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Data are fundamental sources of insight for experimental and computational sciences.
The Department of Energy acknowledges the challenges posed by fast-growing scientific
data sets and more complex data. The graph abstraction provides a natural way to rep-
resent relationships among complex fast-growing scientific data sets. On future exascale
systems, power consumption is of primary concern yet existing graph algorithms consume
too much energy per useful operation due to their high communication costs, lack of local-
ity, and inability to exploit hierarchy. This project explores methods to increase the energy
efficiency of parallel graph algorithms and data mining tasks. A new family of algorithms
will be developed to drastically reduce the energy footprint and running time of the graph
and sparse matrix computations that form the basis of various data mining techniques. This
project will also exploit the well-known duality between graph and sparse matrices to de-
velop communication-avoiding graph algorithms that consume significantly less power. This
project is relevant to DOE mission-critical science including bioinformatics and genomics
with particular emphasis on plant genomics that can result in better biofuels through effi-
cient genetic mapping, climate science where recent graph-based methods show increased
accuracy in hurricane predictions, and combustion science where graph search techniques
are used to analyze extreme-scale simulation data.

1 Summary

The early-career research project has made important progress during FY 2017. Specifically,
our accomplishments include:

• Release of Version 1 of the GraphBLAS standard, as described in Section 3.1.

• A work-efficient sparse-matrix-sparse-vector multiplication algorithm, a key kernel
used in graph algorithms and machine learning (detailed in Section 3.2).

• Scalable parallelization of the reverse Cuthill-Mckee (RCM) sparse-matrix ordering
algorithm using linear-algebraic primitives (Section 3.3).

• Development of the High-Performance Markov Cluster Algorithm, in collaboration
with ECP funded projects ExaBiome and ExaGraph (detailed in Section 3.4).
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• New parallel algorithms for Deep Neural Network training on KNL and GPU clusters
(detailed in Section 3.5).

DOE relevance of each research accomplishment is mentioned within the corresponding
section. Our next year plans can be found in Section 4. In FY17 alone, our project resulted
in five peer-reviewed publications [3, 7, 14, 10, 4]. In addition, we have one paper under
review [5].

The report concludes with software artifacts, presentations, community service, and
references. In particular, Dr. Buluç was the Vice Chair for the Applications Track in the
technical program committee of the SC conference (i.e. The International Conference for
High Performance Computing, Networking, Storage and Analysis). He also served as the
PC co-chair of the IEEE Graph Algorithm Building Blocks workshop. This fiscal year,
Dr. Buluç has been appointed as an Adjunct Assistant Professor of Electrical Engineering
and Computer Sciences at the University of California, Berkeley, and Dr. Azad has been
appointed as a career-track Research Scientist at LBNL.

2 Personnel

The project is lead by Aydın Buluç, a staff scientist, who spent about 50% of his time on
this project. In addition, Ariful Azad, a research scientist, spent a significant amount of
this time (40%) on this project. Carl Yang, a GSRA from UC Davis, was partially funded
to assist with developing GraphBLAS kernels on GPUs.

3 Progress and Accomplishments

3.1 The GraphBLAS C API

The GraphBLAS is an effort to define standard building blocks for graph algorithms in
the language of linear algebra [2, 12]. The PI Buluç co-leads a multi-institutional group
of researchers that are working on defining the right primitives and providing initial refer-
ence implementations. Thanks to these efforts, the number of systems that support graph
algorithms in the language of matrices has increased steadily [13, 9, 11]. Our own library,
Combinatorial BLAS (CombBLAS) [6, 1], remains the gold standard among those efforts
due to its pioneering status.

We have successfully ran the third peer-reviewed Graph Algorithms Building Blocks
(GABB) workshop at IPDPS’17, where the attendance was 30-40 people at any given time.
Dr. Buluç co-chaired the program committee in 2017. There were 12 submissions that were
peer-reviewed and 9 of them got accepted to be part of the proceedings. The call for papers
for next version is out at http://www.graphanalysis.org/workshop2018.html.

Dr. Buluç is a member of the five person team (along with Carl Yang who is also
partially funded by this project) that works hands on to develop a C language application
programming interface (API). The current C API specification [8] is provisionally final and
it has been released publicly. We have received numerous feedback from the implementers
and the community at-large since the initial release of the API. This allowed us to improve
the spec in various ways. The design rationale of the spec is published in a shorter paper [7].
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A very important novel GraphBLAS concept that we would like to highlight in this
report is a mask. A mask is either a one- or a two-dimensional construct. Masks are similar
to vectors and matrices, except that they have structure (indices) but no values. Masks
are used to control which values from an operation are written to the output object. This
way, they allow efficient execution of graph algorithms without materializing unnecessary
temporary objects. We envision to be broadly applicable to the growing area of sparse
machine learning algorithms.

This report summarizes some of the mathematical concepts of GraphBLAS below. Con-
sider a graph represented as an n-by-n adjacency matrix A, where Aij is the weight of the
edge from vertex i to vertex j, and a second k-by-n matrix B representing a subset (of
size k) of the vertices in the graph, such that Bji is 1 if the jth element of the subset is
vertex i (and all other elements of B are 0). The traditional matrix product B ×A over
real arithmetic of these two matrices returns the cost based on the edge weights of reaching
the set of vertices adjacent to the vertices in B. This fundamental operation can be used
to construct a wide range of graph algorithms.

We extend the range of graph operations by keeping the basic pattern of a matrix-
matrix multiplication, but varying the operators and the interpretation of the values in the
matrices (the domain). By carefully choosing operators and the domain, we control the
relation between matrix operations familiar in linear algebra and graph operations, thereby
enabling composable graph algorithms.

This generalized matrix multiplication is performed on an algebraic semiring. A semiring
is an algebraic structure over a domain D with two binary operators ⊕ and ⊗. The addition
operator, ⊕, is a commutative monoid with an identity element 0 (not necessarily the
number 0) while the multiplication operator, ⊗, is a commutative monoid with an identity
element 1 (not necessarily the number 1). The additive identity is also an annihilator for
the multiplication operator (⊗), and multiplication distributes over addition. The most
common semirings used in the graph algorithms community are shown in Table 1.

Table 1: Common semirings used with graph algorithms.

Semiring operators domain 0 1
⊕ ⊗

Standard arithmetic + × R 0 1
max-plus algebras max + {−∞∪ R} −∞ 0
min-max algebras min max ∞∪ R≥0 ∞ 0
Galois fields (e.g., GF2) xor and {0, 1} 0 1
Power set algebras ∪ ∩ P(Z) ∅ U

It is often convenient to change the semiring applied to a matrix. This means we must
represent the matrix and the semiring separately, and the two come together only when an
operation is performed. Mathematically, the ability to change semirings when moving from
one GraphBLAS operation to the next impacts the meaning of the implied zero in a sparse
representation of the matrix. This element in real arithmetic is the number zero (0), which
is the identity of the addition operator and the annihilator of the multiplication operator.
As the semiring changes, this implied zero changes to the identity of the addition operator
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and the annihilator of the multiplication operator for the new semiring. Nothing changes
in the stored matrix, but the implied values within the sparse matrix change with respect
to a particular operation.

This feature has significant impact on the definitions of GraphBLAS operations. Con-
sider matrix multiplication over the domain S with semiring operators ⊕ and ⊗:

C = A⊕.⊗B = AB.

Using index notation familiar in linear algebra

C(i, j) =

l⊕
k=1

A(i, k)⊗B(k, j)

for matrices with dimensions

A : Sm×l B : Sl×n C : Sm×n

The summation notation only works, however, if we redefine the implied zero of the sparse
matrices as we change the semiring (to the corresponding additive identity). Depending
on the domains associated with the matrix elements and the operations, this can lead to
awkward definitions of the operations involving the implied zeros. A cleaner approach
based on set notation avoids this problem. For example, we can define the previous matrix
multiplication as

C(i, j) =
⊕

k∈ind(A(i,:))∩ind(B(:,j))

(A(i, k)⊗B(k, j)),

where ind(A(i, :)) is the set of the column indices of the elements that are stored in row i
of matrix A, and ind(B(:, j)) is the set of the row indices of the elements that are stored
in column j of matrix B.

In other words, the binary operation ⊗ is applied to the elements in the intersection of
the two sets ind(A(i, :)) and ind(B(:, j)), and the results of this operation are accumulated
using the ⊕ operator. These notations are equivalent. By defining pairwise operations over
set intersections, however, we avoid needing to define how the semiring’s additive identity
interacts with the matrix’s implied zeros.

3.2 A Parallel Algorithm for Sparse-Matrix Sparse-Vector Product

Sparse matrix-sparse vector multiplication (SpMSpV) is a key GraphBLAS kernel, which
enables efficient parallelization of various graph algorithms such as breadth-first search,
maximal independent set, bipartite graph matching, and reverse Cuthill-McKee algorithm.
It also is used as a kernel in important sparse machine learning techniques such as support
vector machine (SVM) training and logistic regression.

We designed and developed a work-efficient multithreaded algorithm for SpMSpV where
the matrix, the input vector, and the output vector are all sparse [3]. As thread counts
increase, existing multithreaded SpMSpV algorithms can spend more time accessing the
sparse matrix data structure than doing arithmetic. Our shared-memory parallel SpMSpV
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Figure 1: Runtime of four SpMSpV algorithms when the adjacency matrix of
ljournal-2008 is multiplied by sparse vectors with different number of nonzero entries
using (a) 1 thread and (b) 12 threads on Edison. The sparse vectors represent frontiers in
a BFS starting from the first vertex of ljournal-2008.

algorithm is work efficient in the sense that its total work is proportional to the number of
arithmetic operations required. The key insight is to avoid each thread individually scan
the list of matrix columns.

Our algorithm is simple to implement and operates on existing column-based sparse
matrix formats. It performs well on diverse matrices and vectors with heterogeneous sparsity
patterns. An example performance result that show the superiority of our algorithm across
different vector densities is shown in Figure 1. A high-performance implementation of the
algorithm attains up to 15x speedup on a 24-core Intel Ivy Bridge processor and up to 49x
speedup on a 64-core Intel KNL manycore processor. In contrast to implementations of
existing algorithms, the performance of our algorithm is sustained on a variety of different
input types include matrices representing scale-free and high-diameter graphs.

3.3 Reverse Cuthill-McKee ordering in Distributed Memory

Ordering vertices of a graph is key to minimize fill-in and data structure size in sparse
direct solvers, maximize locality in iterative solvers, and improve performance in graph al-
gorithms. Except for naturally parallelizable ordering methods such as nested dissection,
many important ordering methods have not been efficiently mapped to distributed-memory
architectures. We developed the first-ever distributed-memory implementation of the re-
verse Cuthill-McKee (RCM) algorithm for reducing the profile of a sparse matrix [4]. Our
parallelization uses a two-dimensional sparse matrix decomposition. We achieve high per-
formance by decomposing the problem into a small number of primitives and utilizing opti-
mized implementations of these primitives. Our implementation attains up to 38x speedup
on matrices from various applications on 1024 cores of a Cray XC30 supercomputer and
shows strong scaling up to 4096 cores for larger matrices.
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3.4 High-Performance Markov Clustering

HipMCL is a high-performance parallel algorithm for large-scale network clustering. HipMCL
parallelizes popular Markov Cluster (MCL) algorithm that has been shown to be one of the
most successful and widely used algorithms for network clustering. It is based on random
walks and was initially designed to detect families in protein-protein interaction networks.
Despite MCL’s efficiency and multi-threading support, scalability remains a bottleneck as it
fails to process networks of several hundred million nodes and billion edges in an affordable
running time. HipMCL overcomes all of these challenges by developing massively-parallel
algorithms for all components of MCL. HipMCL can be x1000 times faster than the original
MCL without any information loss. It can easily cluster a network of 75 million nodes with
68 billion edges in 2.4 hours using 2000 nodes of Cori supercomputer at NERSC. HipMCL
is developed in C++ language and uses standard OpenMP and MPI libraries for shared-
and distributed-memory parallelization. The paper on HipMCL has been under revision [5].

3.5 Parallel Training of Deep Neural Networks

Deep Neural Networks (DNNs) significantly improved the accuracy of regression and clas-
sification problems that often arise in sciences. Neural Network training is computationally
expensive, sometimes prohibitively so. For example, training ImageNet dataset on one
Nvidia K20 GPU needs 21 days. Large scale parallelism and heavy reliance on hardware
accelerators are often the only tools to address the computational complexity. However,
these accelerators have limited on-chip memory compared with CPUs.

We performed an in-depth study of scaling DNN training on clusters of accelerators. We
used both self-host Intel Knights Landing (KNL) clusters and multi-GPU clusters as our
target platforms. From the algorithm aspect, we focused on Elastic Averaging Stochastic
Gradient Descent (EASGD), due to its demonstrated convergence properties, to design
algorithms for HPC clusters.

We redesigned four efficient algorithms for HPC systems to improve EASGD’s poor
scaling on clusters. Async EASGD, Async MEASGD, and Hogwild EASGD are faster than
existing counterpart methods (Async SGD, Async MSGD, and Hogwild SGD) in all compar-
isons. In addition to the algorithmic improvements, we use some system-algorithm codesign
techniques to scale up the algorithms. By reducing the percentage of communication from
87% to 14%, our Sync EASGD achieves 5.3× speedup over original EASGD on the same
platform. We get 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than
the state-of-the-art implementation.

Besides the algorithmic refinements, the system-algorithm codesign techniques are im-
portant for scaling up deep neural networks. The techniques we introduce include: (1) using
single-layer layout and communication to optimize the network latency and memory access,
(2) using multiple copies of weights to speedup the gradient descent, and (3) partitioning
the KNL chip based on data/weight size and reducing communication on multi-GPU sys-
tems. By reducing the communication percent from 87% to 14%, our Sync EASGD achieves
5.3× speedup over original EASGD on the same platform. Using ImageNet dataset to train
GoogleNet on 2176 KNL cores, the weak scaling efficiency of Intel Caffe is 87% while our
implementation is 92%. Using ImageNet to train VGG on 2176 KNL cores, the weak scaling
efficiency of Intel Caffe is 62% while our implementation is 78.5%.
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Figure 2: To visualize the comparisons, we use error rate (1.0 − accuracy) as the algorithm
benchmark. Then we use log10 scale of error rate to make the comparisons more clear.
Among these methods, Original EASGD, Hogwild SGD, Async SGD, and Async MSGD
are the existing methods. The rest of them are our methods. Each point on the figure
is a single run. For example, Sync EASGD has 13 points in the figure. It means we run
13 mutually independent Sync EASGD cases with different numbers of iterations. It also
means longer time or more iterations will help us to get a higher accuracy, even with different
initiations. The experiments are conducted on 4 Tesla M100 GPUs that are connected with
a 96-lane, 6-way PCIe switch.

An overall accuracy-vs-time comparison of several algorithms tested and redesigned are
shown in Figure 2. Among them, Original SGD, Hogwild SGD, Async SGD, and Async
MSGD are the existing methods. We also observe that Sync EASGD or Hogwild EASGD
is the fastest method among them. Sync EASGD and Hogwild EASGD are essentially tied
for fastest. Sync EAGSD incorporates a number of optimizations that we describe in more
detail in our paper [14].

4 Plans for the next fiscal year

Approximate-weight Perfect Matching on Bipartite Graphs: Direct solvers for
sparse linear systems, such as SuperLU and STRUMPACK, can not afford to perform ex-
pensive dynamic pivoting during runtime. Instead, they pre-permute the matrix to have
a diagonal with non-zero values. Once the nonzero diagonal constraint is satisfied, the
solver would also like the sum or the product of the absolute values on the diagonal to
have as high value as possible. In graph-theoretical terms, this problem translates into
finding an approximate-weight perfect matching on a bipartite graph. Ideally, maximum-
weight perfect matching is expected to work better with sparse linear solvers. However, no
practical parallel algorithm exists for maximum-weight perfect matching problem, forcing
distributed-memory solvers rely on sequential matching libraries. We are currently devel-
oping a distributed-memory 2/3− ε approximation algorithm for maximum-weight perfect
matching problem based on the sequential algorithm by Pettie and Sanders. We will ex-
tensively study the impact the matching quality on the runtime and numerical stability of
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sparse linear solvers such as SuperLU and STRUMPACK.
Parallel Connected Components on Distributed Memory: The distributed-memory
parallel MCL (HipMCL) algorithm performs a series of sparse matrix manipulations iter-
atively. After the iterations converge, the clusters are extracted by finding the weakly-
connected components of the final converged matrix. This is equivalent to finding connected
components on the symmetrized version of the final converged matrix. This operation needs
to be performed in distributed memory as the data is already distributed. Using linear-
algebraic primitives of Combinatorial BLAS, we will develop an efficient implementation
of the Awerbuch-Shiloach algorithm (to be named LACC). This algorithm is chosen for
its simplicity, performance guarantees, and suitability to Combinatorial BLAS. The algo-
rithm and its performance results will be written as a tech report that will be submitted to
publication.
Sparse training of Deep Neural Networks: The common practice in deep learning
training is to use dense matrix-matrix operations for high performance, mostly due to
fully connected neural network layers. It is recognized that sparsity in internal connection
weights, inputs, and/or outputs can be exploited for increased performance, accuracy (i.e.
minimize generalization error), and even interpretability. Deep Learning training achieves
sparsity using masks. The GraphBLAS effort explicitly targets these masked basic linear
algebra subroutines. We will inherit expertise from the GraphBLAS effort and our long-
running research programs in developing highly-scalable sparse matrix kernels.

Stochastic gradient descent (SGD) is the algorithm of choice for training NNs. Data
parallelism alone, however, is not sufficient in scaling SGD to 1000s of nodes efficiently. Due
to its noisy gradients, small-batch SGD avoids getting trapped in sharp minima. Increasing
the training batch size hurts this natural ability of SGD. Therefore, we will also exploit
model parallelism where the NN is partitioned (as opposed to replicated) on multiple nodes.
The crux of our approach is its synergy with exploiting network sparsity. A fully connected
NNs, while trivial to partition equally, would incur too much communication. A pruned
network is more amenable for partitioning with a low communication cost. Since a single
NN pruning step is known to lose accuracy, retraining and pruning alternates in phases.
Hence, we might need to repartition occasionally, preferably using a cheap partitioner.

Software artifacts

Combinatorial BLAS: Both Dr. Buluç and Dr. Azad contributed significantly to the
development of the Combinatorial BLAS (CombBLAS) library [6, 1] along both the func-
tionality and the performance axes. We released significantly improved version 1.6 in Octo-
ber 2017. The new features include complete in-node multithreading support, fully parallel
text I/O for both vectors and matrices, extended support for the distributed CSC data
structure, and our novel Reverse Cuthill-McKee (RCM) implementation.
HP-CONCORD: HP-CONCORD (High-Performance CONCORD) is a highly-scalable
distributed-memory implementation of the CONCORD-ISTA algorithm for sparse inverse
covariance matrix estimation. It is implemented in C++ with MPI and OpenMP. The main
bottleneck of HP-CONCORD is iterative sparse-dense matrix-matrix multiplication which
is handled by the SpDM3 library that is distributed with HP-CONCORD. Code is available
at https://bitbucket.org/penpornk/spdm3-hpconcord.
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Selected Talks

- “ Faster Parallel Graph BLAS Kernels and New Graph Algorithms in Matrix Alge-
bra”, Aydın Buluç, invited talk at EECS Department of UC Berkeley (October 2017)
and Google Research (November 2017)

- “Parallel Algorithms across the GraphBLAS Stack”, Aydın Buluç, invited talk at the
ACS HPC and Data Analytics Workshop, June 2017.

- “ A work-efficient parallel sparse matrix-sparse vector multiplication algorithm”, Ar-
iful Azad, conference talk at the IEEE International Symposium on Parallel and Dis-
tributed Processing, May 2017

- “The reverse Cuthill-McKee algorithm in distributed-memory”, Aydın Buluç, confer-
ence talk at the IEEE International Symposium on Parallel and Distributed Process-
ing, May 2017

Community Service

Aydın Buluç:

• Associate Editor : ACM Transactions on Parallel Computing

• Program Committee Leadership:

– Vice-chair, Applications (2017): ACM/IEEE Intl. Conf. for HPC, Networking,
Storage and Analysis (SC)

– Co-chair (2017): IEEE Graph Algorithms Building Blocks (GABB) workshop
at IPDPS

• Program Committee:

– IEEE International Parallel & Distributed Processing Symp. (IPDPS), 2017

– ACM Conf. on Bioinformatics, Comp. Biology, & Health Infor. (BCB), 2017

– IEEE Cluster, 2017

– Workshop on Irregular Applications: Architectures and Algorithms (IA3), 2017

– PLDI ARRAY Workshop on Libraries, Languages & Compilers for Prog., 2017

• Steering Committee: Graph Algorithms Building Blocks (GABB), IPDPS workshop,
2017.

Ariful Azad:

• Program Committee:

• ACM/IEEE Intl. Conf. for HPC, Networking, Storage and Analysis (SC), 2017

• IEEE International Workshop on High Performance Comp. Biology (HiCOMB), 2017

• IEEE Cluster, 2017
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[7] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang. Design of the GraphBLAS
API for C. In IEEE Workshop on Graph Algorithm Building Blocks, IPDPSW, 2017.
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