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* Transistor density will increase by 2x every 12 months

* Transistor density will increase by 2x every 18 months

* Transistor density will increase by 2x every 24 months

(may have multiple answers)
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Poll: What Did Dr Moore Say _— ’Ji

* Transistor density will increase by
2X every 12 months

In 1965

* Transistor density will increase by 2x
every 18 months

* Transistor density will increase by
2x every 24 months

In 1975

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION
O=MNUDOO DY

Fig. 2 Number of components per Integrated
function for minimum cost per component
extrapolated vu time,

Dr. Moore’s 1965 paper
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50 years oiiSem
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Modern CMOS J

Atomic scale limit case for 2D Lithography Scaling
/ Beginn/ Traditional 22 nm Sub-10 nm

SmeiCl’O TCIVIT D )

/ Deep UV litho J

40 years of -
scaling history aminane

B Everygeneration / - anrhm 20y 2

— Feature size shrinks by 70%

P g
— Transistor density doubles ret usr:ae | m
— Wafer cost increases by 20% -
— Chip cost comes down by 40% ~

B Generationsoccur regularly
— On average every 2.9 years over the past 40 years
— Recentlytwoyears but the rateis slowing

1nm

1970 1980 2010 2020 20272

5nm

1990 2000



Moore’s Law of Documentation Ar\| ’m

new “Moore's Law" on documentation volume
seen from the 14™ fioor at Fermilab perspective

1 HEPIC2013 May 30 — June 1 Sep. 2013 & Fermilab




Scaling Already Slowing Down 5’Ar\| ’ffi

_

PRCCESS TECHNOLOGY

Mhbds,

(PROCESS)

Peter Bright “Intel retires “tick-tock” development model, extending the life of each process”, 2016
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Preserve Performance Scaling With ,‘,’,}l \

Emerging Technologies IN{|

BERKELEY LAaB

Post Moore

Scaling

New materials and
devices introduced

Q

§ to enable ©
£ continued scaling &
o) . 3
< of electronics o
o performance and 3
Now — 2025 efficiency.

Moore’s Law continues through
~5nm -- beyond which
diminishing returns are

expected, il

2016 2016-2025 2025+

End of Moore’s Law
2025-2030°?




Emerging Technologies

Emerging Emerging Specialized
transistors NENIES integration architectures

+ others
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An Architect’s Point of View
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New Lego Pieces j\| ’Ji
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BERKELEY LAB

* QOld designs can no longer become smaller with same strength

* Lego came up with new pieces:

N

* Which ones do we use?

* How does each one change the optimal design?

* How does each piece interact with others?

* What feedback can we provide Lego to refine each piece?




Emerging Transistors

Emerging
transistors
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* New devices need time to show
their potential

* Two broad categories:
New designs
New materials

* Maybe not a single replacement
for MOSFETS

Perform ance

Technology A

N

ey

Technology B

: >
Time
Rick Lindquist “3 Steps for Constructive Disruption”




Many More

rr/:>| ’I:;
5 32bit adder
10 22 AR T L B R
. ]U - 1U - Constant
E*d : ' < Energy*Delay
11]2 F10-23 i
1 /
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Nikonov and Young, “Benchmarking of Beyond-CMOS Exploratory

Devices for Logic Integrated Circuits”, 2015

Each dot is a moving target. We have to judge the potential
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Emerging
memories
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Many Memories As Well reeeeee ’m

* Some of these are non-volatile

SRAM DRAM eDRAM 2D NAND ID NAND PCRAM STTRAM 20 3D
Flash Flash ReRAM ReRAM

Data Retention N k4 h'd A4 'Y 'Y
Cell Size (F7) 4-6 19-26 2-5 4-10 8-40 4
Minimum F demonstrated {(nm) 25 22 64 20 28 27 24
Read Time (ns) 30 5 10-50r 3-10 10-50 10-50
Write Time (ns) 50 5 100=-300 3-10 10-50 10-50
Mumber of Rewrites 1018 1018 10 108-1 0w 10= 108-1012 108-1012
Read Power Low Lowr Low Low Medium Medium Medium
Write Power Low Low Low Medium Medium Medium
Power (other than R/AW) Refresh MNone MNone MNone None Sneak Sneak
Maturity -

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance
Computing,” CiSE, 17(2):73-82, 2015.

- Not good - Very good
Good - Excellent
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What About Memory Hierarchy? cereer) ’.i:

Flash Zone
* Non-volatility higher at Access Time
the hierarchy
1 cycl
Challenge
assumption that non-
volatile storage is c 3
slow and distant E sow0cdes  [PTVIVSEEE '.2
: g
@
. a.
* New memories have = 3-
. . L
different read, write, 2
reliability constraints 10M to 100M cycles [T J

* New memory hierarchy
likely different AGIGARAM “The Flash Zone”




3D Integration 5Arr\| ’{i‘i‘

BERKELEY LaB

Integration
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3D Integration of Tomorrow rreree ni‘

Enabled by Emerging Nanotechnologies

Massive Sensing

Fine-grained

(! & i 3 '-';‘?3 A ; :
Data Storage LIRS L 3D integration

(NV memory) : .
NV Memor Computing Logic (not TSVs)

Shulaker “Transforming Emerging Technologies into Working Systems”
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Technology Requirements rf\f| .i:|

* Low-temperature fabrication: <400 °C

Logic Memory

Carbon Nanotubes Resistive RAM

Shulaker “Transforming Emerging Technologies into Working Systems”




Specialization

BLE ER AR RS
Specialized
architectures

(reeeere ’m
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* Hardware that is more suited for specific kinds of computation
Can also have accelerators for data transfer

General Fixed
Accelerators .

purpose function

High Low
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Overall: The Variety of Choices Is 'Z}l "h
Overwhelming

* The vast number of
choices is a problem by

itself Feasibility Globally Optimal
1 Solution
It makes finding a \
. e
good design harder, Sy e
especially when Thermal TP RSFQ
designing manually | aubrumx o) = NCFET
x_ T, £t (P
MPES™x_°  Area o CNFET
Graphics'x_ | " TEET
FFT J< » EDP

E\“‘x@ingle—core
=I= ‘"“‘x\ljlomo Multicore
g2 EEEE ‘““‘x\I:Ietero Multicore - HMC

~ . 2, == :
. <= . AN ., BB == % Hetero Multicore — Future Mem
——1 M Cyp ==

= Programmability




Evaluate At Architectural Level r%

BERKELEY LAaB

* Evaluating each option in isolation misses the big picture
Devices can be better designed with high-level metrics
Architects can figure out how to best use new technologies

Software experts can assess impact to programmability and
compilers

Transistor/Devices Architecture

* But we lack the tools to do so systematically for many technologies
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How To Make An Architect’s Job Easier?
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Multi-Level Architectural Simulation 5::>|

EEEEEEEEEEE

Beyond Moore Architectural Simulation from
Emerging Device and Gate Level analysis

Level 4

e Subblock Delay
and Power data

from Level 3

System Bus




PARADISE End-To-End Tool Flow  reeei "

Devices and Circuits Architectures System

Input Input Input sl Input '
metrics metrics metrics / metrics QS
F D -

Target ;| TFET Inverter Specialized CMP
Modelling Unit " CNFET Adder Architectures Multi-cluster
F'ed e
Evaluation Device Level Device Level RTL/ Gate L c -
“'"'*' Simulator... Simulator Simulator... \ Level Simulator)—
Output Current/Voltage Delay Delay Db .
metrics Curves Power Power
LEVEL1: LEVEL2: LEVEL3: LEVEL4:
Device Models Logic Blocks Logic & Mem Units Complex Systems
T — —————— T

Jull SYTTIESIE: Bl
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Levels 1 and 2 Physical Simulation ceeee) ’Ji

* Level 1 is the input for devices
* Xyce: open source parallel SPICE client

0.8—""!""!""!""!nu-u_
—— V(ina) —— V(inb) —— V(sum)

Adder using TFETs 0'6;” aniNEan 1NN B DRE B I_

o4+ H—+H-H-H-H--H- R TNE N i

Voltage [V]

Time [ns]
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Comparison Studies j'\l "::
(PARADISE generated)

Adder -8 bit to 64 bits- Delay Comparison a+b 8x8 Multiplier -8 bits to 64 bits- Delay [a b C]*[X y Z]
J ) 17

CMOS vs TFET vs CNFET vs TFET Comparison
CMOS vs TFET vs CNFET vs TFET

6E-08
& 3.00E-06
%4E-O8
2 2E08 § 2.00E-06 --CMOS
0 S i 'g‘j 1.00E-06 ~=TFET
8 16 32 o4 0.00E+00 e
Datapath Size ' 8 16 32 64 NCFET
~~CMOS ~TFET ——CNFET —NCFET Datapath Size
Multiplier -8 bit to 64 bits- Delay Comparison 8x8 Multiplier -8 bits to 64 bits- Power
CMOS vs TFET vs CNFET vs TFET *b Comparison
2 50E-06 a CMOS vs TFET vs CNFET vs TFET
. a,b,c]*[x,y,z]
2 00E-06 -~-CMOS —TFET —~CNFET --NCFET [ N,y ] ,y,
o 0.0025
< 1.50E-06
T 1.00F 06 < 009
= 2 0.0015
5.00E-07 v
, = 0.001
0.00E+00 ' S 0.0005
8 16 32 64 )
Datapath Size 0 - 1V6 . -

Datapath Size

==CMOS =*=TEET ==CNEET NCFET

Delay comparison for a multiplier Power comparison for a multiplier




Level 3: RTL Synthesis reree?) ’Ji

* Synthesis using Yosys and our own extension for power estimation

PARADISE Level 2, 3 - Logic Synthesis using Standard Cell
Library for Adder 8bits - 2048 bits

9.00E+04
8.00E+04
7.00E+04

6.00E+04

8 500E+04 , _ ,
> SPICE simulations end at 64 bits

T
v 4.00E+04
o
0.00E+00 . a i
8 16 32 64 128 256 512 1024 2048
Datapath Size

=& CMOS
3.00E+04 =®=—TFET
2.00E+04

1.00E+04




Design Space Exploration at RTL Level
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Operating Voltage (V)
o o
@

O
N

O
o

B

CNTFET-
e ALU
CNTFET-
Adder +9.23%

@6.37%

*\_-9.91 Yo
NCFET-
itc99 b19

Y& - NCFET Design
X - CNFET Design

- Power Results Variation from
Commercial Tool flow

CNTFET-
VScale +12.7%
b

NCFET—@ TR
aes

Design Complexity




Level 4: Architectural Level rm ’Ji
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* Gemb5 with Aladdin

* With small accelerators small delay differences do not have a
significant application impact due to other overhead

Leve| 4 Matrix-Matrix Multiply of Double-Precision Floats
1. 1.01

1 0.943 s
0.825 : 0.766 0.703
—— 0.603

0.55 0.462
0.275 ® TFET Accelerator ® CMOS accelerator

0 Datapath Width
8x8 16x16  32x32  48x48  64x64  96x96  128x128

Execution Time
Normalized to No
Acceleration
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How To Use These Tools?

N

4 examples




(1) Architecture Design Methodology 5’Arr\| ’.?i

Comprehensive Methodology for Future Devices Based Architecture Design

Characterization

i i Compute §§ Memory
Appllcatlon - . Metric 1 "
funed Opnmal
Arch 1
Input Parameters:  Simulation assisted Optimal Metric 1+2
W Architecture Finding Algorithm . tuned .
1. Metrics Power Delay Area Thermal Dev. Mem Design optimal Optimal
Arch Space Parameter [ - Arch 2
Candidate N:
2. Spec Arch Models | Exploration | Giection [
q . Metric 1 + 3
3. Memories Chosen Solution tuned
. » e | nerer Candidates : Optimal
4. Devices | CMOS TFET C NC @ P Arch 3
: Tuning

. \ e




(2) CASPER cereend]
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BERKELEY LAaB

End-to-End Open Source Reconfigurable DSE
Methodology/Tool Flow for Beyond Moore FPGAs

Wave Equatien Or o
2062 = 02 * 52U/12 Wave Equation in Software Level
CNN representation API for FPGA

Lvegd Accelerators Prcgrammmg

A -Au =1 Ax
ATy Compute Komol

ay=5l -2 1]

* FPGAs can be
heterogeneous too

Original Code:
#define G 10
#define X 1000
#define T 4000

for(i=1;i<=X- 1/G i++

Group Execution "2z

* Qverlay step
understands available

FPGA hardware and
maps IPs accordingly

for(i=1;i<=X-1;i++)

u[i][1]=u[i][0]=fun(i);

for(j=1;j<=T-1 J++)
X

for(i=0; i<G/U,i++){
DFG_Execution_1()

e

for(j=Tj<=T-1/Gift+) -

".'i‘i
‘fl | | | l |
_DFG Execution() |
q) !!n e 1

|1|||1||1

for(i=0;i<U;i++{

li)[1] = ulil0] =fun(i):

i 24 -
o 0J[1] = fun(0
- oHHEH -‘-: o EE1}{1} fﬂ:&; Loop To be Unrolled
D “EEEEEEZE '8 © [ Host Execution || FPGA Accelerator Execution

D. Vasudevan et al, "CASPER — Configurable design space
exploration of programmable architectures for machine learning using

beyond moore devices," 2017
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(3) Quantum Control Processor j\| ’ﬂ‘-‘

X Quantum Computer = Quantum PU + Control Hardware

Off the shelf and high cost Large amount of data and slow speed

L ~ |

) Lw o3 g
Qubit & = I
FPGA  Tektronix AWG M Digitizer PC
1000 qubits,
gate time 10ns,
3 ops/qubit
300 billion ops per second




(4) Superconducting Logic j\| ”
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* Resistance drops to zero
Tc approx 4 Kelvin

* 100’s of Gigahertz
Deep pipelines

MIT News

* Memory is a grand challenge Non-superconductive
Metal ~a

* Can measure architecture impact
and synergy with memory

' -— duct
technologies uperconductor

Resistance

Temperature
Gallardo et al “Superconductivity observation

ina SCuInTe 2 = 1-x SNbTez X alloz with x=0.5"
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Looking for a PhD Thesis Topic? '/\‘l
More Questions to Answer B

* Which device technology will dominate?
For what domains, and with what side effects

* How does architecture change with device technology?

* How can we best take advantage of deep 3D?
With alternating logic and memory layers

* How large or distant do we make accelerators?

* How does the memory hierarchy change?

* How heterogeneous do architectures need to be?
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* Build an architectural simulation tool that can be used by software
developers

* What is the impact of challenging the far and expensive memory
assumption?

Also non-volatile

* What about a heterogeneous memory hierarchy?

* How can we use reconfigurable accelerators?

* How to deal will reduced reliability?
Approximate computing may see a boost




Conclusion coerend)

* It's an exciting time to be an architect
* It's hard to predict how digital computing will look like in 20 years

* Likely more diversified by application domain and even specific
algorithm

* We should focus on a grand strategy to best make use of our
available options
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Questions jr\| ’.?:




