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THEORETICAL AND NUMERICAL STRUCTURE FOR REACTING 
SHOCK WA VES* 

PHILLIP COLELLAt, ANDREW MAJDM AND VICTOR ROYTBURD§ 

Abstract. Several remarkable Iheoretical and computational properties of reacting shock wave, are both 

documented and analyzed. Tn particular. for sumciently small heat release or large reaction rate, we 
demonstrate that the reacting compressible Navicr-Stokes equations have dynamically stahle weak detona­
tions which occur in bifurcating wave patterns from strong detonation initial data. In the reported calculations, 
an increase in reaction rate by a factor of 5 is sufficient to create Ihe bifurcation from a spiked nearly Z-N-D 

detonation to the wave pattern with a precursor weak detonation. TIle numerical schemes uscd in the 
calculations are fractional step methods based on the use of a second order Godunov method in the inviscid 

hydrodynamic sweep; on sufficiently coarse meshes in inviscid calculations, these fractional step schemes 

exhibit qualitatively similar but purely numerical bifurcating wave patterns with numerical weak detonations. 
We explain this computational phenomenon theoretically through a new class of nonphysical discrete 
travelling waves fpr the difference scheme which are numerical weak detonations. The lIse of simplified 

model equations both to predict and analyze the theoretical and numerical phenomena is emphasized. 
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1. Introduction. Through numerical experiments, several peculiar theoretical and 
practical computational properties regarding the structure and stability of reacting 
shock waves arc both documented and analyzed. The waves which we study are defined 
by solutions of the compressible Navier-Stokes or compressible Euler equations for 
a mixture composed of chemically reacting species in a single space dimension. 

The compressible Navier-Stokes equations for a reacting gas are extremely com­
plex, and it is not surprising that simpler qualitative-quantitative model equations for 
the high Mach number regime have been developed [5], L 7], [11 J, These simpler model 
equations are a coupled 2 x 2 system given by a Burgers equation coupled to a chemical 
kinetics equation (see § 2 for a detailed description of the model equations). This 
model system has transparent analogues of the Chapman-Jouguet (C-J) theory, the 
z-N-O theory, and also the structure of reacting shock profiles with finite difIusion 
and reaction rates, and these are developed in detail in [7]. One of the objectives of 
this paper is to use the predictions of this simplified model system both for theoretical 
purposes and as a diagnostic for numerical modelling of the more complex equations 
of reacting gas flow in the shock wave regime. The authors advocate the use of these 
simpler model equations for numerical code development for shock phenomena in 
reacting gases in much the same fashion as the Burgers equation has provided both a 
wide class of simple test problems and the anlysis of difference schemes for the Burgers 
equation has infiuenced code development for nonreactive compressible gas flow. 

In § 2, we begin by listing the equations of compressible reacting gas tlow and 
describing in detail the simplified model equations mentioned above; then, we describe 
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the numerical methods used in this paper. We use very natural fractional step schemes 
\vith three ingredients per time step: 1) the inviscid hydrodynamics is solved by the 
Godunov, second order Godul1oV l3 J, or random choice [1] methods; 2) the chemistry 
equation is advanced by explicit solution of the ODE for mass fraction given the 
temperature; J) the ditTusion equation is solved via the Crank- Nicolson or backward 
Euler methods. Such a class of numerical schemes is one of the obvious candidates 
for use in modelling reacting gases given the current development of methods for 
solving the compressible Euler equations. Also, with the simplified one-step kinetics 
schemes which we study, the chemistry equation for the mass fraction is linear given 
the temperature at each mesh point so that even when the reaction rate is high, this 
equation can be solved exactly-thus, no additional errors from solving the stiff ODE 
are introduced. 

For the calculations in § 3, the shock layer is fully resolved, typical length scales 
are on the order of 10-6 or 10-5 meters, and the diffusion coefficients on such a length 
scale are roughly order one in magnitude. Our objectives are to document the structure 
and dynamic stability of reacting shock layers on such length scales where diffusive 
mechanisms arc important. The wave structure is remarkably complex with varying 
heat release and reaction rate, and to our knowledge no time-dependent computations 
analyzing this structure have appeared previously. First, we report on detailed numerical 
experiments with the model equations which corroborate the rather complex behavior 
(see [7]) of the reacting shock profiles as the heat release varies. We use numerical 
experiments to predict a bifurcating wave pattern instcad of the expected strong 
detonation for sufficiently small heat release. This bifurcating wave pattern has a 
precursor stable weak detonation moving at a faster speed followed by a slower moving 
purely fluid dynamic shock. The above experiments in the model suggest analogous 
behavior for the reacting compressible Navier-Stokes equations. Through numerical 
experiments for a detonation with fairly small heat release (modelled on an ozone 
decomposition detonation), we document the existence of dynamically stable weak 
detonations and the existence of bifurcating wave patterns as described above for the 
model equations. In fact, with all other parameters held flxcd for this detonation wave, 
an increase in the reaction rate by a factor of 5 changes the wave profile from a spiked 
z- N-D detonation structure to such a bifurcating wave pattern with a stable precursor 
weak detonation. We mention here that weak detonation waves arc observed experi­
mentally when initiated through external means [4J and that a variety of theoretical 
sccnarios for the existcnce of weak detonations are given in [4, Chap. 3], 

Resolving detonation waves on viscous length scales is not a practical option for 
a large scale reacting gas computation with many wave interactions such as the problem 
of transition to detonation. In ~ 4, we set all diffusion coefficients to be zero and 
investigate the problem of computing the spiked Z-N-D detonations of the inviscid 
reacting Euler equations on coarser meshes. This problem has practical interest because 
the spike in a Z··N-D profile has significantly higher values for the pressure. Any 
algorithm which is based 011 using the Chapman-Jouguct theory alone (such as [2J) 
automatically will ignore this local pressure spike in the travelling wave structure no 
matter how fine a mesh is used. The numerical experiments with the inviscid fractional 
slep schemes with either the Godullov or second order Godunov methods exhibit the 

following surprising behavior: 

( 1.1 ) 

A) For very fine meshes, the Z-N-D wave is completely resolved by these 
numerical methods. 

B) For moderately flne meshes (i.e. meshes yielding very high resolution for 
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the second order Godunov method in the nonreactive case) and either of 
the fractional step methods, a numerical bifurcating wave pattern emerges 
with a structure qualitatively similar to those documented theoretically in 
* 3. This numerical wave strucure has a discrete weak detonation profile 
moving at the mesh speed-one grid point per time step-with all chemical 
energy released in this numerical precursor wave followed by a slower 
moving numerical shock wave. 

The property in (I.I B) is an unexpected and serious defect in the use of fractional 
step schemes based on (higher order) Godunov methods for inviscid reacting gas 
calculations in the shock wave regime. On the other hand, for the simplified model 
equation the inviscid fractional step scheme for the random choice method yields a 
correct pressure spike in the Z-N-D protiJe with as few as three mesh points resolving 
the reaction zone while the split Godunov scheme has the nonphysical monotone 
numerical bifurcating wave pattern with as many as twenty mesh points resolving the 
reaction zone in the same problem (see § 4). However, in this paper, we have not 
pursued the use of the inviscid fractional step random choice scheme for the reacting 
compressible Euler equations and plan to do this in the future. 

Finally, in § 5, we give a theoretical explanation for the computational phenomena 
on coarse meshes reported in the previous section for the Godunov methods. We work 
within the context of the simplified model and derive a new class of nonphysical 
discrete travelling waves for the difference equation for a simplified variant of the 
hasic fractional step methods which uses the upwind scheme rather than GOdUIlOV'S 
method. As predicted by the numerical experiments from § 4, these exact discrete 
travelling wa ves are numerical weak detonations which move at the speed ,~= /).x/ /). f, 
i.e. one grid point/time step and the numerical experiments from § 4 verify the stability 
of these purely numerical discrete weak detonations on sufficiently coarse meshes. The 
structure of these nonphysical discrete travelling waves is quite different from that of 
the well-knmvn discrete entropy violating travelling waves [6], [8J which can occur 
for difference schemes in the nonreactive case. Furthermore, in the context of the 
simplified model, such discrete travelling waves always exist on a given mesh if either 

A) K /).X is large enough with K the reaction rate or 
B) the heat release qo is large enough for a tlxed mesh. 

(1.2) 

The explicit conditions for the existence of numerical weak detonations provide a 
quantitative guideline for the validity of the basic fractional step schemes in coarser 
mesh calculations. 

2. Preliminaries. 
The compressible Navier-Stokps equations for a reacting mixture. We assume a 

standard simplified form for the reacting mixture throughout this paper. Thus, there 
are only two species present, unburnt gas and burnt gas, and we postulate that the 
unburnt gas is converted to burnt gas by a one-step irreversible chemical reaction. 
Under the above hypothesis the compressible Navier-Stokes equations for the reacting 
mixture [12] are the system of four equations, 

(2.1 ) 

p, + (pu)x ~~ 0, 

(pu), + (rJl/+ p\ = fLU,x, 

(pE), + (puE -to up), = (fL (,;2) J,+ Cp(A T,L·, 

(pZ), + (puZ), = -pK (nZ + (OZ,)" 
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where p is the density, Ii is the fluid velocity, E is the total specific energy, and Z is 
the mass fraction of unburnt gas. The total specific energy, E, has the form 

(2.2) 

with e the specific internal energy and qo the amount of heat released by the given 
chemical reaction. For the assumed ideal gas mixture (with the same y-gas laws), the 
pressure and temperature are defined respectively by the formulae p = (y -1 )pe and 
T "-' pi pR x M with R, Boltzmann's gas constant, M the molecular weight, c!' the 
speci fic heat, and y defined by cp (y -1) = R. The factor K (T) in (2.1) is strongly 
dependent on temperature and has the form 

(2.3) K (T) = KntjJ( T) 

"vith Ko the reaction rate. The function 1>( T) typically has the Arrhenius form, 

1>(T) = T" e- A1T 

or for computational purposes, the approximation for large A given by ignition 
temperature kinetics, 

1>(T)={1, 
0, 

with To the ignition temperature. 

T~ To, 

T< To 

The coefficients /.L, A, and Din (2.1) are coefficients of viscosity, heat condition, 
and species diffusion, respectively. The compressible Euler equations for the reacting 
mixture are the special case of (2.1) with /.L = A = D = O. 

17le simplified model equations. Obviously, even in a single space variable, the 
above system is extremely complex so it is not surprising that simpler qualitative­
quantitative models for the equations in (2.1) have been developed [5], [7], [11]. The 
simplified model equations for the shock wave regime derived through asymptotic 
limits from the system in (2.1) (see [11]) have the form 

(2.4 ) 

where 11 is an asymptotic lumped variable with some features of pressure or temperature, 
Z is the mass fraction of burnt gas, qo> 0 is the heat release, f3 ~ 0 is a lumped diffusion 
coefficient, K is the reaction rate, and 1> (u) has a typical form as described below 
(2.3). The reader should not be confused by the appearance of Zx on the left-hand 
side of (2.4) rather than Z,. The coordinate x in (2.4) is not the space coordinate but 
is determined through the asymptotics as a scaled space-time coordinate representing 
distance to the reaction zone; the x-differentiation occurs because Z in (2.4) is convected 
at the much slower fluid velocity rather than the much faster reacting shock speed (see 
[11] for details). With these interpretations the equations in (2.4) become a well posed 
problem by prescribing initial data uo(x) for u(x, 1) at time t = 0 and prescribing the 
value of Z(x, /) as X-HD (corresponding to finite values ahead of the reaction zone 
with the rescaling in [11]), i.e. Zo(t) should be specified with the boundary condition, 

(2.5) Zo(l) = lim Z(x, t). 
,Y....,..'X' 

In this paper, we always set Zo(t) 0:= 1 for simplicity. The analogues of the Chapman­
Jouguet theory, the Z-N-O theory, and the structure of travelling waves with nonzero 
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diffusion and finite reaction rates for the equations in (2.4) have all been discussed in 
detail in [7] and we refer the reader to that paper when we discuss properties of 
solutions in the model. 

The numerical methods. First, we describe the basic fractional step numerical 
method used in solving the model equation from (2.4). We set w = (tl, Z). Given mesh 
values w~ = (u}'I, Z~), in the first fractional step we determine U~+1/2 from u~ by 
using a finite difference approximation to the inviscid Burgers equation 

lit + (~I/)x = o. 
In the computations reported below, we lise Godunov's method, a second order 
GodullOV method [3], or the random choice method [1] as the finite difference 
approximation. In the next fractional step, we determine Z~+I as the solution of the 
ODE 

with u given approximately by U~'1!2. We march from positive values of x to negative 
values of x and use the boundary conditions from (2.5) with Z()(t) =' 1 on the right-hand 
side or the large interval where the calculations are carried out. Given the values of 
U;V+1/2, the above ODE is linear in Z and we solve it by the trapezoidal approximations 
of the integral in the exact solution formula to derive 

(2.6) Z/"~ 1= Zr+ 1 exp (=_~_6X ('/)( Ui~~1/2) + 1>( 1Ij"+1/2») 

with Z~+t "'" 1 for.i large enough. Finally, in the third sweep of the fractional step 
method we solve the diffusion equation 

(2.7) 

The linear diHusion equation on the left-hand side of (2.7) is discretized by using 
either the backward Euler or Crank-Nicolson methods with initial data 1I~+1/2. The 
value of U~+l is then determined by solving this inhomogeneous difference equation 
where the values ror (U~+1/2, Z;"'+tJ?) are used in the approximation of the forcing 
fUllction on the extreme right-hand side of (2.7) at time level (N + 1)M. This completes 
the description of the basic fractional step method for the simplified model equation. 
Obviously, the only stability condition needed in the method is the C-F-L condition 

61[ N[ .' --II· <1 
~x ) 

required in the first sweep. 
Next we describe the basic fractional step algorithms which we use for the reacting 

compressible Navier-Stokes equations in (2.1). We use three fractional steps analogous 
to those in the model system. In the first sweep, the inviscid nonreactive compressible 
Euler equations are solved, i.e. L~' denotes a finite difference approximation to the 
equations, 

p, + (pu)x = 0, 

(pu), + (pu 2 + p)x = 0, 

(pEL + (puE + up)x = 0, 

(pZL + (pIlZ)x = O. 
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For this difference approximation, we use either the Godunov or a second order 
Godunov method [3] for an ideal ,,-gas law with the mass fraction Z advected as a 
passive scalar. In the second fractional step all diffusion mechanisms are solved, i.e. 
Li; is a finite difference approximation to 

Pt=O, 

1 
11, = - (J.LU~)"" 

p 

(l/) 1 ( (u2)) 2 ,=~ ft 2 .\ x' 
1 . 

T, =-( ATJ", 
p 

1 
Z, = --(DZJx' 

p 

In this difference approximation, we use the Crank-Nicolson scheme implemented in 
such a way that pll, pll"/2, pT, and pZ are conserved (this is why we need to discretize 
the trivial equation, p, = 0). The total energy at the end of this fractional step is recovered 
from the formula in (2.2) with (u 2/2) obtained from the kinetic energy diffusion 
equation. In the final sweep, we solve the chemistry equation, i.e. L~' denotes the 
discrete solution operator for 

p, =0, 

At each grid point, we exactly integrate the linear ODE for Z using the fixed value 
of temperature, T;"Hc/" at the grid point determined from the previous sweeps; thus, 

ZJ"+l = exp (- K(lrjJ( TJ"+2!3)M)ZJ"+2/3. 

This completes the description of the method used to advance the solution from level 
II!:!.I to time level (11 + })!:!.t. Actually we implemented the approximation from time 
level lltJ.f to (n+2)M in the form. 

so that we have second order accuracy in time for the algorithm. The only stability 
restriction on the above numerical method is the basic C-FcL condition for the inviscid 
hydrodynamic sweep, L~'. 

3. The structure and stability of detonation waves with finite viscosity and reaction 
rate. 

Wave structure .If)r the simplified model system. Since we begin by studying the 
structure and dynamic stability of detonation waves for the model system, we begin 
with a brief summary of the surprisingly complex structure of the travelling waves for 
the model system in (2.4) (the quantitative details can be found in [7]). Given a 
preshock constant state Wu = (lIR, 1) in chemical equilibrium so that cb( UR) = 0, we 
study travelling wave solutions of (2.4) with the given preshock state ll'R and a fixed 
speed s. We seek special solutiolls of (2.4) with the form, 
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so that with t: = (x - sO/ {3 

(3.0 lim w(g) = (UR, 1), 
~4c\'·' 

where Ut needs to be determined. With Z = qoZ and Ko = (3K, substituting the above 
form of w into (2.4) leads to the autonomous system of two nonlinear ODE's, 

11' = ~1I2 - 511 - Z + C, 

Z' = K oQ)(z4)Z. 

The integration constant C is determined by the formula, 

and in general, there are two states lh*, ui: with 111* < lit' and satisfying 

(3.2) 

The two states, (Ut"O) and (ui:, 0), are the only conceivable limiting values for the 
second equation in (3.1) and define the end states for the corresponding weak and 
strong detonation waves propagating with speed s and determined by the Chapman­
Jonguet theory (see [7]). When do such travelling waves exist with a finite reaction 
rate and nonzero diffusion for fixed s? According to the results in [7], for a fixed 
positive value of Kn ~ {3K and fixed values 11 1 " ui:, as the heat release varies there is 
a critical heat release, qcn so that 

Al For q(l> qw a strong detonation travelling wave profile with speed sexists 
connecting (IIR, 1) to (III. 0). 

(3.3) B) For ql) = qm a weak detonation travelling wave with speed s exists connecting 
(UR, 1) to (lh", 0). 

e) For qo < qcn no combustion wave moving with speed s is possible. 

A similar behavior occurs if the heat release is fixed and Ko is varied (see [7]); we 
make this remark because the reaction rate is the quantity actually varied in the 
calculations reported below. In fact, an even finer structure for the travelling waves 
in case A) of (3.3) occurs provided that the parameter Ko= (3K satisfies either 

(3.4) !It -- s> Ko 

or 

(3.5) ut --s <- K". 

In the case when the inequality in (3.4) is satisfied, all of the strong detonation profiles 
are Ilonmonotone and exhibit a combustion spike. However. when the case in (3.5) 
occurs, there is a second critical value of q(h qsP' with qsp> qer so that 

A) For qo> qsp. the strong detonation profile always has a nonmonotone com-
(3.6) bustion spike. 

B) For qo with qcr < qo ~ qsP' the strong detonation profile is monotone without 
a combustion spike. 

See [7, Fig. 1] for graphs of the typical wave profiles described in (3.3) and (3.6) as 
the heat release is varied. Given the complex structure of the travelling wave profiles, 
it is not apparent when these profiles are dynamically stable and also what happens 
when qo satisfies qo < (joe so that no travelling wave profile moving at speed s occurs. 
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Next we report on a detailed numerical study using the fractional step scheme described 
in § 2 which addresses the above issues. 

In these experiments, the viscous length scale is completely resolved and we set 
{3 == 1. In all of our reported computations, we take as initial data the values deflning 
an inviscid strong detonation wave moving with speed 05, i.e. 

(3.7) 
X>O, 

X:::;O, 

where given C/o and s, the equation in (3.2) is satisfied with lIl> Ut*. We use a fixed 
finite interval with Dirichlet boundary conditions for II at the ends determined by the 
respective limits, lIf{ and III. Also, given a wave speed s, we perform a preliminary 
Galilean transformation x' = x - sf and solve the transformed equations for zero speed 
\vaves. Besides the obvious advantage of keeping the waves from leaving the fixed 
computational region as time evolves, with this transformation we can also exploit the 
higher resolution of the Godunov scheme for nearly zero wave speeds. 

In the initial experiments described below, we fixed III = 1, lip =.4, s =.7 and 
varied the heat release qo. We took K = 1, {3 = 1 and used ignition temperature kinetics 
with the ignition temperature at the value, U = O. With these parameters, the value of 
qcr from (3.3) is qcr= .568 and that corresponds to UR = -0407. Also, the inequality in 
(3.5) is satisfied for these parameter values and q.p from (3.6) is given by £Isr = .949. 
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FIG. 1. Spiked strong detllnatiol1 profile Jill' q() -> q",. 

Case 1. Spiked strong detonation profile. We set q(l = 2.375» £Ier; this qo corresponds 
to IIR= -1.5. In Fig. lea) we present the exact spiked solution profile obtained by 
direct quadrature of the ODE below (3.1). In Fig. l(b) we present the profile that 
emerged from dynamic stability calculations with the fractional step method described 
in § 2 with the initial data from (3.7). We used 560 zones on the interval [-5,2] and 
this dynamically computed steady profile differs from the exact solution by less than 
1°;', in the maximum norm. This calculation both validates the method from § 2 and 
also demonstrates the expected stability of the spiked combustion profile. 

Case 2. Monotone strong detonation profiles, qo = q"p" We used qo = qsP = .949 and 
with the shock tube initial data from (3.7) and only 140 zones on [-5,2], the time­
dependent solution converged very rapidly (arter only 50 time steps with CFL number 
of one-half) to the profile in Fig. 2(b)-this profile is practically identical to the exact 
steadv solution in Fig. 2(a). 
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~ L ___ ~-~~ __ ,-~~ 
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la) (b) 

FI(;. 2. n,e exact sfeady rrqfile (a) 111111 file dl"llamically emerging monofone defona/ion rrq{ile (b) .I;" 
q" = q,p' 

Case 3. Strong detonation prc~files.r()r C/o near C/cr' In the reported experiment, we 
set qo = .571, a value slightly larger than qcr' The exact steady solution calculated by 
quadrature of the nonlinear ODE is given in Fig. 3(a). The profile is completely 
monotone with a very long characteristic fiat segment with a value of u corresponding 
to II '=.4 = tip; we also observe that most of the chemical energy is released in this flat 
segment. Thus, this wave structure is almost that of the weak detonation observed for 
£10 = £Icc· One might suspect that such a wave is dynamically unstahle. As a numerical 
test, we took spiked perturbed initial data for this wave with the form depicted in Fig. 
3(b) and with 560 mesh points on [-5,2]. The numerical solution after 600 time steps 
is given in Fig. 3(c); this solution is identical to the profile in Fig. 3(a) and demonstrates 
the dynamic stability of this wave. 

The profiles with a step shape like those in Fig. 3(a) are a difficult case for the 
numerical methods from § 2 on a finite interval due to the extremely long tail of the 
analytical steady wave ill its adjustment in the step from tiL' to ut. In fact, with 560 
mesh points and shock tube initial data, a qualitatively different steady numerical 
profile emerged from the calculation differing by about 15%-20% in the maximum 
norm. However, we emphasize here that this second profile is a numerical artifact-a 
second steady-state solution of the ditIerence equations on a finite interval with a fixed 
mesh. Under further mesh refinement the shape of this steady solution changed 
substantially and finally disappeared-about 880 mesh points on [-5, 2J were needed 
for a similar test problem with qo near qcr to have a unique numerical steady state 
emerge from the dynamic calculations with a wave profile differing from the analytical 
profile by 2.5%. 

Case 4. Bifurcating wave structure/of qo < qcr' As C/ot C/cn the flat step in the profile 
corresponding to ilL' = .4 in Fig. 3(a) becomes even longer and as in Fig. 3(a) most of 
the reactant is consumed at the front of this flat segment. Once Z is nearly zero as in 
the back of this wave, 1I becomes essentially a solution of the Burgers equation and 
the second hump in Fig. 3(a) is an ordinary fluid dynamic shock with speed s = 
(u!+uL*)/2=.7. What happens for qO<qcr? No steady detonation profiles moving 
with speed s exist for values of q() with qo < quo For a fixed tlR, qer becomes a smoothly 
varying function of the wave speed, s; we denote this function by qcr(s). By continuing 
the above wave profile for qo> qcr( s) to q() < qcr(s), it is natural to expect that given 
UR there is a wave speed s' satisfying s' > sand 

(3.11) 
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(e) 

1'1(;, 3. The dl'llamic stability of detollatioll profiles ./i,,' qo =7 {b: the exact steady pf()file (Fig. 3(a)); tlte 
perturbed initial data (Fig. 3(b)); the dynamical/v emergil1g profile (Fig. 3(c)). 

I f we let lh *( s') with u c( s ') < II v(s) denote the value of the weak detonation satisfying 
0.2) and (3.8) for the fixed II R, then the behavior for qo> qcr suggests by continuity 
that the basic strong detonation shock tube initial data evolve into the following 
bifurcating wave pattern: an approximately self-similar Wave pattern given by the faster 
moving weak detonation moving with speed s' from (3.8) and connecting (UR, 1) to 
(11 1 ,( s'), 0) with all chemical energy released in this wave followed by a slower moving 
fluid dynamic shock moving with the speed .~ < s with s = (II/..(S') + u!)/2. 

Next, we describe the results of numerical experiments which confirm the behavior 
conjectured ahove. For this experiment, we used Uri = - .02 and qo = .214 (so that 
qo < qcr) and retained the values of Up =.4 and ut = 1.0 used in the previous calculation; 
we also increased the value of K to K = 10. With shock tube initial data and 400 mesh 
points on [-5,2] the bifurcating weak detonation pattern emerged from the dynamic 
calculations depicted in Fig. 4 at 160, 320, and 400 time steps and persisted under 
mesh refinement. This precursor weak detonation has a wave speed s' exceeding s 
since this speed exceeds zero in Fig. 4, while the trailing fluid dynamic shock has a 
slightly negative wave speed. 

As a second test of the stability of the weak detonation wave and also as a test 
of the explanation given above, we kept UR and the heat release qo as in the earlier 
calculation, but we altered the initial data by using the initial value, lIL = .8 for x < 0. 
This value of lh, satisfies ut*(s') < ilL < lit. The calculation with this initial data will 
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confirm the explanation advanced above provided that the same weak detonation as 
depicted in Fig. 4 emerges as a prescursor wave followed by a fluid dynamic shock 
moving at the slower speed .~ = (Ul. + 1I/.(s'))/2. The time history of this calcuation in 
Fig. 5, displayed at the corresponding number of time steps as in Fig. 4, completely 
confirms our earlier explanation and also the stability of the weak detonation. Thus, 
within the context of the simplified model, we have demonstrated the existence of 
stable weak detonations. Similar results for these calculations with f3 = 1 occurred with 
any of the three inviscid schemes for Burgers' equation in the fractional step method. 
We also performed similar numerical experiments with a truncated Arrhenius kinetics 
form, as described below (2.3). Qualitatively similar phenomena, as documented above, 
always occur but for somewhat different parameter ranges. 

Wave structure for the reacting compressible Navier-Stokes equations. The theory 
of combustion wave profiles for the reacting gas flow equations from (2.1) is consider­
ably less complete than that for the model equations [12]. Nevertheless, Gardner [13] 
has recently proved the existence of viscous strong (and weak) detonations for varying 
(and exceptional) values of the heat release and wave speed. One consequence of the 
results in [13] is a scenario for the wave structure with varying heat release qualitatively 
similar to that mentioned in (3.3) for the model equations; in fact, his method of proof 
involves deformation to the travelling waves of the qualitative model from [7]. This 
fact both provides a partial rigorous justification for the model and also suggests that 
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similar dynamically stable wave structures, as documented earlier in this section for 
the model, would also occur for the reacting compressible Navier-Stokes equations. 
In the remainder of this section we describe a series of numerical experiments 
confirming this conjectured behavior. 

We used the fractional step method described in § 2 with the second order Godunov 
method in the numerical experiments described below. We introduced the rescaled 
variable i = q"Z rather than Z and the initial data was always taken as the piecewise 
constant initial data defining a C-J (Chapman-]ouguet) detonation; i.e. the initial data 
for (p, p, 1I, i) had the form 

(Po. Po, 0, qo), x> 0, 

(PhPI,1I100), x:;;O 

where given the preshock state for x> 0, the postshock state defined for x:;; 0 satisfied 
the Rankine-Hugoniot relations defining a C-J detonation. The numerical calculations 
were performed on a finite interval with Dirichlet boundary conditions, and to avoid 
the computational expense of a very long interval, the solution was allowed to run 
until the wave came with a fixed number of zones from the right edge of the grid; then 
the solution was shifted from the right to the left to keep it fixed on the interval with 
new values Cor the zones on the right deflned by (Po, Po, 0, qo)-our graphical displays 
retain this computational artifact and focus on the fastest moving wave pattern. 
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In this section, diffusive length scales are completely resolved computationally, 
but for emphasis we wiII work in dimensional units which are typical ones for a viscous 
reacting shock layer. The detonation waves which we study have fairly small heat 
release and are modelled on initial data for the preshock state corresponding to 25 ()~ 
ozone and 75% oxygen at roughly room temperature in the ozone decomposition C-J 
detonation; thus, we use the documented sizes of all constants reported in the deftagra­
lion calculations from [9]. We use CGS units and the following parameter values: 

R=8.3143xl07, J.L 2X]0-4, 

y = ].4, 

A = /J = D, 

.114 =.'11. 

PAlm. = 1.0135 X 10", 

PAlm. = 1.29 X Hr\ 

For the ambient initial data, we used 

Po=·931 PAlm' 

Mpo T.,=--, 
Rpo 

With the speed of sound Co given by 

Co = ("(Po/ Po) 1/2 

the scalings of time, II!. and of space, Ro, were defined by 

(3.9) f1 
10 =--0, 

Poci) 

This choice of time and space scales corresponds to scaling compatible with the size 
of the reacting shock layer. Finally, in modelling the chemistry, we sometimes used 
the Arrhenius factor 

0.10) 

with k ~ M R, A = 1.00 X 10 Ie. and B = 6.76 x 106 ; this is the value of the dominant 
forward rate in the ozone decomposition reaction (see [9]). In other calculations we 
used ignition temperature kinetics with the form 

K(T)={:O ifT>~" 
o if T< To. 

(3.11 ) 

For the ignition temperature with the above detonation, we used To = 5000 K. We always 
used 300 mesh points in all computations on the fixed interval but increased (decreased) 
the resolution by setting J1x = 0' Ro with 0' a scaling factor. To avoid repetition, we 
only report the results of computations with the kinetics scheme in (3.11) because the 
kinetics structure function in (3.10) gave qualitatively similar behavior. 

Case 1. A C-J detollation with a nearly Z-N-D spike. We set Kn = 1 and report on 
the time dependent development of the wave that emerged from the C-J initial data 
described above with 6.x = .025Ro. The Z-N-D detonation (see ~ 4) has a pressure peak 
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of 12 atm. The pressure and chemical energy wave profiles of the solution that emerged 
from the dynamic calculation is given in Fig. 6. This solution is numerically steady in 
a reference frame moving with wave speed and is nearly a Z-N-D detonation since 
the pressure rises to a value of nearly 12 atm, then drops to the C-J value slightly 
below R atm. The width of this C-J detonation wave is roughly 10-4 cm. This is 
compatible with older estimates using explicit integration in the phase plane for the 
laminar ozone detonation wave thickness [10). This calculation is a refinement of one 
with ~.x = .OSRo where a profile of identical size and structure emerged. 

Case 2. Bifurcating wave patterns and dynamically stable weak detonations. By 
increasing the value of the reaction prefactor Ko but keeping the heat release and the 
initial C-J data fixed, by analogy with the structure documented earlier for the model 
system, one might anticipate a bifurcating wave pattern with a dynamically stable 
precursor weak detonation wave once q(l satisfies qo < iJcr(Ko). In the calculations 
reported in the time sequence from Fig. 7 we have kept all parameters in the calculation 
from Case 1 fixed except K(I. We have increased Ko from Ko = J to Ko = 5. Only the 
pressure and chemical energy plots are displayed in Fig. 7. The graphs display successive 
time plots of the profile but focus increasingly on the precursor hump given by the 
stable weak detonation wave. The reader can see that all chemical energy is released 
in this precursor weak detonation wave as anticipated in the model system; furthermore, 
this wave is supersonic from both the front and back. The slower moving trailing wave 
profile is an ordinary fluid dynamic shock. We remark that the same wave profile 
emerged under the mesh refinement with fix = .015Ro. Tt is somewhat surprising that 
a change in the reaction prefactor of S in the given detonation wave accounts for a 
transition from a dynamically stable strong detonation to a hifurcating wave pattern 
with a stable precursor weak detonation. 

4. The beha~'ior of fractional step methods for computing Z-N-D detonations. The 
computational meshes used in the calculations from § 3 are several orders of magnitude 
finer than those that could be used in a typical large scale computing problem. On 
much larger spatial scales the effects of diffusion are ignored so in this section we 
report on calculations with the inviscid reacting compressible Euler equations. Since 
it is an interesting problem to develop numerical methods which can capture the 



STRUCTURE FOR REACTING SHOCK WAVES 1073 

8000000 

7000000 

1000000 ! 

~aQOOOO 

4000000 

JGOooao 

2000000 

1000000 0 
[tot 

... ... • .. ... .. .. ... • .. .. .. .. .. .,. .. .,. .. .. .. .. .. .. .. .. .. .. .. • .. .. .. co .. .. .. .. g .. ~ ~ '! "! co ~ "! ~ 
~[SSUII[ C"EIIICAl ["ERGr 

DT • '.50Ir-ll TI'[ • J.S31£-10 TIII[STr, • 211 

8000000 

7000000 

1000000 

~QOQOOO 

4000000 

3000000 

2aooooo 

1000000 
0 

[tot .. .., • ... N .. .. ... • ... .. .. co co '" '" .. co .. 0 C> .. <> .. co <> .. .. .. .. .. <> .. co .. co .. .. ... .. .. <> .. .. '" "! "! ~ 
~USuttt ("[lIleAl [MiItGr 

DT • '.7+tE-1J TillE. 7.0S2E-IO rlMESTEP • 414 

~aooooo 

4000000 

lOOOOOO 

200000. 

100000a 

[+Ot 

'" 
..., .. oft ... .. .. on ... .. .. "" .. .. .. .. '" .. .,. .. .. .. .. .. <> .. 0 .,. 

co .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. - .0 ~ c: 
'ItESSvlI[ CH(IIICAl ("EltGT 

DT • 1.1+0[-11 TIN[ • I.410E-0' TIM£$TE~ • 755 
FIG. 7. Dl'lIomicaily emergillg preClIrsor weak detonatioll Witll Kll = 5 hlH a/l other parameters and initial 

data fixed as in Fig 6. 



1074 P. COLELLA. A. MAJDA AND V. ROYTBURD 

significantly higher pressure peaks which occur in the structure of Z-N-D waves, we 
assess the performance of the inviscid fractional step methods of § 2 in such a 
calculation. 

Coarse mesh calculationsfor the reacting Euler equations. For comparison, we used 
as initial data the same C-J detonation wave which we used previously in § 3. In the 
reported calculations we always used 300 mesh points with D.X = a Ro. We recall that 
Ro is a characteristic length scale which measured the internal structure of the reaction 
zone. In fact, by using Fig. 6, we see that 30 Ro = 1.5 x 10-4 em = "approximate wi dth 
of the nearly Z-N-D detonation" computed in § 3. We used either the Godunov or 
second order Godunov scheme in the inviseid calculations below with L'j; = J. 

The graphs in Fig. 8 display the values of the pressure and chemical energy for 
the travelling waves that emerged from these calculations with the C-J initial data. The 
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dashed line describes the results of computations using the second order Godunov 
method while the black line describes the results for the Godunov method. We increased 
the value of 0' in the calculations reported in successive plots and thus, we used 
increasingly coarse meshes. 

For dX =.1 Ro, the reaction zone was completely resolved and the expected Z-N-O 
profile was computed by either method. For llX = Ro so that there are roughly 30 points 
in the reaction zone, both methods gave a C-J detonation moving at the correct speed 
but the Z-N-D pressure peak predicted by the Godunov method was only 10 atm, 
rather than the expected 12 atm. Already at Ax = 10 Ro, neither numerical method has 
any pressure peak higher than 8 atm. On this mesh the Godunov scheme already clearly 
exhibits a numerical bifurcating weak detonation pattern qualitatively similar to the 
one described in ~ 3 with all chemical energy released too soon in the precursor 
numerical weak detonation wave. The second order Godunov method also exhibits an 
incorrect wave pattern on this mesh and this value of a is at the critical value for 
numerical wave bifurcation for this numerical method. On a mesh with llX = 102 Ro, 
both methods clearly exhibited lotally nonphysical bifurcating wave patterns with 
precursor numerical weak detonations. On even coarser meshes, the same approxi­
mately self-similar nonphysical discrete wave pattern emerged as indicated by a 
comparison of the graphs in Fig. fI(e) with dX = 105 Ro and Fig. Sid) with ~X = lO~ Ro. 
We recall that the mesh with Ax = 105 Rll has 300 mesh points in a region only 1.5 
meters long. Although we do not report the detailed time history here for these 
calculations, the numerical weak detonation wave that emerges is always moving at 
the speed of one mesh point per time step. Qualitatively similar results occurred in 
our computations with an Arrhenius kinetics structure function. The theory for numeri­
cal weak detonations developed in ~ 5 indicates that this numerical bifurcating wave 
phenomenon should occur on even finer meshes for detonations with larger heat release 
(our test problem has rather small heat release). 

Coarse mesh calculations jilr the model equotions. A similar computational 
phenomenon occurred for the fractional step schemes for the model system with the 
Godunov or second order Godunov methods. On the other hand, the inviscid fractional 
step scheme using the random choice method performed extremely well and a numerical 
bifurcating wave pattern was never observed on even the coarsest meshes tested. For 
example, in Fig. 9 we compare tbe exact Z-N-D profile and the numerical wave profile 
for a calculation with only 25 mesh points on the interval [-- 5, 2] for the random choice 
fractional step method. The agreement is astonishing given the coarse mesh, and almost 
the complete pressure peak has been captured. In contrast, for the same initial data 
the fractional step scheme with Godunov's method produced the nonphysical numerical 
bifurcating wave pattern with 100 mesh points. These experiments suggest that at least 
in a single space dimension, the fractional step scheme using the random choice method 
might be capable of coarse mesh resolution of pressure peaks in wave structure [or 
solutions of the reacting compressible Euler equations involving complex chemistry. 

5. Discrete weak detollations: nonphysical but stable discrete travelling waves. The 
calculations from § 4 on coarser meshes with the Godunov fractional step schemes 
yield a bifurcating numerical wave pattern with a discrete weak detonation wave as a 
precursor. These wave patterns qualitatively resemble the analytic bifurcating wave 
structures documented as stable exact solutions of the reacting Navier-Stokes equations 
in § 3. However, the wave patterns from § 4 are purely a numerical artifact since the 
numerical solution converged to the expected Z·N-D detonation under further mesh 
refinement. 
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Here we provide a theoretical explanation for the numerical results presented in 
~ 4. We work within the context of the simplified model and derive a new class of 
nonphysical discrete travelling waves for the basic inviscid fractional step scheme 
introduced in ~ 2. These exact solutions of the dilTerence equations will be numerical 
weak detonations moving at the speed, s = tlx/ tlt, i.e. one grid space per time step, as 
observed in the calculations from * 4. Of course, we have already demonstrated the 
stability of such nonphysical discrete weak detonations in the calculations reported in 

* 4 for sufficiently coarse meshes. 
Within the context of the simplified model, in the last section we considered the 

problem of computing the Z-N-D detonation dynamically as a solution of 

tt, + (~U2 - qoZh = 0, 
(5. I) 

Zx = Kcf>( 1I)Z 

from initial data given by a C-J or strong detonation wave, i.e., W = t (u, Z) has initial 
data with the form in (3.7) for the fixed wave speed s. We introduce the Hugoniot 
function defined by 

(5.2 ) 

For simplicity we always assume that the initial data from (3.7) satisfy UR > 0 so that 
for this strong or C-J detonation, we have 

(5.3 ) 

These initial data also satisfy the reacting Hugoniot equation 

( 5.4) 

For the inviscid fractional step schemes of the last section, we required the C-F-L 
stability condition 

(5.5) ~lli'=a<1. 
tlx 
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Given the mesh, we introduce the discrete wave speed s = 6.x/ 6.t. From (5.5) and (5.3) 
it follows that s satisfies .~ > S and one easily verifies the following fact: 

For any l> s, there are always exactly two solutions iiI, I~L' satisfying 

(5.6) 
H (iiI. uR,i') == qo, 

H (iiL", Up, §) = q(), 

The wave defined by (11[*, up) is an inviscid weak detonation wave with speed .f while 
the wave (tit UR) is an inviscid strong detonation wave travelling with the same speed. 
We ohserve that 

6.t 
tiI-> 1 

llx 

and the weak detonation always satisfies the C-F-L stability condition from (3.5) on 
the computational mesh but the strong detonation will always violate this C-F-L 
condition is (5.5). The numerical computations from § 4 indicate that on sufficiently 
coarse meshes, the difference equations for the inviscid fractional step schemes based 
on Godunov's method should have discrete travelling wave solutions, wi" = (1/;", Z;"), 
satisfying the equations . . 

(5.7 A) wt = W7--N for all N ~ 0 andj, 

with the discrete wave profile w)' having the structure 

(5.78) 
j ~ 1, 

lim W~l = (ilL" 0) . 
.1..... IX) 

Such solutions of the numerical scheme define the nonphysical discrete weak detona­
tions moving at mesh speed which were observed computationally in the last section. 
Here we will verify the following result: 

PROPOSITION (existence of numerical weak detonations). For (1 simplified in viscid 
ji'actiollal step scheme (see (5.10) and (5.11) helow) based on the Il[nl'ind scheme rather 
Ihan Godunov's scheme, explicit nonphysical travelling waves satisfi'ing the structure in 
(5.7 A) and (5.7B) exist under the Iilflowing conditions on heat release, qo, reaction rate, 
K, and mesh spacing, 6.,\: 

A) For ignition temperature kiwtics J.l'ith ignition temperature 17 san~f)'ing 17> un, 
/lonphysical discrete travelling waves with a mOl1otone profile exist provided the two explicit 
inequalities 

(5.8) 

are satisfied. 
B) For a general kinetics structure jimelion (jJ(u) satisfying ¢(UR) =0 and dJ(u) > 0 

for UR < tI, a numei:iealweak detona/Toll pro.file exists with the structure ill (5.7) provided 
that there is a solution lin with II" < II" < ilL' to the nonlinear algebraic equation 

(5.9) 

Remark l. It is easy to see that either of the quantitative algebraic conditions in 
(5.8) or (5.9) is satisfied provided that either K 6.x is sufficiently large or the heat 
release lJo increases. In fact, the quantity K = K 6.x for these inviscid fractional step 
methods for reacting gases has an analogous role as the mesh Reynolds number in 
viscous incompressible flow. The behavior of the numerical methods for K large for 
the reacting compressible Eu ler equations mimics the behavior for high reaction rate 
Kil documented in ~ 3 for the reacting compressible Navier-Stokes equations. 
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Remark 2. The same construction which we give below in the proof of the 
proposition will establish the existence of a spiked Z-N-D strong detonation discrete 
wave proflle moving with mesh speed, i.e., a discrete travelling wave satisfying (5.7 A) 
with 

} ::;: I, 

lim wf = (iit, 0), 
, ,-'1--\:\' 

and Uj > fir for j:=;; O. Because we have the C-F-L restriction below (5.6), this wave is 
never realized 011 the given computational mesh; however, it might occur in similar 
fractional step schemes based on implicit methods. 

First, we describe the variant of the inviscid fractional step schemes from § 2 
based on the upwind scheme. Given w;' = (u;', Z]'), in the first fraction step, we 
compute Z;'4 1 via numerical integration of the ODE to obtain the formula 

(5.10) Z N+I _ Z.N+l (_ K-¢( un + ¢(U}'!-J) 
j-I - ; exp 2 

with initial condition Zf+1 = 1 for j large enough and K defined by K = K L1x. For 
waves moving with positive wave speed as guaranteed by (5.3), Godunov's scheme 
reduces to the upwind scheme. In the second step of the simplified algorithm, we 
compute uj'-l+l from {u;'}, {Z,'-I+l} by applying the upwind difference approximation 
to the firstequation in (5.1). This results in the formula for 11;'-111 given by 

(5.11) N, 1 N!:J. t (1. N 2 1. N 2) L1 t NI 1 N + 1 
Iii = 11; --. - -CUi ) --(U;-I) + qo-(Zj- Zj_1 ). 

i.\x 2 2' !:J.x 

The formulae in (5.10), (5.11) describe how to compute {W;'!II} from {w;'} in this 
fractional step method. Next we prove the proposition for this scheme. 

The equations in (5.7 A) will be satislied provided that we find an initial wave 
profile W;l = (u;, Z;) satisfying 

(5.12) ,I VO 
Hj==~j_1 for all}. 

By explicitly computing w) from the fractional step method in (5.10), (5.11), we see 
that (5.12) will be satisfied provided that 

(5.13A) 
_ (_ -¢(1/)+I)+1)(lIj )) .. 

Zj _I -- exp K Z,' 2 ' 

(5.138) 

for j with -00 <j < ce. First, we concentrate on the case of ignition temperature kinetics. 
With w; = (li R , 1) for j::;: I, the equations in (5.13) are trivially satisfied for j::;: 2. From 
(5.13A) we see that Zo = 1 and if a solution lIo> ii is found, Uo is the solution of the 
equation 

(5.14) H(' -) - (.] -K/2) 
. Uo, 1.1 R, S - qo . - e . 

The H ugoniot function, H (u, liE, s) has the three properties 

H(lIR,UR,S)=O, 

(5.15) H ( 11 I ~, 11 R. ,n == q(h 

H( 11,1/" • .n is monotone increasing in 11 for UR < 11 < 111" 
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Given the conditions in (5.8) and the above three properties, we see that there is a 
solution 110 to the equation in (S.14) satisfying 

(5.16) 

Next, we generate the ui for J < 0 recursively from IIj +1 by a similar procedure, We 
anticipate the fact to be verified a po~steriori that u; for j < 0 also satisfies U < IIi < Up. 
We deflne a to be the factor (l' = e-Kn ; if IIj for j ~ 0 inductively satisfies Ilj > Ii, then 
from (S.13A), we compute that Z; is given by the formula 

( S.17) Z - -2}-1 
j - a , j = '---1, -2, -3, -4, .. , . 

With the formula in (S.17), the equations in (S.13B) will be satisfied inductively provided 
that 

(5.18) 

for j = -1, -2, -3, .... Since we have the monotone sequence 

j=-I,--2,-3,·'·. 

it fo1Iows from (S.lS) that there are always solutions 11; to the equations in (5.18) with 
the monotone structure 

forj = -1, -2, -3, .... From the above monotone structure and the equations in (S.18), 
it is easy to see that the unique limit il of this sequence as j t -0;:) satisfies 

il E (ii, 111.*], 

The only solution of these equations is il = ilL' and clearly from (5.17), Z; to rapidly 
as j t -00. This completes the construction of the explicit travelling wave for ignition 
temperature kinetics. Obviously a similar recursive construction can be applied for the 
more general kinetics schemes. The only difIerence is that the right-hand side of (S.14) 
or (5.18) also depends on !I). However, the assumption in (5.9) guarantees that Uo can 
be found and the other equations are easily solved inductively-we omit the details. 
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