditions for the existence of numerical weak detonations provide a
guantitative guideline for the validity of the basic fractional step schemes in coarser
mesh calculations.

2. Preliminaries.

The compressible Navier-Stokes equations for a reacting mixture. We assume a
standard simplified form for the reacting mixture throughout this paper. Thus, there
are only two species present, unburnt gas and burnt gas, and we postulate that the
unburnt gas is converted to burnt gas by a one-step irreversible chemical reaction.
Under the above hypothesis the compressible Navier-Stokes equations for the reacting
mixture [12] are the system of four equations,

pl+(pu)\f :Os

(pu),+(pu’ +p), = pii,
(2.1) u?
(PE)y + (P“E + up)\‘ = ( I (T) ) + Cp(/\T:r)x»

ra

(pZ) +(puZ),=-pK(TYZ+(DZ,),,
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where p is the density, u is the fluid velocity, E is the total specific energy, and Z is
the mass fraction of unburnt gas. The total specific energy, E, has the form

2

(2.2) E:e+an+%

with e the specific internal energy and g, the amount of heat released by the given
chemical reaction. For the assumed ideal gas mixture (with the same y-gas laws), the
pressure and temperature are defined respectively by the formulae p=(y—1)pe and
T=p/pRxM with R, Boltzmann’s gas constant, M the molecular weight, ¢, the
specific heat, and vy defined by ¢,(y—~1)= R. The factor K(T) in (2.1) is strongly
dependent on temperature and has the form

(2.3) K(T)= Kop(T)
with K, the reaction rate. The function ¢(T) typically has the Arrhenius form,
ST =T" "

or for computational purposes, the approximation for large A given by ignition
temperature kinetics, )
]9 Tz ’i:(b

(I)(T):{O, T<7~"0

with T, the ignition temperature.

The coefficients wu, A, and D in (2.1) are coeflicients of viscosity, heat condition,
and species diffusion, respectively. The compressible Euler equations for the reacting
mixture are the special case of (2.1) with u =A=D=0.

The simplified model equations. Obviously, even in a single space variable, the
above system is extremely complex so it is not surprising that simpler qualitative-
quantitative models for the equations in (2.1) have been developed [5], {7], [11]. The
simplified model equations for the shock wave regime derived through asymptotic
limits from the system in (2.1) (see [11]) have the form

u,+ (.1_”2_ q()Z).\' = Bu(,\'a
Z.=Kp(u)Z

(2.4)

where u 1s an asymptotic lumped variable with some features of pressure or temperature,
Z is the mass fraction of burnt gas, g, > 0 is the heat release, 8 =0 is a lumped diffusion
coefficient, K is the reaction rate, and ¢(u) has a typical form as described below
(2.2). The reader should not be confused by the appearance of Z, on the left-hand
side of (2.4) rather than Z, The coordinate x in (2.4) is not the space coordinate but
is determined through the asymptotics as a scaled space-time coordinate representing
distance to the reaction zone; the x-differentiation occurs because Z in (2.4) is convected
at the much slower fluid velocity rather than the much faster reacting shock speed (see
[11] for details). With these interpretations the equations in (2.4) become a well posed
problem by prescribing initial data uy(x) for u(x, t) at time =0 and prescribing the
value of Z(x, 1) as x> (corresponding to finite values ahead of the reaction zone
with the rescaling in [11]), t.e. Zy(?) should be specified with the boundary condition,

(2.5) Zo(1) =1lim Z(x, 1).

In this paper, we always set Zy(t) =1 for simplicity. The analogues of the Chapman-
Jouguet theory, the Z-N-D theory, and the structure of travelling waves with nonzero
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diffusion and finite reaction rates for the equations in (2.4) have all been discussed in
detail in [7] and we refer the reader to that paper when we discuss properties of
solutions in the model.

The numerical methods. First, we describe the basic fractional step numerical
method used in solving the model equation from (2.4). We set w = (u, Z). Given mesh
values w]" = (u]Y, Z), in the first fractional step we determine u’*"/? from ul by
using a finite difference approximation to the inviscid Burgers equation

u,+(Gu?), =0.

In the computations reported below, we use Godunov’s method, a second order
Godunov method [3], or the random choice method [1] as the finite diflerence
approximation. In the next fractional step, we determine Z»,N“ as the solution of the
ODE

Z.=Ko(u)Z

with u given approximately by u;""'/?. We march from positive values of x to negative

values of x and use the boundary conditions from (2.5) with Z,(1) =1 on the right-hand
side of the large interval where the calculations are carried out. Given the values of
ul"*'"? the above ODE is linear in Z and we solve it by the trapezoidal approximations
of the integral in the exact solution formula to derive

; -KA ” .
(2.6) Z =2 exp (—a—)fm(ze,“f‘“w b(u’ ”“)))

with Z""'=1 for j large enough. Finally, in the third sweep of the fractional step
method we solve the diffusion equation

(2-7) ul - ﬁux,\' = q(YZx = QOI(Q')(U)Z-

The linear diffusion equation on the left-hand side of (2.7) is discretized by using
either the backward Euler or Crank-Nicolson methods with initial data u}V“/Z. The
value of u‘,-N "1 is then determined by solving this inhomogeneous difference equation
where the values for (u""?, Z¥"'/?) are used in the approximation of the forcing
function on the extreme right-hand side of (2.7) at time level (N + 1)At. This completes
the description of the basic fractional step method for the simplified model equation.

Obviously, the only stability condition needed in the method is the C-F-L condition

required in the first sweep.

Next we describe the basic fractional step algorithms which we use for the reacting
compressible Navier-Stokes equations in (2.1). We use three fractional steps analogous
to those in the model system. In the first sweep, the inviscid nonreactive compressible
Euler equations are solved, i.e. L' denotes a finite difference approximation to the
equations,

p.+(pu). =0,

(pu) + (pr*+p) =0,
(pE), +(puE +up), =0,
(pZ),+(puZ),=0.
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For this difference approximation, we use either the Godunov or a second order
Godunov method [3] for an ideal y-gas law with the mass fraction Z advected as a
passive scalar. In the second fractional step all diffusion mechanisms are solved, i.e.
LY is a finite difference approximation to

g, =0,
:l(uu)
P
(5) ~5(x(5))
2 X X’
T, = ()\T)\,
p
:—(DZ)

In this difference approximation, we use the Crank-Nicolson scheme implemented in
such a way that pu, pu’/2, pT, and pZ are conserved (this is why we need to discretize
the trivial equation, p, = 0). The total energy at the end of this fractional step is recovered
from the formula in (2.2) with (u°/2) obtained from the kinetic energy diffusion
equation. In the final sweep, we solve the chemistry equation, i.e. L2 denotes the
discrete solution operator for

p. =0,
Z,=-Kyp(T)Z

At each grid point, we exactly integrate the linear ODE for Z using the fixed value
of temperature, T]'**'* at the grid point determined from the previous sweeps; thus,

ZN" =exp (=Ko (T) ¥ Hanz N0,

This completes the description of the method used to advance the solution from level
nAf to time level (n+1)Ar. Actually we implemented the approximation from time
level nAr to (n+2)At in the form,

tonl LArL LAyLAIL LA:

so that we have second order accuracy in time for the algorithm. The only stability
restriction on the above numerical method is the basic C-F-L condition for the inviscid
hydrodynamic sweep, L%

3. The structure and stability of detonation waves with finite viscosity and reaction
rate.

Wave structure for the simplified model system. Since we begin by studying the
structure and dynamic stability of detonation waves for the model system, we begin
with a brief summary of the surprisingly complex structure of the travelling waves for
the model system in (2.4) (the quantitative details can be found in [7]). Given a
preshock constant state wg = (ug, 1) in chemical equilibrium so that ¢(ug)=0, we
study travelling wave solutions of (2.4) with the given preshock state wg and a fixed
speed s. We seek special solutions of (2.4) with the form,

(x -~ w)
W=w
B
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so that with &=(x—st)/8
3.1 lim w(é)=(up, 1), lim w(&)=(u,0),

where u; needs to be determined. With Z= q0,Z and K,= BK, substituting the above
form of w into (2.4) leads to the autonomous system of two nonlinear ODE’s,

w=hl-su-Z+C,

Z'=Kop()Z.
The integration constant C is determined by the formula,

C= "%I‘ZR + Sug + qo,
and in general, there are two states u, -, uf with u;+»<uf and satisfying
(3.2) Sk + sug + go= 31 )+ supe = —H ) + suf.

The two states, (u,«, 0) and (u¥,0), are the only conceivable limiting values for the
second equation in (3.1) and define the end states for the corresponding weak and
strong detonation waves propagating with speed s and determined by the Chapman-
Jouguet theory (see [7]). When do such travelling waves exist with a finite reaction
rate and nonzero diffusion for fixed 5s? According to the results in [7], for a fixed
positive value of K,=BK and fixed values u,«, uf, as the heat release varies there is
a critical heat release, g, so that

A) For q,> g, a strong detonation travelling wave profile with speed s exists
connecting (ug, 1) to (u¥, 0).
(3.3) B) Forgy= g, a weak detonation travelling wave with speed s exists connecting
(g, 1) to (u;~, 0).
C) For ¢,< g., no combustion wave moving with speed s is possible.

A similar behavior occurs if the heat release is fixed and K, is varied (see [7]); we
make this remark because the reaction rate is the quantity actually varied in the
calculations reported below. In fact, an even finer structure for the travelling waves
in case A) of (3.3) occurs provided that the parameter K,= BK satisfies either

(3.4 ut-s>K,
or
{3.5) ui—s< K,

In the case when the inequality in (3.4} is satisfied, all of the strong detonation profiles
are nonmonotone and exhibit a combustion spike. However, when the case in (3.5)
occurs, there is a second critical value of g,, g,,, with ¢,,> g., so that

A) For g,> g,,, the strong detonation profile always has a nonmonotone com-
(3.6) bustion spike.
B) For g, with g., < o = q.,, the strong detonation profile is monotone without
a combustion spike.

See [7, Fig. 1] for graphs of the typical wave profiles described in (3.3) and (3.6) as
the heat release is varied. Given the complex structure of the travelling wave profiles,
it is not apparent when these profiles are dynamically stable and also what happens
when g, satisfies g, < g., so that no travelling wave profile moving at speed 5 occurs.
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Next we report on a detailed numerical study using the fractional step scheme described
in § 2 which addresses the above issues.

In these experiments, the viscous length scale is completely resolved and we set
B = 1. In all of our reported computations, we take as initial data the values defining
an inviscid strong detonation wave moving with speed s, t.e.

up, x =0,

u¥, x=0,

(3.7) 110(x)={

where given g, and s, the equation in (3.2) is satisfied with u¥ > u,;.. We use a fixed
finite interval with Dirichlet boundary conditions for u at the ends determined by the
respective limits, g and u¥. Also, given a wave speed s, we perform a preliminary
Galilean transformation x’ = x — st and solve the transformed equations for zero speed
waves. Besides the obvious advantage of keeping the waves from leaving the fixed
computational region as time evolves, with this transformation we can also exploit the
higher resolution of the Godunov scheme for nearly zero wave speeds.

In the initial experiments described below, we fixed uf =1, u;+= .4, s=.7 and
varied the heat release ¢g,. We took K = [, 8 =1 and used ignition temperature kinetics
with the ignition temperature at the value, u = 0. With these parameters, the value of
q., from (3.3) is g, =.568 and that corresponds to ug = —.407. Also, the inequality in
(3.5) is satisfied for these parameter values and q,, from (3.6) is given by ¢, = .949.

o (=)
S S
(o) o~
[~] (=}
N S
o o
-+ -t
(=] (=] —_—’/
< S
T T
& &
o 3
=] T o
= S
§ ¥
-1000 -8.00 -6,00 -4.00 -2.00 0.00 200 -10.00 -8.00 -6.00 -4.00 -2.00 000 200 4.00
{a) (b)
FiG. 1. Spiked strong detonation profile for qy> q,..

Case 1. Spiked strong detonation profile. We set g, =2.375» q,,; this g, corresponds
to ug =—1.5. In Fig. 1{a) we present the exact spiked solution profile obtained by
direct quadrature of the ODE below {3.1). In Fig. 1(b) we present the profile that
emerged from dynamic stability calculations with the fractional step method described
in § 2 with the initial data from (3.7). We used 560 zones on the interval [-5, 2] and
this dynamically computed steady profile ditfers from the exact solution by less than
1% in the maximum norm. This calculation both validates the method from § 2 and
also demonstrates the expected stability of the spiked combustion profile.

Case 2. Monotone strong detonation profiles, q,= q,,. We used gq,= q,,=.949 and
with the shock tube initial data from (3.7) and only 140 zones on [—5, 2], the time-
dependent solution converged very rapidly (after only 50 time steps with CFL number
of one-half) to the profile in Fig. 2(b)—this profile is practically identical to the exact
steady solution in Fig. 2(a).
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(a) {(b)
F1G. 2. The exact steady profile (a) and the dynamically emerging monotone detonation profile (b) for
40 = Gep-

Case 3. Strong detonation profiles for g4, near gq.,. In the reported experiment, we
set go=.571, a value slightly larger than ¢q.. The exact steady solution calculated by
guadrature of the nonlinear ODE is given in Fig. 3(a). The profile is completely
monotone with a very long characteristic flat segment with a value of u corresponding
to u=.4=u;+;, we also observe that most of the chemical energy is released in this flat
segment. Thus, this wave structure is almost that of the weak detonation observed for
4o = g One might suspect that such a wave is dynamically unstable. As a numerical
test, we took spiked perturbed initial data for this wave with the form depicted in Fig.
3(b) and with 560 mesh points on [—35, 2]. The numerical solution after 600 time steps
is given in Fig. 3(c); this solution is identical to the profile in Fig. 3(a) and demonstrates
the dynamic stability of this wave.

The profiles with a step shape like those in Fig. 3(a) are a difficult case for the
numerical methods from § 2 on a finite interval due to the extremely long tail of the
analytical steady wave in its adjustment in the step from u;« to u¥. In fact, with 560
mesh points and shock tube initial data, a qualitatively different steady numerical
profile emerged from the calculation diflering by about 15%-20% in the maximum
norm. However, we emphasize here that this second profile is a numerical artifact—a
second steady-state solution of the difference equations on a finite interval with a fixed
mesh. Under further mesh refinement the shape of this steady solution changed
substantially and finally disappeared—about 880 mesh points on [ -5, 2] were needed
for a similar test problem with ¢, near g, to have a unique numerical steady state
emerge from the dynamic calculations with a wave profile differing from the analytical
profile by 2.5%.

Case 4. Bifurcating wave structure for g, < q.,. AS go{ g.r, the flat step in the profile
corresponding to u;-= .4 in Fig. 3(a) becomes even longer and as in Fig. 3(a) most of
the reactant is consumed at the front of this flat segment. Once Z is nearly zero as in
the back of this wave, u becomes essentially a solution of the Burgers equation and
the second hump in Fig. 3(a) is an ordinary fluid dynamic shock with speed s=
(uf+u+)/2=.7. What happens for g,<gq.? No steady detonation profiles moving
with speed s exist for values of g, with g, <gq.,. For a fixed ug, g., becomes a smoothly
varying function of the wave speed, s; we denote this function by g..(s). By continuing
the above wave profile for q,> q..(s) to go< g (s), it is natural to expect that given
uy there is a wave speed s’ satisfying s'> s and

(38) qozqcr(sl)-
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Fi. 3. The dynamic stability of detonation profiles for q,= q.,, the exact steadv profile ( Fig. 3(a)); the
perturbed initial data ( Fig. 3(b)); the dynamically emerging profile ( Fig. 3(c)).

If we let uy+(s') with u;«(s") <u,+(s) denote the value of the weak detonation satisfying
(3.2) and (3.8) for the fixed ug, then the behavior for q,> ¢, suggests by continuity
that the basic strong detonation shock tube initial data evolve into the following
bifurcating wave pattern: an approximately self-similar wave pattern given by the faster
moving weak detonation moving with speed s’ from (3.8) and connecting (ug, 1) to
(up+(s"), 0) with all chemical energy released in this wave followed by a slower moving
fluid dynamic shock moving with the speed §<s with §= (1, «(s)+ ut)/2.

Next, we describe the results of numerical experiments which confirm the behavior
conjectured above. For this experiment, we used ug=-.02 and q,=.214 (so that
go < 4.} and retained the values of 4;+ = .4 and u¥ = 1.0 used in the previous calculation;
we also increased the value of K to K = 10. With shock tube initial data and 400 mesh
points on [ -5, 2] the bifurcating weak detonation pattern emerged from the dynamic
calculations depicted in Fig. 4 at 160, 320, and 400 time steps and persisted under
mesh refinement. This precursor weak detonation has a wave speed s’ exceeding s
since this speed exceeds zero in Fig. 4, while the trailing fluid dynamic shock has a
slightly negative wave speed.

As a second test of the stability of the weak detonation wave and also as a test
of the explanation given above, we kept ug and the heat release g, as in the earlier
calculation, but we altered the initial data by using the initial value, u, =.8 for x <0.
This value of u; satisfies u;+(s") < u; <uf. The calculation with this initial data will
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FiG. 4. The dynamically developing bifurcating wave pattern for q,<gq.. at 160 { Fig. 4(a)), 320 ( Fig.
4(b)). and 400 ( Fig. 4(c)) time steps.

confirm the explanation advanced above provided that the same weak detonation as
depicted in Fig. 4 emerges as a prescursor wave followed by a fluid dynamic shock
moving at the slower speed §=(u, + u;«(s"))/2. The time history of this calcuation in
Fig. 5, displayed at the corresponding number of time steps as in Fig. 4, completely
confirms our earlier explanation and also the stability of the weak detonation. Thus,
within the context of the simplified model, we have demonstrated the existence of
stable weak detonations. Similar results for these calculations with 8 =1 occurred with
any of the three inviscid schemes for Burgers’ equation in the fractional step method.
We also performed similar numerical experiments with a truncated Arrhenius kinetics
form, as described below (2.3). Qualitatively similar phenomena, as documented above,
always occur but for somewhat different parameter ranges.

Wave structure for the reacting compressible Navier-Stokes equations. The theory
of combustion wave profiles for the reacting gas flow equations from (2.1) is consider-
ably less complete than that for the model equations [12]. Nevertheless, Gardner [13]
has recently proved the existence of viscous strong (and weak) detonations for varying
(and exceptional) values of the heat release and wave speed. One consequence of the
results in [13] is a scenario for the wave structure with varying heat release qualitatively
similar to that mentioned in (3.3) for the model equations; in fact, his method of proof
involves deformation to the travelling waves of the qualitative model from [7]. This
fact both provides a partial rigorous justification for the model and also suggests that
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F1G. 5. Another test of the time-dependent stability of the weak detonation from Fig. 4 for q,< q., at 160,
320, and 400 time steps.

similar dynamically stable wave structures, as documented earlier in this section for
the model, would also occur for the reacting compressible Navier-Stokes equations.
In the remainder of this section we describe a series of numerical experiments
confirming this conjectured behavior.

We used the fractional step method described in § 2 with the second order Godunov
method in the numerical experiments described below. We introduced the rescaled
variable 7 = g,Z rather than Z and the initial data was always taken as the piecewise
constant initial data defining a C-J (Chapman-Jouguet) detonation; i.e. the initial data
for (p, p, u, Z) had the form

(Pn. Po, 0, qo), x> 0’
(Propi,u0), x=0

where given the preshock state for x >0, the postshock state defined for x =0 satisfied
the Rankine-Hugoniot relations defining a C-J detonation. The numerical calculations
were performed on a finite interval with Dirichlet boundary conditions, and to avoid
the computational expense of a very long interval, the solution was allowed to run
until the wave came with a fixed number of zones from the right edge of the grid; then
the solution was shifted from the right to the left to keep it fixed on the interval with
new values for the zones on the right defined by ( py, po, 0, go)—our graphical displays
retain this computational artifact and focus on the fastest moving wave pattern.
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In this section, diffusive length scales are completely resolved computationally,
but for emphasis we will work in dimensional units which are typical ones for a viscous
reacting shock layer. The detonation waves which we study have fairly small heat
release and are modelled on initial data for the preshock state corresponding to 25%
ozone and 75% oxygen at roughly room temperature in the ozone decomposition C-J
detonation; thus, we use the documented sizes of all constants reported in the deflagra-
tion calculations from [9]. We use CGS units and the following parameter values:

R =8.3143 x 10, w=2x107"

y=1.4, Paum. = 1.0135x 108,
A= = Da PAtm. = 129 X 10_35
M =36.

For the ambient initial data, we used
Po= 931 paim,
Po=821 paim,

. Po _ Mp,
gq = ———, T,= )
(y=1Dpg Rpo
Z~0 =qo=3e,.

With the speed of sound ¢, given by
co=(ypo/ pa)'"?
the scalings of time, f,, and of space, R,, were defined by
M

(3.9) fo= 3y Ry = tycp.
Polo

This choice of time and space scales corresponds to scaling compatible with the size
of the reacting shock layer. Finally, in modelling the chemistry, we sometimes used
the Arrhenius factor

(3.10) K(T)= BTS2 o~ A/KT
with k= MR, A=1.00x10", and B=6.76x10% this is the value of the dominant

forward rate in the ozone decomposition reaction (see [9]). In other calculations we
used ignition temperature kinetics with the form

Ko . -

— ifT>T,,
(3.11) K(T)=4 1,

0 ifT<T,

Forthe ignition temperature with the above detonation, we used 7~}, = 500°K. We always
used 300 mesh points in all computations on the fixed interval but increased (decreased)
the resolution by setting Ax = aR, with a a scaling factor. To avoid repetition, we
only report the results of computations with the kinetics scheme in (3.11) because the
kinetics structure function in (3.10) gave qualitatively similar behavior.

Case 1. A C-J detonation with a nearly Z-N-D spike. We set K,=1 and report on
the time dependent development of the wave that emerged from the C-J initial data
described above with Ax =.025R,,. The Z-N-D detonation (see § 4) has a pressure peak
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FiG. 6. Dynamically emerging C-J§ detonation wave with nearby Z-N-D spike for K,= 1.

of 12 atm. The pressure and chemical energy wave profiles of the solution that emerged
from the dynamic calculation is given in Fig. 6. This solution is numerically steady in
a reference frame moving with wave speed and is nearly a Z-N-D detonation since
the pressure rises to a value of nearly 12 atm, then drops to the C-J value slightly
below 8atm. The width of this C-] detonation wave is roughty 107*cm. This is
compatible with older estimates using explicit integration in the phase plane for the
laminar ozone detonation wave thickness [10]. This calculation is a refinement of one
with Ax = .05R, where a profile of identical size and structure emerged.

Case 2. Bifurcating wave patterns and dynamically stable weak detonations. By
increasing the value of the reaction prefactor K, but keeping the heat release and the
initial C-J data fixed, by analogy with the structure documented earlier for the model
system, one might anticipate a bifurcating wave pattern with a dynamically stable
precursor weak detonation wave once g, satisfies g, < g.(K,). In the calculations
reported in the time sequence from Fig. 7 we have kept all parameters in the calculation
from Case 1 fixed except K,. We have increased K, from K,=1 to K,=5. Only the
pressure and chemical energy plots are displayed in Fig. 7. The graphs display successive
time plots of the profile but focus increasingly on the precursor hump given by the
stable weak detonation wave. The reader can see that all chemical energy is released
in this precursor weak detonation wave as anticipated in the model system; furthermore,
this wave is supersonic from both the front and back. The slower moving trailing wave
profile is an ordinary fluid dynamic shock. We remark that the same wave profile
emerged under the mesh refinement with Ax = .015R,. It is somewhat surprising that
a change in the reaction prefactor of 5 in the given detonation wave accounts for a
transition from a dynamically stable strong detonation to a bifurcating wave pattern
with a stable precursor weak detonation,

4. The behavior of fractional step methods for computing Z-N-D detonations. The
computational meshes used in the calculations from § 3 are several orders of magnitude
finer than those that could be used in a typical large scale computing problem. On
much larger spatial scales the effects of diffusion are ignored so in this section we
report on calculations with the inviscid reacting compressible Euler equations. Since
it is an interesting problem to develop numerical methods which can capture the
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significantly higher pressure peaks which occur in the structure of Z-N-D waves, we
assess the performance of the inviscid fractional step methods of §2 in such a
calculation.

Coarse mesh calculations for the reacting Euler equations. For comparison, we used
as initial data the same C-J detonation wave which we used previously in § 3. In the
reported calculations we always used 300 mesh points with Ax = «R,. We recall that
R, is a characteristic length scale which measured the internal structure of the reaction
zone. In fact, by using Fig. 6, we see that 30 R,=1.5x 107* cm = “approximate width
of the nearly Z-N-D detonation™ computed in § 3. We used either the Godunov or
second order Godunov scheme in the inviscid calculations below with L = 1.

The graphs in Fig. 8 display the values of the pressure and chemical energy for
the travelling waves that emerged from these calculations with the C-J initial data. The
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dashed line describes the results of computations using the second order Godunov
method while the black line describes the results for the Godunov method. We increased
the value of « in the calculations reported in successive plots and thus, we used
increasingly coarse meshes.

For Ax = .1R,, the reaction zone was completely resolved and the expected Z-N-D
profile was computed by either method. For Ax = R, so that there are roughly 30 points
in the reaction zone, both methods gave a C-J detonation moving at the correct speed
but the Z-N-D pressure peak predicted by the Godunov method was only 10 atm,
rather than the expected 12 atm. Already at Ax =10 R,, neither numerical method has
any pressure peak higher than 8 atm. On this mesh the Godunov scheme already clearly
exhibits a numerical bifurcating weak detonation pattern qualitatively similar to the
one described in § 3 with all chemical energy released too soon in the precursor
numerical weak detonation wave. The second order Godunov method also exhibits an
incorrect wave pattern on this mesh and this value of « is at the critical value for
numerical wave bifurcation for this numerical method. On a mesh with Ax=10? R,,,
both methods clearly exhibited totally nonphysical bifurcating wave patterns with
precursor numerical weak detonations. On even coarser meshes, the same approxi-
mately self-similar nonphysical discrete wave pattern emerged as indicated by a
comparison of the graphs in Fig. 8(e) with Ax = 10" R, and Fig. 8(d) with Ax = 10* R,.
We recall that the mesh with Ax =10° R, has 300 mesh points in a region only 1.5
meters long. Although we do not report the detailed time history here for these
calculations, the numerical weak detonation wave that emerges is always moving at
the speed of one mesh point per time step. Qualitatively similar results occurred in
our computations with an Arrhenius kinetics structure function. The theory for numeri-
cal weak detonations developed in § 5 indicates that this numerical bifurcating wave
phenomenon should occur on even finer meshes for detonations with larger heat release
(our test problem has rather small heat release).

Coarse mesh calculations for the model equations. A similar computational
phenomenon occurred for the fractional step schemes for the model system with the
Godunov or second order Godunov methods. On the other hand, the inviscid fractional
step scheme using the random choice method performed extremely well and a numerical
bifurcating wave pattern was never observed on even the coarsest meshes tested. For
example, in Fig. 9 we compare the exact Z-N-D profile and the numerical wave profile
for a calculation with only 25 mesh points on the interval [ 5, 2] for the random choice
fractional step method. The agreement is astonishing given the coarse mesh, and almost
the complete pressure peak has been captured. In contrast, for the same initial data
the fractional step scherne with Godunov’s method produced the nonphysical numerical
bifurcating wave pattern with 100 mesh points. These experiments suggest that at least
in a single space dimension, the fractional step scheme using the random choice method
might be capable of coarse mesh resolution of pressure peaks in wave structure for
solutions of the reacting compressible Euler equations involving complex chemistry.

5. Discrete weak detonations: nonphysical but stable discrete travelling waves. The
calculations from § 4 on coarser meshes with the Godunov fractional step schemes
yield a bifurcating numerical wave pattern with a discrete weak detonation wave as a
precursor. These wave patterns qualitatively resemble the analytic bifurcating wave
structures documented as stable exact solutions of the reacting Navier-Stokes equations
in § 3. However, the wave patterns from § 4 are purely a numerical artifact since the
numerical solution converged to the expected Z-N-D detonation under further mesh
refinement.
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Fi1G. 9. A coarse mesh calculation for the model system using the random choice fractional step merhod
(Fig. 9(b)) compared with the exact steady profile (Fig. 9(a)).

Here we provide a theoretical explanation for the numerical results presented in
§ 4. We work within the context of the simplified model and derive a new class of
nonphysical discrete travelling waves for the basic inviscid fractional step scheme
introduced in § 2. These exact solutions of the difference equations will be numerical
weak detonations moving at the speed, § = Ax/A¢, i.e. one grid space per time step, as
observed in the calculations from § 4. Of course, we have already demonstrated the
stability of such nonphysical discrete weak detonations in the calculations reported in
§ 4 for sufficiently coarse meshes.

Within the context of the simplified model, in the last section we considered the
problem of computing the Z-N-D detonation dynamically as a solution of

u,+ (%llz* q()Z)x = 0,
(5.1)
Z. = Kb(u)Z

from initial data given by a C-J or strong detonation wave, i.e., w="(u, Z) has initial
data with the form in (3.7) for the fixed wave speed 5. We introduce the Hugoniot
function defined by

(5.2) H(u, ug, s) = s{u—ugp)—(3u” —iuyg).

For simplicity we always assume that the initial data from (3.7) satisfy ug > 0 so that
for this strong or C-J detonation, we have

(5.3) uf=s> ug>0.
These initial data also satisfy the reacting Hugoniot equation
(5.4) H(uf, ug, s) = qo.

For the inviscid fractional step schemes of the last section, we required the C-F-L
stability condition

{
(5.5) —ut=a<].

Ax
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Given the mesh, we introduce the discrete wave speed § = Ax/At. From (5.5) and (5.3)
it follows that § satisfies §> s and one easily verifies the following fact:
For any §> s, there are always exactly two solutions @f, i, satisfying

H{af, ug, §) = qo, af>5§> .,
(5.6)

H{ii;~, ug, §) = qo, af>uf>i«> ug
The wave defined by (i7;+, ug) is an inviscid weak detonation wave with speed § while
the wave (@7, ug) is an inviscid strong detonation wave travelling with the same speed.
We observe that

and the weak detonation always satisfies the C-F-L stability condition from (5.5) on
the computational mesh but the strong detonation will always violate this C-F-L
condition is (5.5). The numerical computations from § 4 indicate that on sufficiently
coarse meshes, the difference equations for the inviscid fractional step schemes based
on Godunov's method should have discrete travelling wave solutions, w)¥ =(u, Z¥),
satisfying the equations

(5.7A) wl'=w? n forall N=0and}

with the discrete wave profile w} having the structure

wi=(ug, 1), Jjz1,
(5.7B) |

Tim wi = (i1, 0).
FERE

Such solutions of the numerical scheme define the nonphysical discrete weak detona-
tions moving at mesh speed which were observed computationally in the last section.
Here we will verify the following result:

ProrosiTioN (existence of numerical weak detonations). For a simplified inviscid
Jractional step scheme (see (5.10) and (5.11) below) based on the upwind scheme rather
than Godunov's scheme, explicit nonphysical travelling waves satisfving the structure in
(5.7A) and (5.7B) exist under the following conditions on heat release, q,, reaction rate,
K, and mesh spacing, Ax:

A) For ignition temperature kinetics with ignition temperature u satisfying > g,
nonphysical discrete travelling waves with a monotone profile exist provided the two explicit
inequalities

(5.8) 1< iy and H (1, ug, §) < go(1— e~ 5*¥?)
are satisfied.

B) For a general kinetics structure function ¢(u) satisfying ¢(ug)=0 and ¢{u}>0
for ug < u, a numerical weak detonation profile exists with the structure in (5.7) provided
that there is a solution ug with ug < uy<ii;~ to the nonlinear algebraic equation

K Axih(w,)/2

(5.9) H(uy, ug, §)+qq € = g,

Remark 1. 1t is easy to see that either of the quantitative algebraic conditions in
(5.8) or (5.9) is satisfied provided that either KAx 1s sufficiently large or the heat
release g, increases. In fact, the quantity K = KAx for these inviscid fractional step
methods for reacting gases has an analogous role as the mesh Reynolds number in
viscous incompressible flow. The behavior of the numerical methods for K large for
the reacting compressible Euler equations mimics the behavior for high reaction rate
K, documented in § 3 for the reacting compressible Navier-Stokes equations.
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Remark 2. The same construction which we give below in the proof of the
proposition will establish the existence of a spiked Z-N-D strong detonation discrete
wave profile moving with mesh speed, i.e., a discrete travelling wave satisfying (5.7A)
with

o .
w; = (ug, 1), j=1,
lim wj = (@f,0),
jo—c

and u; > af for j=0. Because we have the C-F-L restriction below (5.6), this wave is
never realized on the given computational mesh; however, it might occur in similar
fractional step schemes based on implicit methods.

First, we describe the variant of the inviscid fractional step schemes from §2
based on the upwind scheme. Given w}v——-(uf', Z}V), in the first fraction step, we
compute Z;"*" via numerical integration of the ODE to obtain the formula

N N
—p(u; )+ d(u;l
(5.10) M=z exp(—K———d)( ) 2¢( / 1)>
with initial condition Z¥"'=1 for j large enough and K defined by K = KAx. For
waves moving with positive wave speed as guaranteed by (5.3), Godunov’s scheme
reduces to the upwind scheme. In the second step of the simplified algorithm, we
compute u'"" from {ul}, {Z['*'} by applying the upwind difference approximation
to the first equation in (5.1). This results in the formula for u]""' given by
Arf1 [ At v
(5.11) ulMT=ul —E(E(uﬁ)zﬁi(uﬁm) + q(,E(ZJNH - ZN.
The formulae in (5.10), (5.11) describe how to compute {w/' "'} from {w'} in this
fractional step method. Next we prove the proposition for this scheme.
The equations in (5.7A) will be satisfied provided that we find an initial wave
profile wj = (u;, Z;) satisfying

0

(5.12) wi=wj , forallj.

By explicitly computing w; from the fractional step method in (5.10), (5.11), we see
that (5.12) will be satisfied provided that

(5.13A) Zf_‘lzexF,(m]zM)Z

i

(5.13B) H(u o, w, §) = qo(Z; - — Z;5)

for j with —oo < j < co, First, we concentrate on the case of ignition temperature kinetics.
With w; = (ug, 1) for j= 1, the equations in (5.13) are trivially satisfied for j= 2. From
(5.13A) we see that Z,=1 and if a solution uy> it is found, u, is the solution of the
equation

(5.14) H (g, g, 5) = gqo(1— € /).

The Hugoniot function, H(u, ug, §) has the three properties
H{ug, ttg, 5) =0,

(5.15) H(iip~, up, §) = qq,

H(u, ug, §) is monotone increasing in u for ug < u < i«
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Given the conditions in (5.8) and the above three properties, we see that there is a
solution u, to the equation in (5.14) satisfying

(5.16) U< Uy <
Next, we generate the u; for j <0 recursively from u;,, by a similar procedure. We
anticipate the fact to be verified a posteriori that u; for j <0 also satisfies @i < u; <1,~.

We define « to be the factor @ = "% if u; for j =0 inductively satisfies u, > 4, then
from (5.13A), we compute that Z; is given by the formula

(5.17) Zy=a V7 j=—1,-2,-3,-4, -,

With the formulain (5.17), the equations in (5.13B) will be satisfied inductively provided
that

(5.18) H(“j, ug, §) = (Io(l —Zj—-l) = qo(1 '01_2'}+1)E qi-

for j=-1,-2,-3,-- . Since we have the monotone sequence

o= G;-1- 4, J==1,=2,-3,

it follows from (5.15) that there are always solutions u; to the equations in (5.18) with
the monotone structure

U<ty <t <<uj_; < U~

forj=—1,-2, =3, - --. Fromthe above monotone structure and the equations in (5.18),
it is easy to see that the unique limit @ of this sequence as j| —oo satisfies

ae(d, -], H (4, ug, §) = q,.

The only solution of these equations is @ = &~ and clearly from (5.17), Z;] 0 rapidly
as j| —o0. This completes the construction of the explicit travelling wave for ignition
temperature kinetics. Obviously a similar recursive construction can be applied for the
more general kinetics schemes. The only difference is that the right-hand side of (5.14)
or (5.18) also depends on w. However, the assumption in (5.9) guarantees that u, can
be found and the other equations are easily solved inductively—we omit the details.
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