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• Two-Sided MPI: both sender and receiver are involved in data transfer
• Example :MPI_Send/MPI_Recv

• One-Sided MPI: decouple data movement with process synchronization
• PGAS model: one process can directly access other processes’ memory
• move data without requiring that the remote process synchronize
• Example: MPI_Put

What is One-Sided MPI?
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• Common way to communication on multiple GPUs

Benefits and Challenges

[1] https://www.top500.org/ 3

CPU (control flow)
Loop: 
 <<<…>>> do computation
 ** synchronization**
 ** do communication **

GPU • Increased algorithm complexity and decreased 
program productivity

• Hard to scale DAG-like computation

• GPU-initiated communication (One-Sided): NVSHMEM/ROC_SHMEM

CPU
Loop: 
 ** do computation     **
 ** do communication **

GPU (control flow)
<<<…>>> everything

• Program like on traditional CPU nodes

• Makes scaling DAG-like computation more feasible

• Preserve portability by using a common SHMEM 
interface that could be applied to CPUs and GPUs

• Highlights the use of one-sided communication on CPUs 



• Challenges:
• Requires more careful management of data placement and synchronization

• Two-Sided communication: MPI_Recv handles everything
• Data transfer is complete at the receiver side
• Receive buffer can be easily re-usable 

• One-Sided communication: NA
• Need user effort to manage data placement and receiver notification

Benefits and Challenges

[1] https://www.top500.org/ 4
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What’s the Achieved Communication Performance?

• Message Roofline Model provides a realistic bound on the communication  
performance based on the number of messages per synchronization
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Log-linear Plot:  CAN NOT Interpret Small Message Performance

A flat constant latency 
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Log-Log Plot:  CAN Interpret Small Message Performance

A slope for bandwidth

Achieved Bandwidth = F(message size)

A flat saturated bandwidth
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Can you achieve the peak?

Latency bound

Bandwidth Bound

Loose bound (flood send/put)
Hard to achieve in real applications 
due to synchronization
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Msg/sync Tells A Tight Communication Upper Bound
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Perlmutter (NVLINK3) 100GB/s

Communication performance on Perlmutter GPUs

One GPU node (NVSHMEM)
• Sender: put-with-signal and 

nvshmem_quiet to ensure the data 
transfer is completed at the receiver side.
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Communication performance on Perlmutter CPUs

One CPU node (CrayMPI) Two-Sided:
• MPI_Isend 
• MPI_Recv

One-Sided:
• MPI_Put (data)
• MPI_Win_flush  /* memory order */
• MPI_Put (signal)
• MPI_Win_flush  /* avoid a delayed signal  */

CPU one-sided MPI has potential to 
outperform the two-sided by supporting 
put-with-signal and receiver notification 
operations. 
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Characterize Applications using msg/sync

Workloads Patterns
Need 
receiver 
Notify?

P2P pair Msg/sync Words/Msg

2D Stencil BSP sync Yes Deterministic & fixed 4 Problem size/P

SpTRSV DAG async Yes Deterministic & variable 1 Avg. 100

HashTable Random async No indeterministic
Two-Sided: P 3

One-Sided: 1e6 1



Perlmutter (NVLINK3) 100GB/s
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Varies Achieved Bandwidth due to different msg/sync

SpTRSV 
Latency 4us

Hashtable
Latency 0.8 us

Stencil
Latency 1.6usOverlapped Latency: 0.5us
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Case Study: SpTRSV

• Matrix (from M3D-C1): 126K x 126K, with 1E+8 non-zeros
• 1 msg/sync
• Message size: 24 bytes – 1040 bytes

V100
Nvlink2
Lat: 5us

A100
Nvlink3
Lat: 4us

Shorter run times are  due to 
the lower communication 
latency 

One-Sided
Lat: 5us

Two-Sided
Lat: 3.3us
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Conclusion

• Propose a new metric -- the number of messages per synchronization -- to provide a tight 
upper bound of  communication performance, and help reason performance

• Message Roofline Model can help with 3P: (1)Performance: provide a tight upper bound of 
communication performance, (2) Productivity: guide a proper communication model for 
applications, and (3) Portability (Performance): reason different performance trends across 
architectures. 

• We demonstrate the potential of One-Sided MPI if put-with-signal and loose wait can be 
supported on CPUs.
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