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Abstract. MapReduce brought on the Big Data revolution. However,
its impact on scientific data analyses has been limited because of funda-
mental limitations in its data and programming models. Scientific data
is typically stored as multidimensional arrays, while MapReduce is based
on key-value (KV) pairs. Applying MapReduce to analyze array-based
scientific data requires a conversion of arrays to KV pairs. This con-
version incurs a large storage overhead and loses structural information
embedded in the array. For example, analysis operations, such as con-
volution, are defined on the neighbors of an array element. Accessing
these neighbors is straightforward using array indexes, but requires com-
plex and expensive operations like self-join in the KV data model. In
this work, we introduce a novel ‘structural locality’-aware programming
model (SLOPE) to compose data analysis directly on multidimensional
arrays. We also develop a parallel execution engine for SLOPE to trans-
parently partition the data, to cache intermediate results, to support
in-place modification, and to recover from failures. Our evaluations with
real applications show that SLOPE is over ninety thousand times faster
than Apache Spark and is 38% faster than TensorFlow.

Keywords: Multidimensional Array · Programming Model · Structural
Locality · Composable Data Analysis ·User-defined Function ·ArrayUDF
· Apache Spark · TensorFlow · MapReduce · Array Cache.

1 Introduction

The MapReduce (MR) programming model [11] transformed the way of develop-
ing data analysis algorithms and led to advanced data analysis systems, such as
Spark [42]. These systems enable users to compose complex data analysis algo-
rithms without implementing the details of parallel execution, data management,
error recovery, among other challenging tasks. Unfortunately, the MR program-
ming model could not be effectively used for scientific data analysis due to its
lack of support for multidimensional array data model and their limited support
for accessing neighbors in arrays [24,13]. As arrays are prevalent in scientific
data, such as 2D sky survey images [4], we propose a programming model that
operates directly on arrays and an execution engine to run composite analysis
on massively parallel computing systems efficiently.



2 Bin Dong, Kesheng Wu, Surendra Byna, Houjun Tang

A programming model for data analysis conceptually includes an abstract
data type and a set of generic operators. The abstract data type defines input
and output data structures for generic operators. This abstract data model for
the MR programming model is the key-value (KV) pairs and the correspond-
ing generic operators are Map and Reduce. The Map and Reduce execute user
customized procedures on a list of KV instances. To apply MapReduce to a mul-
tidimensional array, array elements need to be converted into KV pairs. Common
analysis operations, such as convolution [24,7], access a group of neighboring ar-
ray elements to compute a new value. In array representation, these neighbors
are near each other – we refer to this feature as structural locality [24,13]. This
structural locality is lost when the values are represented as KV pairs. Although
there are many ways to improve MapReduce systems [42,7], these intrinsic lim-
itations still exist within its programming model.

Array databases (e.g., SciDB [33] and RasDaMan [2]) use multidimensional
array as the native model. Their built-in operators, such as window, can cap-
ture structural locality, but they only allow performing uniform aggregation on
all window cells, i.e., running non-discriminative operations (e.g., sum) on all
window cells. Moreover, the definition of a window as (starting indices, end-
ing indices) limits its shape to be rectangular bounding boxes. However, data
analysis tasks on scientific data, such as computing gradients or slope [22,13],
need different operations on distinct window cells, which together may form
non-rectangular shapes. Blanas et al. [3] also show that loading scientific array
data from their native file formats (e.g., HDF5 [38]) into array databases is a
time-consuming and error-prone process.

Recent efforts, such as ArrayUDF [13], support user customized data analysis
on array file formats and represent structural locality for the aforementioned data
analysis operations. However, ArrayUDF lacks a formally defined programming
model, which is essential for composing analysis tasks as discussed previously.
ArrayUDF only allows operation on a single array with only one attribute, and
its input and output arrays must have the same dimensions and the data have
to be stored on disk. The lack of caching intermediate data in memory lim-
its its performance with significant I/O overhead. TensorFlow [1] uses tensor
abstraction to represent an array in machine learning applications. However,
it only provides customized operations (e.g., conv2d) for specific tasks. Tuning
existing operations and adding new ones still need non-trivial amount of code
development for data management, parallelization and other tasks.

To address the gaps in composing various data analysis operations for multi-
dimensional arrays, we propose a new “structural locality”-aware programming
model (SLOPE), describe the design and implementation for its parallel execu-
tion engine, and present a thorough evaluation comparing with state-of-the-art
Big Data systems. SLOPE offers a formally defined abstraction for users to cus-
tomize various data analyses directly on multidimensional arrays. Each array, as
an input of SLOPE, can have multiple attributes. The output array may have
different dimensions from the input array. SLOPE has a distributed DRAM-
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based cache layer to stage the intermediate array of the analysis pipeline. In
summary, contributions of this effort include:
– A formally defined structural locality-aware programming model (Section 3)

and its parallel execution engine (Section 4.1). SLOPE has a novel new data
structure – namely Stencil – and a generic operator (SLApply) to capture
and express structural locality existing in multidimensional array data ac-
cess and analysis. SLOPE allows customizable analysis operations directly on
multidimensional array stored in native scientific data formats. A vectoriza-
tion interface of SLOPE allows it to compose data analysis involving multiple
attributes of one or more arrays.

– A distributed DRAM-based cache layer (Section 4.1) to store intermediate
output arrays. SLOPE supports asynchronous checkpoint method for cached
array. SLOPE also has a asynchronous halo exchange algorithm that synchro-
nizes array cached in distributed DRAMs.

– Describe optimization features of SLOPE, such as mirror values and in-place
data modification, to improve performance and semantics of data analysis on
multidimensional array(Section 4.1).
We demonstrate the performance of SLOPE by using it to compose real sci-

entific data analysis tasks on a supercomputer with 2, 388 Intel Xeon processors.
These data analysis tasks come from applications: CAM5 [40,28], VPIC [8,22],
and BISICLES [10,44]. We also compare SLOPE with state-of-the-art data anal-
ysis systems, such as Apache Spark [42] and TensorFlow [1]. SLOPE achieves up
to ≈90,000× performance speedup over Apache Spark and ≈38% speedup over
TensorFlow. We show that SLOPE can scale linearly as the data size and the
number of CPU cores increase, achieving 512GB/sec (≈ 128 GFLOPs )process-
ing bandwidth using 16K CPU cores.

2 Preliminaries

2.1 Multidimensional Array

A d-dimensional array has dimensions D = D1, D2, . . . , Dd and a set of m at-
tributes A = A1, A2, . . . , Am [5]. Each dimension is a continuous range of in-
teger values in [0, N − 1]. Each indices [i1, i2, . . . , id] defines an array cell. All
cells have the same data type for an attribute. An array can be expressed as
a function mapping defined over dimensions and taking value attributes tuples:
Array : [D0, D1, . . . , Dd−1] 7→< A0, A1, . . . , Am−1 >. In array, cells are stored in
well-defined layouts, such as row-major and column-major orders. The row-major
order is popular in scientific data formats, such as HDF5 [38] and NetCDF [21],
and its last dimension is stored contiguously in storage devices. Offsets from the
beginning to a cell at (i1, i2, . . . , id) is given by

∑d−1
k=0

∏d−1
l=k+1Dlik.

2.2 User-defined function and Programming Model

User-defined function (UDF) is a classic mechanism in database systems [26]
to extend their query language. With the prevalence of MapReduce(MR), UDF
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Shuffle

Create KV for each cell & Split

Mapper #1
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(key = 1)

Reducer #0
(key = 0)

(0, (0, 1.2))    (0,  (1, 1.3))
(2, (0, 1.4))    (2,  (1, 1.5))
(1, (0, 1.3))    (1,  (1, 1.4))

Transform key & duplicate 
values for Reduce #1

Transform key & duplicate 
values for Reduce #1

              [2,4] =

Computing CONV 
filter on each blue 
rectangular box

 c1 =  a01.2 + a11.3
       +a22.2 + a32.3

 c2 =  a01.3 + a11.4
       +a22.3 + a32.4

 c2 =  a01.4 + a11.5
       +a22.4 + a32.5

[1,3] = [c1, c2, c3]

KV

Array

Array

Fig. 1: An example of using MapReduce
to compose convolution computing (CONV )
from array θ1 to θ2. θ1 is first linearized to
a 1D KV list. Mappers then unify the key
of KV pairs belonging to the same CONV
filters (i.e., blue dashed rectangular boxes).
Based on the index of a cell in original rect-
angular box, a secondary key (light green) is
added to find corresponding filter weight in
later Reducers. Also, KV pairs for Reducer
#1 (denoted as red) are added via dupli-
cating existing values. After shuffle, Reduc-
ers perform a weighted summary to com-
pute CONV ({a0, . . . , a3} are weight). Obvi-
ously, MapReduce is an inefficient program-
ming model for array because of the conver-
sion between array and KV and the duplica-
tion of values for Reducers. We propose a new
programming model that enable users to di-
rectly customize and execute operations from
θ1 to θ2 without data model conversion and
with negligible duplications.

evolves into a stand-alone programming model [32,11]. The MR has an abstract
KV data model and two generic operators: Map and Reduce. Map and Reduce
accept UDF defined on KV data model from users for different purposes. MR
has achieved a lot of successes since its emergence. MR, however, has several
intrinsic issues in supporting array data analysis:

– KV data model makes MapReduce perform poorly on multidimen-
sional arrays. Multidimensional arrays have to be linearized into KV list
before using them as the input of MapReduce. First, this linearization may
need to explicitly handle array index. Second, the linearization breaks the
array structural locality, which exists in many data analysis operations such
as convolution [19] and gradient computing [13]. In Fig. 1, we give an ex-
ample of using MapReduce to compute convolution on a 2D array and dis-
cuss its problems. The discrete convolution [6] is expressed as ∗ operator:
(f ∗ g)(n) =

∑∞
m=−∞ f(m)g(n−m), where f , g are two complex-valued func-

tions on the set Z of integers. For a single convolution on array, it needs a
few neighborhood cells. Linearization breaks the structural locality by scat-
tering these neighborhood cells in different Mappers. The penalty is the extra
cost to rebuild this structural locality though Shuffle and Reduce. Although
using linearization methods (e.g., SFC [35]) may preserve structural local-
ity, developing these methods and converting operations originally defined on
multidimensional array to ones on KV are still cumbersome tasks for users.

– A set of KV pairs processed by a Reducer is independent from the
set of KV pairs processed by another Reducer. Assuming S1 and S2
are two sets of KV pairs belonging to two Reducers, it is common to have
intersection S1 ∩ S2 in use cases, such as convolution [19]. Because MapRe-
duce schedules and executes these two Reducers separately, duplicating KV
pairs in S1∩S2 for two Reducers are required to make parallel processing on
S1 and S2 work properly. As shown in Fig. 1, the input KV pairs for Reduc-
ers #1 are added by MapReduce through duplication. These duplicated KV
pairs consume memory for storing and network bandwidth for shuffling and
therefore degrade overall data analysis performance.
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3 SLOPE Programming Model

As discussed above, multidimensional arrays and KV pairs are different data
models. Using the MapReduce to handle multidimensional arrays requires con-
verting them into a KV list. Therefore, it is critical to explore a programming
model with multidimensional arrays as the first-class citizens. Toward that goal,
we focus on addressing the following question: what are the abstract data types
and generic operators for a comprehensive programming model supporting data
analytics on multidimensional arrays? We answer these questions with the pro-
posal of SLOPE that contains a new abstract data type, called Stencil and a
generic operator SLApply. Details are reported in following subsections.

3.1 Abstract Data Type — Stencil

An abstract data type represents both the input and output data structures of
generic data analytic operators in a programming model. In other words, the
abstract data type describes the data structure for the smallest subsets of array
data in composite data analysis. In this work, we present a new abstract data
type, called Stencil, which is inspired by the stencil-based numerical comput-
ing [14]. Being different from these existing work, we focuses on generalizing
these ideas for modern data analysis (e.g., convolution neural network). Con-
ceptually, a Stencil can represent a geometric neighborhood of an array, which
further contains a center cell and a few neighborhood cells at different relative
offsets from the center. We use the absolute index (c) of an array cell to refer
the center cell and use the relative offsets ( #»o ) to represent the neighborhood
cells, which can be expressed as (c, #»o ). For example, in a 2D array, a geomet-

ric neighborhood expression using Stencil can be

(
(1,1),

(
(0,0), (0,-1), (0,1),

(-1,0), (1,0)
))

, where c=(1,1) is the absolute index of the center cell and #»o =(
(0,0), (0,-1), (0,1), (-1,0), (1,0)

)
contains relative offsets for the center cell

itself, the cell on the left, the cell on the right, the cell on the top, and the cell
below. This geometric neighborhood is visually shown in Fig. 2(b).

In the following description, we use the symbol S to refer an instance of Sten-
cil and use So1,o2,...,od to refer a single cell at the relative offset [o1, o2, . . . , od].
In the above example, S0,0 is the center cell and S0,−1 is the cell at the left. The
value of the cell in a Stencil is represented by dot “.” operator on the symbol S.
For example, during an array with multiple attributes Aj (j ∈ [1,m]), the value
of the attribute Aj is represented as So1,o2,...,od .Aj . The value of all attributes

is represented as a vector
#                            »

So1,o2,...,od .A or
#    »

S.A. In the array with a single at-
tribute, we use So1,o2,...,od to represent its value by omitting the dot operator
and attribute name. We conclude the properties of Stencil as follows:
– A Stencil abstraction provides a new way to logically partition a

large array into subsets. Compared with chunking in array databases [31],
Stencil splits array into even smaller subsets for processing. Stencil obeys the
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S-1,0

S-1,-1

S0,-1 S0,1

S0,-1

S1,0

S-1,0

S0,0 

S0,1 S0, 2

S1, 0 S1, 1 S1, 2

S2, 0 S2, 1 S2, 2

S-1,1

S1,-1 S1,0 

S0,1 

S1,1 

S0, 0

S0,0 S0,0S0,0

(a) (b) (S) (d)

Fig. 2: Example of geometric neighborhoods expressed by Stencil on a 2D array:
(a) a single cell neighborhood; (b) a neighborhood containing a center cell and
four surrounding cells; (c) a neighborhood contains a center cell and its neighbors
at right-bottom; (d) a forward-scan neighborhood (at top) and a backward-scan
neighborhood (at bottom). These examples are presented from the point-view
of users. The center of each is ignored and will be automatically handled by
the execution engine in following Section 4. Usages of these examples in real
applications are presented in Section 3.3.

structure locality of array data access by allowing relative offset from a center
cell, which is important in many data analytic operations [13].

– A Stencil has flexible size. By taking a 2 by 2 array as an example, S1=(
(0,0),

(
(0,0)

))
contains the first cell. S2=

(
(0,0),

(
(0,0), (0,1), (1,0),

(1,1)
))

represents the whole array. Such flexibility enables users to group

any number of desired cells for analysis.
– Cells within a Stencil can form any geometric shape. One can specify

any cell as the center of a Stencil and add any other cell into the Stencil.
So, the cells within a Stencil can form any shape. A few examples of typical
Stencils are visually presented in Fig. 2, which will be further discussed in the
following Section 3.3. By comparison, window in SciDB is defined as (start
indices, end indices) and it can only represent rectangular shape. Compared
with sliding idea of the Spark [42] on a 1D KV list and the window idea of
SQL database systems [41,26] on relational tables, our Stencil can express
more diverse geometric shapes on top of a multidimensional array.

3.2 SLOPE Programming Model

The Stencil abstract data type provides a flexible way to represent a small set of
array cells with structural locality. We use it as the input and the output data
type of a generic operation in our programming model. Hence, we refer our pro-
gramming model as Structural Locality-aware Programming Model (SLOPE).
Inspired by the Apply primitive in R [15] and in several other languages, our
SLOPE has a generic operator, named Structural Locality Apply, or SLApply
for short. Hence, the SLOPE model can be represented as the following two-
element tuple: (Stencil, SLApply), where Stencil is the generic data type and
SLApply is the generic operator. Given two arrays θ1 and θ2, the generic operator



SLOPE: Structural Locality-aware Programming Model 7

SLApply is expressed as,

SLApply :
#»

S
f7−→

#»

S′, S ⊂ θ1, S
′ ⊂ θ2, (1)

Semantically, SLApply maps the Stencil instance
#»

S to the result Stencil instance
#»

S′. The
#»

S and
#»

S′ represents geometric neighborhoods from input array θ1 and
output array θ2, respectively. The UDF f defines the desired operation for the
map. Within function f , users can use the Stencil abstraction and its member
cells to describe any desired operation. The #» (hat) symbol on Stencil means
both input and output can be a vector Stencil across all attributes of input and
output arrays. In following parts, we uses θ2 = SLApply(θ1, f) to represent the
execution of function f from θ1 to θ2. Users also control the return value of
function f which is used to initialize output Stencil.

In SLOPE implementation, the SLApply internally executes the function f
on all instances of Stencil abstraction. There are two ways for SLApply to create
Stencil instances and execute function f :

– By default, SLApply creates Stencil instance for each array cell in θ1. Then, it
executes f on each Stencil instance. This default method works for most data
analysis tasks (such as filter) which run an operation on the whole array. The
value of output Stencil is the return value of function f. The output Stencils
inherit the coordinate of the center cell of the input Stencil.

– Additionally, SLApply can create Stencil instances for certain cells and ex-
ecute f only on them. For example, users can specify a skipping parameter
on θ1 to avoid creating Stencil instances, i.e., calling function f for certain
cells. One example operation is convolution computing which may run filter
on every two cells on each dimension.

In most cases, output S′ only has a single cell, but it can also include a set
of neighborhood cells. By default, the semantic of SLApply only allows “read
only” on original array θ1. But SLOPE provide users an option namely “In-
place Modifications” (in Section 4.5 ) to change the semantic to update θ1 as the
propagation of f onto the whole array.

//User customized functions
Gradient(S):

return 4S0,0 − (S−1,0 + S0,−1 + S0,1 + S1,0)

θ2= SLApply(θ1, Gradient)

Interpolation:(S)
return BilinearInter(S0.X, S0.Y , θ2)

SLApply(θ3, Interpolation)

Fig. 3: Gradient computing and interpola-
tion with SLOPE on a 2D field data θ1 and
on a 1D particle data θ3. The θ3 has two at-
tributes X and Y . It first invokes SLApply to
execute Gradient on θ1. Then, the Interpo-
lation is applied onto θ3, which uses θ2 from
first SLApply too. For simplicity, we use Bi-
linearInter (omitted) to denote the interpo-
lation formula. In parallel execution, θ2 can
be cached in memory and broadcast to all
processes for performance.
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//Three user customized functions
CONV (S):

return
[
S0,0, S0,1, . . . , S2,2

] 
a0,0 . . . a0,k

.

.

.
.
.
.

.

.

.
a8,0 . . . a8,k


POOL(S):

return max(
[
S0,0,0, S0,0,1, ...S0,0,2

]
)

ReLU (S):
return max(0, S0,0,0)

//Execution by chaining three SLApplys on array θ1

SLApply

(
SLApply

(
SLApply(θ1,CONV),ReLU

)
, POOL

)

Fig. 4: Expression of CNN
on a 2D array θ1 with SLOPE.
The convolution has k kernels
whose parameters are aij , i ∈
[0, 8] and j ∈ [0, k]. The out-
put of each CONV is a vec-
tor, turning θ1 into a 3D ar-
ray. CONV is applied onto ar-
ray θ1 at first. Then, ReLU
and POOL are applied onto
the result of CONV. Users can
define and add more layers to
have a deep architecture.

3.3 Example Data Analysis Using SLOPE

SLOPE can express various single data analysis operations, such as filter, moving
average, etc. Here we use SLOPE to compose a few advanced data analytic
algorithms with multiple steps:

– Gradient and interpolation computations. Magnetic reconnection is an
important phenomenon in plasma particle acceleration research [22]. Data
analysis pipeline used to study the reconnection phenomenon involves com-
puting gradients on the magnetic field mesh data and then interpolate the
gradient value for all particles scattered in space. An example of using SLOPE
to express this data analysis pipeline on a 2D filed data is shown in Fig. 3.
The gradient procedure uses the Stencil shown in Fig. 2(b). The interpolation
uses the Stencil from Fig. 2(a).

– Convolutional neural network (CNN). CNN [19] is a deep feed-forward
artificial neural network, typically used in recognizing images. A CNN has
been applied to identify extreme weather events [27]. CNN usually includes
three main layers: convolution, ReLU, and pooling. Figure 4 shows expressions
of these three layers with SLOPE. The Stencil for convolution and pooling is
shown in Fig.2(c). The ReLU uses a single cell Stencil, as shown in Fig.2(a).

– Connected Component Labeling (CCL). CCL [34] is one fundamen-
tal algorithm in pattern recognition. CCL assigns each connected component
member with a unique label. The standard CCL repeatedly applies an 8-way
connection detection for each point to replace its label with the minimum label
of its neighbors. CCL converges until no such replacement happens. To accel-
erate the converge process, advanced CCL algorithms break the connection
detection into forward and backward passes, as shown in Fig. 5. The Stencil
in Fig.2(d) are used during forward and backward passes in advanced CCL.

4 Parallel Execution Engine

This section introduces a parallel execution engine for SLOPE. We especially
focus on following problems: (1) how to enable the user-defined operation defined
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//Two user customized functions
ForwardScan(S):

return min(S0,0, S−1,−1, S−1,0, S−1,1, S0,−1)
BackwardScan(S):

return min(S0,0, S0,1, S1,0, S1,1, S1,−1)

//Repeatedly executing two SLApplys on array θ1
do

θ1 = SLApply
(
SLApply(θ1, ForwardScan), BackwardScan

)
while (NOT converged)

Fig. 5: CCL algorithm on a
2D array θ1 expressed with
SLOPE. It includes a back-
ward scan and a forward
scan. The converged status is
reached when no new label is
found for all cells. For simpli-
fication, we omit the functions
to detect converged status and
to switch execution direction.

SLApply(f1) SLApply(f2)

CPU 0

CPU 1

CPU 2

DRAM

DRAM

DRAM

A
syc H

alo  E
xchange

Local Write

Local Write

Local Write

DRAM

DRAM

DRAM

CPU 0

CPU 1

CPU 2

Intermediate Array

Local Read

Local Read

Local Read

Computing Nodes 

...

...

...

Computing Nodes 

Input Array Output Array

Async & Parallel Write

Storage System/w Scientific Data Formats, e.g., HDF5, NetCDF and ADIOS

SLApply(f1)

SLApply(f1)

SLApply(f2)

SLApply(f2)

Chunks /w Halo 

Parallel Read
Parallel Write

Fig. 6: Example of SLOPE ex-
ecution for two user customized
analysis functions (f1 and f2)
on a 2D array θ1. The θ1 is
split into 6 (3 × 2) chunks and
read into 3 computing nodes for
parallel processing. The inter-
mediate array from f1 is cached
locally in memory for f2 to
read. Before actual read, a halo
exchange algorithm is executed
to augment cached chunks with
halo layer. The intermediate ar-
ray can be written onto disk for
fault tolerance. The final output
array is θ2. Both θ1 and θ2 are
stored as scientific data formats,
e.g., HDF5, in storage systems.

on Stencil to run parallel. (2) how to cache intermediate data of analytic pipeline
in DRAM to avoid expensive I/O operations.

4.1 Overview of Parallel Execution Engine

SLOPE execution engine follows single program and multiple data (SPMD) pat-
tern [16,30,29], where multiple SLOPE processes are launched with the same
analysis program and each process handles different data. Within a process,
an SLApply executes an user-defined operation. An example of SLOPE on three
nodes processing a 2D array in parallel is shown in Fig. 6. The input array is par-
titioned by SLOPE into chunks. SLOPE augments each chunk with halo layers
(or called ghost zones) to avoid possible accessing cells from different nodes dur-
ing execution. The output array of SLApply can be cached in memory. Caching
the output from the previous SLApply allows the following SLApply to quickly
access input data. SLOPE execution engine uses a halo exchange algorithm to
synchronize each cached chunk for cache array. While storing the intermediate
array in memory is prone to software and hardware failures, SLOPE supports
asynchronously checkpointing intermediate arrays to persistent storage system.
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4.2 Data Partitioning and Halo Layer

An array is split into chunks for parallel processing in SLOPE. The chunk in
SLOPE is defined as (starting indices, ending indices), where indices is a vector.
SLOPE augments each chunk with a halo layer. The halo layer eliminates the
need to retrieve cells from other chunks. Users can specify the size of the halo
layer as the maximum offset used by Stencil in the user-defined function f . Note
that the halo layer in SLOPE introduces a small amount of duplicated cells at
boundary. However, these duplications has a negligible performance impact since
halo layer is usually smaller than a chunk. In contrast, MapReduce (as shown
in Fig. 1) duplicates KV instances for each operation across the whole chunk,
which significantly increases data size to be processed.

4.3 Data and Computing scheduling

The scheduling method in SLOPE assigns chunks among processes with the
structural locality at chunk level to reduce the ghost zone exchanges when the
array is needed by following SLApplys. By default, array chunks are linearized by
the row-major order and the linearized index is used as the ‘ID’ of the chunk (de-
noted as idchunk). Given p processes, the chunk idchunk is assigned to the process
at rank bidchunk/b idchunk

p cc. SLOPE also allows users to choose the assignment
in the reverse direction, i.e., from the end to the beginning along linearized order.
Within a single chunk, cells are also scheduled by their row-major order.

4.4 Output Array Dimension

Mostly, the output array from a SLApply has the same number of dimensions
and size as the input array. However, the output array may have different number
of dimensions and size. SLOPE detects these attributes for output array based
on information extracted from input array and the user customized function on
it. For example, the convolution operation (in Fig.4) converts a 4 × 4 2D data
to an 4 × 4 × 8 3D array. In the CONV function, the return value for a single
array cell is a vector with 8 cells. SLApply detects the size of this return vector
and uses it as the size of the third dimension in output array.

4.5 Advanced Features

In SLOPE, we also provide various advanced and optional features that may
apply only to selected data analytic tasks.

Intermediate Array Cache. To support efficient data movement between
multiple SLApply operations, we support caching [43] intermediate data on dis-
tributed memory instead of storing on file systems. The in-memory cache layer
has a metadata table containing array dimensions, cell type, and other array
related attributes [36]. This metadata table is created when the intermediate
array is produced through the output array dimension reasoning method dis-
cussed before. Based on the SPMD pattern of SLOPE, each SLApply can have
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its own copy of metadata table to avoid communication when it writes or reads
data. Intermediate arrays are stored as chunks and each is produced by its corre-
sponding input chunk on the same process. Each chunk does not contain the halo
layer when it is produced. SLOPE builds halo layers for the following SLApply
when needed using an asynchronous halo exchange method. SLOPE uses
classic halo exchange algorithm [18] but we improve it with MPI asynchronous
primitives MPI Isend and MPI Ireceive to improve its performance.

Asynchronous check point method. Caching intermediate arrays in mem-
ory is prone to data loss because of potential hardware or software faults [20].
SLOPE allows to asynchronously checkpoint intermediate arrays [37]. SLOPE
provides interface for users to control the checkpoint frequency, which can be cal-
culated via: V

T×E , where V is the data size, T the bandwidth of storage system,
and E the time of executing a SLApply.

Mirror Value. Invoking a user customized function incurs overhead. In
reality, there are some operations that have defined mapping from the input
value to the output values, e.g., values greater than or equal to zero in ReLU
used by CNN. The SLOPE introduces a mirror value feature to allow SLApply
to skip invoking customized function for these points.

In-place Modification. During real-world data analysis, computing on a
cell may need the result from previous cells. For example, in CCL, the label of
the previous point can be used to find the label for the current one. To optimize
for these operators, SLOPE allows users to replace input of SLApply with its
output. By contrast, Spark does not allow analysis operation to modify the
original data, which may create lots of RDDs in long pipeline.

Multiple Arrays. SLOPE allows users to compose data analysis on multiple
arrays. For example, the user-defined Interpolation function in Fig. 3 describes
the operations on array θ3 and on array θ2. This operation is similar to the
map-side join in MapReduce.

4.6 Implementation of SLOPE

Based on ArrayUDF [13], we provide an implementation1 of SLOPE in plan C++
with its template feature to support different data types. Specially, it provides
two C++ classes, e.g., Stencil and Array, which are included in header file “Ar-
rayUDF.h”. The Stencil class implements abstract type Stencil in Section 3.1.
The Array contains all functions related to execution engine in Section 4. The
Array has a method namely Apply (i.e., SLApply) to run UDF on its data. The
UDF is standard C++ function and is passed to SLApply as function pointer. An
example for using SLOPE to implement CCL code (with a single step and 8-way
check) is presented in Fig. 7. User can use standard C++ compiler to compile
it. MPI is required to run it in parallel for both intra-node and inter-node.

1 https://bitbucket.org/arrayudf/

https://bitbucket.org/arrayudf/
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#include <ArrayUDF.h>
// Define function to find minimum label for a Cellhood
float ccl_check(Stencil <float > c){

return Min(c(-1,-1), c(-1, 0), c(-1, 1), c(0,-1),\
c( 0 ,0), c( 0, 1), c( 1,-1), c( 0, 1), c(1, 1));

}
// Initialize chunk_size & ghost_size for parallel processing
// Initialize Array instance A with a 2D array "data" from
// a HDF5 file "file.h5"
//Apply ccl_check on array A, output is ignored
void main (){

vector <int > chunk_size {10,10}, ghost_size {1 ,1};
Array <float > A("file.h5", "/data",chunk_size ,ghost_size );
A->Apply(ccl_check );

}

Fig. 7: SLOPE C++ example code for CCL (with a single step and 8-way check).

5 Evaluation

We demonstrate the effectiveness of SLOPE on the Cori supercomputer at The
National Energy Research Scientific Computing Center, or NERSC 2 with over
2,400 computing nodes. We compare SLOPE with following systems:

– Apache Spark [42] represents state-of-the-art MapReduce. We use new tech-
nologies including H5Spark [23] and file pooling [9] to realize a fair comparison
between Spark and SLOPE on supercomputer. We also have a test in non-
supercomputer environment to compare Spark and SLOPE.

– ArrayUDF [13] provides a native user-defined function on array. However,
it lacks a clearly defined programming model and supports for multiple at-
tributes, multiple arrays and in memory cache. We use a few customized
operations to compare ArrayUDF to match its capability.

– TensorFlow [1] includes hand-tuned and public available procedures for data
analytics. The goal to use TensorFlow in tests is to show how fast/slow the
analytic tasks that are expressed through Spark and SLOPE.

– C++ Imp, developed by authors, represents the way users implement data
analytic function without programming model. C++ Imp only implements the
data analytic logics (e.g., convolution) with hand-tuned codes (e.g., directly
calculating convolution on array in memory). The C++ Imp has the same
data management (e.g., cache) as we have done in SLOPE.

5.1 Evaluation using synthetic data analysis

Our evaluation in this section uses a two-layer convolutional neural network
(CNN) on a 2D synthetic float typed array with the dimension of 64,000 by
64,000. Specifically, we focus on a single forward pass computing of the CNN.
Unless otherwise noted, all experiments use 256 CPU cores and 4096 by 4096
chunk size. The size of halo layer is set to 1. The two-layer CNN has a convolution
(CONV) layer and a ReLU layer. CONV is configured with a 8 2 by 2 kernels.
ReLU is: f(x) = max(0, x), where x is the input to a neuron.

2 https://www.nersc.gov/

https://www.nersc.gov/
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Comparing SLOPE with ArrayUDF. We use customized workloads from
CNN described above to match the capability of ArrayUDF. Specifically, we
use a single convolution kernel to keep both input and output arrays have the
same size, which is supported by ArrayUDF. As discussed before, SLOPE allows
input and output arrays to have different sizes. We find out that cache feature of
SLOPE enable it to be at most 10× faster in accessing data. In following parts,
we will focus on comparing SLOPE with Spark and hand-tuned code.

Comparing SLOPE, Spark, TensorFlow, and C++ Imp This test uses a
2 layered CNN workload. TensorFlow uses tf.nn.conv2d and tf.nn.relu for CONV
and ReLU, respectively. Spark uses a chain of Map and Reduce to express CONV
and ReLU (as shown in Fig. 1). The expression of CONV and ReLU in SLOPE
is presented in Fig. 4. To isolate impact of supercomputer software, such as MPI
and Lustre, we have two separate tests on non-supercomputer environment and
supercomputer environment, as discussed below:
– Non-supercomputer environment. This test uses a single Linux box . For

Spark, in order to clearly measure performance for each step, we test it without
its Lazy Evaluation (LE) optimization [42]. We report test results in Fig. 8.
Spark without LE spends 11% of time to read data and 38% of time to shuffle
data. As explained in Fig. 1, the read function accesses data from the disk and
converts the array into KV pairs. The shuffle function aggregates the inputs
for Reduce. Both read and shuffle are expensive. Spark’s LE optimization
improves its performance by 3X. Based on this observation, we test Spark
only with the LE optimization in following sections. The “C++ Imp” has the
best performance. TensorFlow is ≈ 15% slower than SLOPE. TensorFlow may
implement CONV as expensive matrix multiplication [1]. Overall, SLOPE has
comparable performance as hand-tuned code and is much faster than Spark.

– Supercomputer environment. On a parallel environment with Lustre and
MPI, we scaled above tests from 1 CPU core to 16 CPU cores. Note that, to
be fair, we only consider the computation time of these systems because we
believe TensorFlow and Spark are not originally designed and optimized for
Lustre. For Spark, we force the read operation to complete before Map and
Reduce starts. The results are presented in Fig. 9. The trend in these results
are consistent with the one from non-supercomputer environment. On aver-
age, SLOPE is 13× faster than Spark. SLOPE maintains structural locality
in the assignment of array cells and partitions, eliminating the need for com-
munication. Spark has to shuffle data between Map and Reduce. SLOPE is
38% faster than TensorFlow. As explained in previous paragraph, TensorFlow
may convert CONV into large and expensive matrix multiplications.

Scalability tests of SLOPE. We evaluated both weak scaling and strong
scaling of SLOPE using the number of CPU cores from 256 to 16K. In weak
scaling tests, the data size for each process is fixed at 64MB, totaling 1TB at
16K CPU cores. In strong scaling tests, the file size is fixed at 1TB. We use the
parallel efficiency to measure the result. The parallel efficiency for strong scaling



14 Bin Dong, Kesheng Wu, Surendra Byna, Houjun Tang

50X 43X 54X

3X

0
200
400
600
800

1000
1200
1400
1600

Spark Spark(LE) SLOPE Tensorflow C++ Imp

Ti
m

e 
(s

)

Read Compute
Data Movement Total (only for Spark (LE))

Using high-level execution engine

Using hand-tuned code

Fig. 8: Comparing SLOPE with Spark and
hand-tuned codes to perform CONV for a 2D
array on a Linux server. The Spark was tested
with and without Lazy Evaluation (LE).

0
50

100
150
200
250
300
350

1 2 4 8 16

Ti
m

e 
(s

)

Number of CPU Cores

Spark SLOPE TensorFlow C++ Imp

~13X ~ 10X ~ 15X

Fig. 9: The computing time (only) for execut-
ing CNN with SLOPE, Spark and hand-tuned
codes (i.e., TensorFlow and C++ Imp) on a
supercomputer.

is defined as t1/(N ∗ tN )∗100%, where t1 is the time to finish a work unit with 1
process and tN is the time to finish the same work unit with N process. For weak
scaling, its parallel efficiency is t1/tN ∗ 100%. Results are presented in Fig. 10.
Both cases show that SLOPE has high parallel efficiency. Actually, processing a
1TB data takes around 2 seconds, giving around 512GB/sec throughput at 16K
CPU cores. The primary reason SLOPE can achieve such scalability is that it
can maintain structural locality on processing multiple dimensional array and
all computing can happen on a local node without communication across nodes.

5.2 Evaluation for SLOPE and Spark using real applications

In this section, we compare SLOPE with Spark in executing data analysis oper-
ations for three applications: CAM5 [40,28], VPIC [8,22], and BISICLES [10,44].
All datasets are stored in the HDF5 files. Spark uses H5Spark [23] to read HDF5
data into RDDs. Since H5Spark does not support writing RDDs back to HDF5,
we compare read performance and execution performance.
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CAM5’s convolution encoder. The CAM5 is widely used by the climate
community to study the global climate change and prediction [40]. The dataset in
test is from a simulation run with 25km spatial resolution for the years spanning
from 1979 to 2005. Each frame of the global atmospheric state is a 768 × 1152
image. CNN [28] has been used to to predict extreme weather events, such as
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atmospheric rivers, from this data. We have used SLOPE and Spark to com-
pose three key steps of CNN: CONV, ReLU, and Pooling. Following the work
[28], we consider the layer close to the Earth’s surface and the variables, namely
TMQ, for atmospheric rivers detection. We use the output data for the year
1979, which is a 768 × 1152 2D array. Spark uses two sets of Map and Reduce
to express CONV and Pooling layers, respectively. The ReLU is expressed with
a Map. The implementation with SLOPE is shown in Fig. 4. Test results are
reported in Fig. 11. The read time required by Spark is around 94× slower than
that of SLOPE. This performance benefit is because SLOPE directly handles
multidimensional array without flattening it into KV pairs. Spark needs to con-
vert the array into KV pairs during read. When comparing the execution time,
SLOPE is 49× faster than Spark. Also, as discussed in the previous section,
linearization to a 1D KV causes significant communication overhead for Reduce
to gather inputs. SLOPE reduces communication to synchronize only a small
number of halo layers with the preserved structure locality.

VPIC’s gradient and interpolation operations. VPIC simulates the
magnetic reconnection phenomenon [22]. Magnetic reconnection study involves
two key steps: calculating gradient on 3D field mesh and finding gradient field
value for each particle via interpolation. These operations involve four arrays,
M, X, Y, and Z, where M is a 3D magnetic field mesh data and X, Y and
Z contains particle locations. The gradient computing for M uses a Laplace
operation, i.e., 3D version of the one in Fig. 3. Using Spark, the gradient on
M is expressed with a Map and a Reduce, where the Map duplicates each cell
for its neighbors and the Reduce operation performs the Laplace calculation.
Then, a tri-linear operation is finished with a map-side join, where the gradient
value of M is broadcasted to each executor and then a Map is used to find
the gradient field value of each particle. Implementation with SLOPE is a 3D
version of the algorithm in Fig. 3. Since Spark has a limit on the size of broadcast
data, we have set the test to use a small 256MB (512 × 256 × 256) field data.
The particle data has 263GB with ∼ 23 billion particles. The tests used 128
CPU cores on 16 nodes. A performance comparison is shown in Fig. 12, where
SLOPE performs 106× faster than Spark to execute the analysis. In reading
the input data, SLOPE is 45× times faster. Since Spark has to duplicate a lot
(∼ 6×) cells to help reduce to calculate the Laplace operator, its performance is
poor. In contrast, SLOPE uses logical partitioning without duplications to finish
the Laplace operator. Explicitly processing and communicating array index for
particle data in Spark consumes CPU time and network bandwidth and therefore
degrades its performance.

BISICLES’s CCL algorithm. Connected component labeling (CCL) has
been used to detect ice calving events on Antarctica, simulated by BISICLES [44].
We have used both Spark and SLOPE to compose CCL. The data size is 12288×
12288 and we test it with 16 CPU cores on 4 nodes. We implemented a standard
multi-pass algorithm for CCL with an 8-way connection detection [34] for both
Spark and for SLOPE. We report the execution time in Fig. 13. The 8-way con-
nection detection based CCL algorithm needs 10868 iterations to converge and
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SLOPE is 272× faster than Spark. The main reason for Spark’s slower perfor-
mance is that it needs to duplicate a large number of array cells for neighborhood-
based connection detection, while SLOPE needs to duplicate only a small halo
layer. SLOPE also can use advanced features, such as in-place data modification
and back-forward execution, which can accelerate the convergence of the CLL
algorithm [34] (in Fig. 5). The CCL algorithm with these advanced features can
not be implemented with Spark as its immutable RDD concept, where in-place
data modification is not allowed. By enabling the feature in SLOPE, it converges
after 8 steps. Comparing the performance of Spark, SLOPE is 92824× faster.

6 Related Work

Relational [41,26] and array [2,24,5] DBMS provide built-in operators and a UDF
mechanism for customization operations. Our SLOPE shares certain similarity
with these systems in expressing UDF operation. SLOPE differs from them in its
new abstract data type Stencil and programming model. The Stencil of SLOPE
supports a flexible way to logically subset array into any shapes for analytic
operations. In DBMS, their window operator only subsets array into rectangular
boxes and each member in window operator is treated equally. In contrast, each
member of Stencil can be customized with different operations in SLOPE.

MapReduce has a KV data type and two generic operations, Map and Reduce.
Spark [42] introduces a memory cache layer for iterative analysis. SciHadoop [7]
provides a scheduling optimization for adopting MapReduce to analyze data
in arrays. Our SLOPE has a structural locality-aware programming model on
multidimensional array and generalizes both Map and Reduce into a single op-
erator, SLApply, on array. SLOPE has the similar cache mechanism as the one
in Spark for KV but the cache in SLOPE works for multidimensional array. The
SciHadoop has similar goal as SLOPE. But SciHadoop still uses MapReduce to
compose analysis and SLOPE is a new programming model.

Stencil domain-specific languages (DSL) [25,17,12] are mostly developed to
solve partial differential equation(PDE) problem. Our SLOPE is a data analy-
sis framework that generalizes MapReduce for multidimensional arrays. SLOPE
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uses Stencil idea to extend the Map functions (on a single element) to a set
of neighborhood array cells towards composing data analysis tasks, e.g., con-
nected component labeling (CCL). Technologically, SLOPE is implemented by
plain C++ without compiler extension/new language definition. Stencil DSL
may need compiler extension or even new language definition.

SAGA [39] supports aggregator operation on array file formats. R [15] uses
Apply operators and its parallel version dmapply to customize operations over
a list or a vector. But, none of these Apply operators can express the structure
locality on array. ArrayUDF [13] provides a simple API to accept UDF but it
can only run a single UDF on a single array stored on disk. TensorFlow [1]
provides hand-optimized code for machine learning but has not programming
model defined. SLOPE defines programming model and in-memory cache to
compose complex analytic operations with multiple stages and multiple arrays.

7 Conclusions and Future Work

Data analysis operations on multidimensional arrays are typically defined on a
set of neighborhood cells in diverse geometric shapes. This structural locality
is lost in the programming models, such as MapReduce, making them perform
poorly in composing deep data analytic pipeline for multidimensional arrays.
In this work, based on multidimensional array data model, we proposed a new
structure locality-aware programming model (SLOPE) and its implementation.
We also present multiple data analysis examples with SLOPE, such as convolu-
tional neural network, gradient computing, and connected component labeling.
In tests with real scientific data analysis, SLOPE is 49× ∼ 92824× faster than
Spark, which represents state-of-the-art MapReduce programming model. In our
future work, we plan to expand SLOPE to compose diverse operations without
strong locality of reference.
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