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Abstract. Harnessing the power of multicore platforms is challenging due to the additional levels of parallelism present. In
this paper we use the NAS Parallel Benchmarks to study three programming models, MPI, OpenMP and PGAS to understand
their performance and memory usage characteristics on current multicore architectures. To understand these characteristics we
use the Integrated Performance Monitoring tool and other ways to measure communication versus computation time, as well as
the fraction of the run time spent in OpenMP. The benchmarks are run on two different Cray XT5 systems and an Infiniband
cluster. Our results show that in general the three programming models exhibit very similar performance characteristics. In a
few cases, OpenMP is significantly faster because it explicitly avoids communication. For these particular cases, we were able
to re-write the UPC versions and achieve equal performance to OpenMP. Using OpenMP was also the most advantageous in
terms of memory usage. Also we compare performance differences between the two Cray systems, which have quad-core and
hex-core processors. We show that at scale the performance is almost always slower on the hex-core system because of increased
contention for network resources.
Keywords: Programming model, performance study, UPC, OpenMP, MPI, memory usage

1. Introduction

A new revolution in computer architecture is upon
us, as the traditional increases in clock speed seen over
the past 10 or more years disappear due to energy and
other constraints on processor designs. In its place, we
see a growing number of cores on a chip and thus ef-
fectively taking into account this enhanced parallelism
is required to achieve good performance. Addition-
ally, as the growth in memory capacity is not keeping
track with the growth in the number of cores, memory
considerations are becoming much more important. To
address these issues researchers are considering new
programming models, as well as exploring other tra-
ditional but less commonly used ones, to determine
the best way to program these new architectures. In
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this study, we consider several programming models
and analyze their performance using the NAS parallel
benchmarks.

Traditionally, High Performance Computing (HPC)
applications used an MPI-everywhere model with as
many MPI tasks as there are cores. In MPI programs,
each MPI process has its private address space and
processes move data from one address space to another
by sending and receiving messages via explicit mes-
sage passing. Therefore, extra data copies and/or dupli-
cation are usually needed. This currently popular pro-
gramming model of MPI everywhere is not likely to
be a viable model on these newer architectures sim-
ply because of the reduced amount of memory per core
that will be available. It is therefore important to in-
vestigate other available programming models to un-
derstand whether they can replace or be combined with
MPI in order to avoid these issues.

Another parallel programming model commonly
used is shared memory, using threads. OpenMP is the
most commonly used programming model for shared-
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memory parallelism in the High Performance Com-
puting (HPC) community. Generally, OpenMP pro-
vides convenient features for loop-level parallelism as
well as some advanced dynamic approaches to par-
allelism such as tasking. In OpenMP programs, all
data is shared by all OpenMP threads and can be di-
rectly accessed. Unlike MPI programs, no extra copy-
ing is needed for data communication and exchange. In
general, shared-memory paradigms such as OpenMP
could potentially save a large amount of memory and
enable larger problems to be tackled. This is partic-
ularly true if one considers a hybrid programming
model, that is one that uses OpenMP within a node and
MPI between nodes.

Another approach to parallelism is the PGAS (Par-
titioned Global Address Space) languages. These at-
tempt to combine the convenience of the global view
of data with an awareness of data locality. One of these
PGAS languages, UPC (Unified Parallel C) is an ex-
tension to C with both shared and local addresses.

In this paper we compare the performance of the
NAS parallel benchmarks, written in MPI, OpenMP
and UPC on the Cray XT5 platform and an Infiniband
cluster and examine the memory usage of the differ-
ent programming models. We also examine the per-
formance differences between two different Cray XT5
machines, one with quad-core processors and one with
hex-core.

This paper is structured as follows: Section 2 de-
scribes the two Cray XT5 machines and the Linux clus-
ter we use in more detail, Section 3 describes our data
collection techniques, Section 4 describes the results
of our memory usage measurements and Section 5
contains the performance results comparing the differ-
ent programming models. Section 6 contains the per-
formance comparison between Jaguar (hex-core) and
Hopper (quad-core) XT5 machines. Finally, Section 7
contains the related work and Section 8 summarizes.

2. Platforms for experiments

In this work we compare the performance of two
Cray XT5 machines, Jaguar and Hopper. Hopper is lo-
cated at NERSC and Jaguar is located at Oak Ridge
National Laboratory. The machines are very similar,
both are made up of dual socket nodes connected with
Seastar 2+ Cray interconnect and with 16 GB DDR2
800 MHz memory per node. The principal difference
is the processors. Hopper contains 2.4 GHz quad-core
AMD ‘Shanghai’ Opteron processors whereas Jaguar

contains hex-core 2.6 GHz ‘Istanbul’ processors. In
principle therefore there is 1.6× the computational
power available per Jaguar node compared to a Hopper
node. However, the memory and network subsystems
on each node are same.

We also report performance results from Ranger,
which is an AMD Opteron (Barcelona) system at
TACC with 3936 nodes connected with two Sun Con-
stellation InfiniBand switches, each of which has 3456
ports and a full Clos fat-tree topology. Each node con-
tains four quad-core processors running at 2.3 GHz
and a single SDR InfiniBand adapter. The Barcelona
processors in Ranger are almost equivalent to those in
Hopper. The principle difference between this and the
Cray machines is the amount of network bandwidth
available, one SDR IB link is approximately 0.8 GB/s
whereas the XT5 architecture has 6 links per node each
capable of 1.6 GB/s (9.6 GB/s/node).

We note that the NERSC XT5 machine used here
is actually phase 1 of Hopper; a much larger machine,
phase 2, will be installed in late 2010 and will replace
the machine used here.

3. Data collection techniques

To gain an idea of how the different programming
languages compare, we use versions of the NAS Par-
allel Benchmarks (NPB) as a benchmark suite. In the
examples used in this paper, the MPI and OpenMP ver-
sions come from the standard NAS distribution [5], and
the UPC codes come from a distribution developed by
George Washington University (GWU), the Berkeley
UPC group and NAS [1,3].

As well as recording the runtimes of our perfor-
mance experiments we also instrument them using
the Integrated Performance Monitoring (IPM) frame-
work [6,8]. IPM provides a low overhead mechanism
for obtaining information about the MPI performance
characteristics of an application. It uses the Profiling
interface of MPI (PMPI) to obtain information about
the time taken and type of MPI calls, the size of the
messages sent and the message destination. Recently
IPM was augmented to obtain OpenMP profiling in-
formation also. By using compiler instrumentation to
insert trace points at the beginning and end of every
OpenMP region within the code we are able to measure
the time taken in OpenMP by the application. This is a
useful indicator to understand the scaling behavior of
OpenMP based codes. Those that spend a significant
amount of their execution times in serial regions, i.e.,
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those involving neither OpenMP nor MPI are not go-
ing to be able to scale efficiently to large numbers of
threads. We also use IPM to record the memory high-
water mark for each of the applications. This is simply
the number reported by the Linux kernel.

The compiler used for MPI, OpenMP and hybrid
MPI + OpenMP is the default PGI compiler installed
on Cray XT5 and Ranger. For UPC, the Berkeley UPC
compiler and runtime system are used [1], with PGI as
a back-end compiler.

4. Memory usage of different programming
models

Figure 1 shows the difference in the amount of mem-
ory usage of NPB3.3 programs when MPI, OpenMP
and UPC versions of the code are used. The data are
collected for class C data sets when four cores are
used. All the values are relative to the amount of mem-
ory used by the MPI version. Clearly the most mem-
ory efficient version is the OpenMP one. The mem-
ory savings are around 50% for BT, EP, IS and SP,
20% for CG, FT and LU. Only for MG, the amount
of memory used by the OpenMP version is close to
MPI, but still less by 4%. The smaller difference be-
tween OpenMP and MPI for MG is mainly because the
communication buffer needed for MPI in this code is
quite small compared with the grid data. For smaller
data sets, the percentage difference will become larger.
The EP benchmark is an Embarrassingly Parallel pro-
gram which requires almost no effort to communicate

data between different tasks and therefore no extra data
copy or duplication are needed for MPI. Thus the ad-
ditional memory usage in EP’s MPI version can be at-
tributed to the MPI runtime consumption.

The amounts of memory used by the UPC versions
is very close to the MPI versions, only slightly less.
Like OpenMP programs, UPC could provide a shared
address space for the shared data. Therefore, poten-
tially it could save the same amount of memory as
OpenMP. However, in this study, the UPC programs
used are converted from the corresponding MPI pro-
grams. For performance reasons, explicit data partition
and one-sided communication via upc_memput/upc_
memget are used, leading much higher memory usage
than OpenMP.

Figure 2 shows that the actual amount of memory
usage for each of the benchmarks. For EP it is quite
small. For FT, BT, SP and IS, MPI uses substantially
more memory than OpenMP.

Specifically, for FT, OpenMP consumes around 25%
less memory than MPI (as shown in Fig. 2). FT per-
forms a Fourier transform which contains a trans-
pose operation. This large memory difference is mainly
caused by the differences between the transpose imple-
mentation between MPI and OpenMP. For the trans-
pose, which is implemented by all-to-all communica-
tion in MPI, an extra array is needed for MPI to hold
the communication data while in OpenMP, the data can
be directly accessed by all threads and thus extra ar-
ray is not necessary. For CLASS C, the array size is
512 × 512 × 512 × sizeof (double complex) = 2 GB.

Fig. 1. Memory usage of NPB3.3 applications for MPI, OpenMP and UPC for four-core runs relative to MPI. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-2010-0306.)
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Fig. 2. The memory footprints of NPB3.3 applications for MPI, OpenMP and UPC for four-core runs. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/SPR-2010-0306.)

The main memory usage difference is caused by this
extra data array of size 2 GB.

Another difference between MPI and OpenMP is
that usually the amount of memory usage for OpenMP
is constant regardless of the number of cores used
while for MPI, more memory is needed as the num-
ber of tasks increases. This is due to some combination
of the MPI runtime system requirements, communica-
tion buffers in the applications and the replication of
stored data to avoid communication. This may not be
true for all OpenMP applications however. In some ap-
plications, the OpenMP threads may need to dynami-
cally allocate more space, to store private variables or
to store data on a per thread basis for later aggregation
to avoid locks.

4.1. MPI + OpenMP hybrid model

We now consider hybrid programming models that
use OpenMP within shared-memory nodes and MPI
between nodes. One question is whether or not the
memory usage advantage of OpenMP is retained in hy-
brid programming models. The NPBs include “multi-
zone” (MZ) versions that use a standard hybrid
OpenMP and MPI programming model for the NPB3.3-
MZ release.

Figure 3 displays the relative memory footprints of
SP-MZ and BT-MZ. The results are collected for 256
cores on Hopper for different combinations of MPI
tasks and OpenMP threads.

The base case is using 256 MPI processes and
1 OpenMP thread for each MPI process, i.e., setting the

environment variable OMP_NUM_THREADS to 1.
Then, we increase the OMP_NUM_THREADS to 2, 4
and 8 and reduce the number of MPI processes corre-
spondingly. All the memory usage measurements are
relative to the base case. The results in Fig. 3 indicate
that using more OpenMP threads could significantly
reduce the amount of memory needed. When the num-
ber of OpenMP threads reaches 8, the amount of mem-
ory needed drops to 20% of the base case. Thus using
OpenMP saves a significant amount of memory when
used in hybrid programming mode, showing a great
promise for its future.

5. Performance effects of different programming
models

In this section, we investigate the performance
differences between programming models (OpenMP,
MPI and UPC) on two different platforms: Hopper and
Ranger. Furthermore, we examine if the observed per-
formance differences are due to the semantics of the
programming models or the implementation and cod-
ing styles. Single-node performance for MPI, OpenMP
and UPC are examined first. Then, the performance in
cluster environments are compared to include the ef-
fects of the inter-node communication.

5.1. Single-node performance

Figure 4 represents the execution time ratio of UPC
and MPI to OpenMP for single-node runs on Hopper
and Ranger. Because BT and SP require a square num-
ber of tasks, we do not observe the performance of
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Fig. 3. The relative memory usage of BT-MZ and SP-MZ for MPI + OpenMP hybrid programming models for different combinations of MPI
tasks and OpenMP threads. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2010-0306.)

these benchmarks on Hopper (8 cores per node). For
EP, CG, MG and LU, the three observed programming
models deliver similar performance. However, for LU
and SP on Ranger, OpenMP underperforms compared
to MPI and UPC. The observed performance differ-
ence is attributed to the small granularity of the parallel
loops.

For FT and IS OpenMP delivers the best perfor-
mance. OpenMP is more than 40% faster than MPI
and UPC for FT on Hopper, 50% faster than MPI on
Ranger and 68% faster than UPC on Ranger. In case of
IS, OpenMP outperforms MPI and UPC by up to 7%
on Hopper. On Ranger OpenMP outperforms MPI by
63% and UPC by 45%.

Detailed examination of FT and IS shows that the
explicit transpose and communication operations in
the MPI versions cause performance degradation com-
pared to the OpenMP ones. The UPC version of FT
follows the MPI execution pattern, i.e., it also includes
explicit transpose and communication phases. Because
UPC-FT is derived from the Fortran version of MPI-
FT, the data layout is specifically optimized for the
column-wise accesses. UPC is a C language deriva-
tive and therefore the additional overhead of column-
wise data accesses is visible during the computational
phase. While it is possible to rearrange the data struc-
tures and further optimize the UPC-FT benchmark,
these type of optimizations would only bring the UPC
performance closer to MPI, still significantly below
OpenMP.

The results presented in Fig. 4 indicate that the intra-
node performance differences between programming

models are mainly caused by the overhead of explicit
communication. In MPI the explicit communication is
unavoidable. If translated directly from the MPI code,
the UPC code also inherits the explicit communica-
tion overhead. However, UPC also allows for a shared-
memory programming style and therefore can be used
in OpenMP fashion within a single node, thus avoiding
the communication overhead. We provide more details
about the UPC shared-memory programming style in
the next section.

5.2. UPC shared-memory execution

The UPC applications used in this study were de-
rived from the MPI-based implementations, and there-
fore follow identical execution patterns. Consequently,
the UPC-NAS benchmarks do not fully utilize the
global address space abstraction, an important fea-
ture of PGAS languages. In this section we focus on
our redesign of the UPC-IS and FT benchmarks to
exploit shared-memory communication and avoid ex-
plicit communication.

The new UPC versions follow a parallelization
scheme similar to a hybrid OpenMP-MPI code. Only
the master-thread performs communication and multi-
ple UPC threads perform computation in parallel be-
tween communication events. Figure 5 represents the
performance of IS and FT benchmarks using this UPC
shared-memory programming model. We observe sig-
nificant benefits by avoiding explicit communication
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Fig. 4. Execution time of UPC and MPI relative to OpenMP on Hopper and Ranger. On both platforms we use only a single node, 8 cores on
Hopper and 16 cores on Ranger. comm – communication time, comp – computation time, fence – time spent in the upc_fence operation.
(Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2010-0306.)

within a single node. Note that for the new UPC ver-
sions of IS and FT we were able to entirely elimi-
nate the communication overhead. Single-node perfor-
mance for UPC shared-memory IS and FT is compara-
ble to OpenMP and significantly outperforms MPI.

While capable of achieving equivalent performance
to OpenMP, the UPC shared-memory method currently
uses more memory than the OpenMP version of the
same code. This is because the current UPC runtime
requires all the UPC threads to equally participate in
the memory allocation of the shared heap. Obviously,
for the shared-memory UPC programming model this
is not optimal, only the part of the heap that belongs
to the master thread is actually used. We are working
on enabling a UPC runtime feature that will enable
uneven heap distribution across UPC threads, which
should bring the memory usage in line with that of the
OpenMP version.

5.3. Distributed environment performance

In a distributed environment, we compare the per-
formance of MPI and UPC. Figure 6 represents the ex-
ecution time of UPC normalized to the execution time
of MPI, on 64 cores of Hopper and Ranger. With the
exception of LU and SP on Hopper and MG on Ranger
the performance of UPC and MPI are very similar.

The UPC versions of LU, BT and SP implement
pipelined algorithms with point-to-point communi-
cation, that are highly optimized for communica-
tion/computation overlap. To better understand the ob-
servable performance degradation in UPC-LU and SP,
we divide the total execution time into three parts:
computation, communication and the time spent in
upc_fence operation. The absolute performance
numbers for these three benchmarks are presented in
Table 1.
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Fig. 5. Execution time of UPC-IS, FT and MPI-IS, FT, relative to OpenMP-IS and FT on Ranger. The UPC-IS and FT benchmarks are pro-
grammed in the shared-memory style, avoiding any explicit communication. (Colors are visible in the online version of the article; http://dx.doi.
org/10.3233/ SPR-2010-0306.)

Fig. 6. Execution time of UPC relative to MPI on Hopper and Ranger for 64 cores. comm – communication time, comp – computation time, fence –
time spent in the upc_fence operation. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2010-0306.)

The point-to-point synchronization in the UPC
benchmarks is implemented through a shared var-
iable: a UPC task is polling over a shared variable
waiting for another task to change the value of the
same variable. The polling is always performed on a
shared variable with affinity to the local node, to avoid
excessive inter-node communication. To ensure the

progress of each UPC thread, the polling loop contains
the upc_fence instruction, which further queries the
network for the reception of new active messages. On
Hopper (SeaStar2 interconnect) we detected signifi-
cant overhead while multiple UPC tasks simultane-
ously perform network polling, indicating contention
within the network driver. The overhead of network
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polling is also visible on Ranger, but the performance
impact is significantly lower than on Hopper.

It is interesting to note that UPC-MG on Ranger
outperforms the MPI version by up to 20%. On Hop-
per however this difference is not present. The pre-
sented MG performance on Ranger and Hopper are
obtained with two different variants of the UPC bench-
marks: (i) on Hopper, following the MPI-MG imple-
mentation, the fine-grain communication messages are
aggregated into a single larger message; (ii) on Ranger,
we found the more beneficial approach to be if the
message aggregation overhead is avoided and instead
a large number of fine-grain messages is used for com-
munication.

While the overall performance of the UPC and MPI
benchmarks are similar, the presented results reveal
certain tradeoffs between the two observed program-
ming models. Frequent network polling can lower the
UPC performance on certain platforms. The observed
behavior can be improved by fine-tuning the UPC net-
work polling code for the problematic architecture. In
terms of productivity, one-sided communication avail-
able in UPC enables effortless usage of fine-grained

Table 1

The communication time and computation time of UPC and MPI for
64-core runs on Hopper

LU BT SP

UPC MPI UPC MPI UPC MPI

Fence 14.5 0 4 0 3.34 0

Comm 4.69 7.71 2.68 5.27 5.26 8.89

Comp 23.44 21.77 31.27 30.64 40.65 30.28

communication, which further avoids message aggre-
gation overhead. The reader should note that the same
effect can be achieved with MPI, with somewhat in-
creased programming complexity, due to the lack of
one-sided communication.

5.4. Hybrid MPI + OpenMP

We now turn to the performance of the Multi-Zone
hybrid MPI/OpenMP NPB’s. Using IPM we are able
to partition the runtime into time spent in MPI or
OpenMP or neither MPI or OpenMP (called Serial).

For BT-MZ, the time breakdown is shown in Fig. 7
and Table 2. When 16 cores are used almost all of the
runtime is in OpenMP regions. With the increase of the
number of cores, OpenMP time reduces very fast while
the MPI time increases. For 256 cores, when 256 MPI
tasks are used, the MPI time increases sharply. This is
due to load imbalance. For the CLASS C data set, there
are total 256 zones, one per MPI tasks, with substan-
tially different sizes. When fewer MPI processes are
used, the load imbalance is improved due to the bin-
packing load assignment algorithm, i.e., using fewer
MPI processes and more OpenMP threads. This is a
nice example of one of the oft-stated benefits of hy-
brid programming: the ability to mitigate load-balance
issues by requiring less overall domain decomposition.

The SP-MZ performance scales very well with the
number of cores as shown in Fig. 8. The time break-
down shows that most of the time is spent on the
OpenMP regions. The percentage of time spent in MPI
functions is quite small though it increases with the

Fig. 7. The BT-MZ time breakdown on Hopper. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2010-0306.)
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number of cores used (see Table 3). Thus the per-
formance is dominated by the OpenMP performance.
There are also performance differences using different
numbers of OpenMP threads. The best performance
is obtained when the number of OpenMP threads per
MPI process is 2. This is not caused by the OpenMP
overhead to activate and idle the OpenMP threads
(which is further explored in the next section). Instead,
this is related with two factors. One is load imbalance.
When four or eight OpenMP threads are used, the work
(the length of the for loop) can not be evenly divided

Table 2

The MPI, OpenMP and serial times (s) for BT-MZ

16 cores (MPI × OpenMP)

2 × 8 4 × 4 8 × 2 16 × 1

MPI 0.76 1.45 1.46 2.08

OpenMP 99.23 84.12 76.49 76.78

Serial 0.28 0.12 0.06 0.03

64 cores (MPI × OpenMP)

8 × 8 16 × 4 32 × 2 64 × 1

MPI 0.83 0.95 1.53 3.23

OpenMP 24.76 21.09 19.53 19.52

Serial 0.07 0.03 0.02 0.01

256 cores (MPI × OpenMP)

32 × 8 64 × 4 128 × 2 256 × 1

MPI 0.65 0.69 23.72 118.39

OpenMP 6.30 5.21 5.45 22.32

Serial 0.03 0.01 0.01 0.01

among the threads. The other is memory contention
and cache coherence protocols.

For LU-MZ, the best performance is obtained when
maximum number of OpenMP threads are used, as
shown in Fig. 9. This shows that most of the runtime is
spent in OpenMP and the best performance is obtained
when the number of OpenMP threads reaches 8 (see
Table 4). This is due to the following reasons. First,
each MPI process is assigned several zones to work on
and the OpenMP threads spawned by the same MPI
process will then work on these zones together, one at
a time. Using more OpenMP threads will increase the
overall cache size for the same amount of data and im-
prove the performance (assuming one OpenMP thread
assigned to one core). The effect of using more caches
is more important for LU-MZ than SP-MZ and BT-
MZ. In LU-MZ, there are total of 16 zones while in BT-
MZ and SP-MZ, there are total of 256 zones. There-
fore zone size in LU-MZ is much larger than the zone
size in BT-MZ and SP-MZ. Secondly, the data access
exhibits much better spatial locality.

5.5. OpenMP overhead analysis

For hybrid MPI+OpenMP applications, using more
OpenMP threads will potentially improve the cache us-
age and communication patterns while it may also in-
crease spawning and activation/deactivation overhead,
causing more memory contention and cache coher-
ence protocol activities. In this section, we will use
STREAM [7] to help us to understand the performance
effect of some of these factors as the high spatial local-

Fig. 8. The SP-MZ time breakdown on Hopper. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2010-0306.)
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Table 3

The MPI, OpenMP and serial times (s) for SP-MZ

16 cores (MPI × OpenMP)

2 × 8 4 × 4 8 × 2 16 × 1

MPI 0.39 0.97 1.52 2.55

OpenMP 81.10 58.28 47.30 52.36

Serial 0.64 0.25 0.14 0.08

64 cores (MPI × OpenMP)

8 × 8 16 × 4 32 × 2 64 × 1

MPI 1.12 0.51 0.95 1.42

OpenMP 17.71 14.23 11.8 12.51

Serial 0.16 0.07 0.04 0.03

256 cores (MPI × OpenMP)

32 × 8 64 × 4 128 × 2 256 × 1

MPI 0.29 0.59 0.49 0.44

OpenMP 4.38 3.46 2.92 3.10

Serial 0.05 0.02 0.02 0.00

Table 4

The MPI, OpenMP and serial times (s) for LU-MZ

8 cores (MPI × OpenMP)

1 × 8 2 × 4 4 × 2 8 × 1

MPI 0.00 0.60 1.23 2.08

OpenMP 187.01 210.15 328.23 339.60

Serial 0.06 0.03 0.02 0.01

16 cores (MPI × OpenMP)

2 × 8 4 × 4 8 × 2 16 × 1

MPI 0.33 1.98 1.01 1.46

OpenMP 93.64 105.62 164.72 169.9

Serial 0.04 0.01 0.00 0.01

64 cores (MPI × OpenMP)

8 × 8 16 × 4 32 × 2 64 × 1

MPI 0.31 0.37 X X

OpenMP 23.4 26.12 X X

Serial 0.01 0.01 X X

Fig. 9. The LU-MZ time breakdown on Hopper. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2010-0306.)

ity it exhibits make it straightforward for OpenMP to
work effectively.

Figure 10 shows the OpenMP runtime of STREAM
for different array sizes. When the array size is equal
to or smaller than 1024, using more OpenMP threads,
instead of reducing the total running time, actually in-
creases it. For these smaller array sizes, the overhead
to activate and idle the OpenMP threads overwhelms
the advantage of partitioning the work. This situation
lasts until the array size becomes 4096. At this point,
the overhead for using OpenMP “parallel for” direc-

tives starts to be amortized and the advantage of using
more threads becomes apparent.

The actual overheads for OpenMP threads to en-
ter and exit the loop are shown in Table 5 for PGI
compiler. It only takes about 2 µs for eight OpenMP
threads. The spawning overhead is, however, relatively
larger. It takes about 60 µs to spawn one OpenMP
thread and 275 µs for eight OpenMP threads. However,
since these threads are only spawned once during the
entire program execution, the spawning overhead is not
a significant performance issue.
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Fig. 10. The OpenMP performance of STREAM on Hopper. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-
2010-0306.)

Table 5

The parallel for and spawning overhead for OpenMP threads on
Hopper (µs)

1 2 4 8

Parallel for 0.3 0.7 1.2 2.0

Spawning 60 102 167 275

The performance of OpenMP will also be highly
related with the peak memory bandwidth, initial data
placement, false sharing, cache size and other factors.
However, quantifying their effects will be difficult as
they are highly related with specific applications.

6. Performance comparison of Hopper and Jaguar

On Hopper, each node has two quad-core processors
while on Jaguar each has two hex-core processors. In
this section, we will examine the performance effects
of this difference.

6.1. Single-node performance

On Jaguar, each node has 12 cores, and the MPI and
UPC version of NPB3.3 cannot be run with 12 tasks,
which require the number of tasks to be power of 2 or
a square number. Thus we focus our attention on the
OpenMP programs only.

If eight cores are used on Jaguar, the expected per-
formance difference between Jaguar and Hopper will
at best be 1.08 (2.6/2.4) due to the different CPU fre-
quencies or 1.0 due to same memory bandwidth. This
is exactly the case as shown in Fig. 11. Some of the ap-

plications are very slightly faster on Jaguar, EP, CG, IS
and LU, due to they being basically cache resident and
therefore sensitive to the clock speed difference. When
all 12 cores on a Jaguar node are used, the expected
performance ratio is, at most, 1.625 (6 × 2.6/4 × 2.4).
Only EP reaches this value. For CG and IS, the values
are around 1.4. This is simply a reflection of the cache
speed dependency of these applications as noted be-
fore. The worst ratio is for MG and SP which show ap-
proximately equal performance on 12 cores of Jaguar
and 8 core of Hopper. This indicates that they are mem-
ory bound, and that for these kinds of applications the
extra two cores on Jaguar are not providing any perfor-
mance benefit.

6.2. Performance using 64, 256 and 1024 cores

On both machines, the codes were run on the same
number of cores, 64, 256 and 1024. On Jaguar, each
node has 12 cores while on Hopper 8. For these core
counts that are not exactly divisible by 12 some of the
cores on one node of Jaguar were left idle.

In this case it is hard to determine the expected per-
formance ratios. As well as the factors due to clock
speed and memory contention outlined in the previous
section there is also contention for network resources
because on Jaguar there are 1.5× as many cores shar-
ing the same network resource.

The normalized performance of Jaguar vs. Hopper
at each of the three core counts is shown in Fig. 12
and the corresponding normalized runtime breakdown
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Fig. 11. The performance ratio of Jaguar vs. Hopper for OpenMP model on a node. (Colors are visible in the online version of the article; http://
dx.doi.org/10.3233/SPR-2010-0306.)

Fig. 12. The performance ratio of Jaguar vs. Hopper for MPI programs. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2010-0306.)

is shown in Fig. 13 as measured using IPM. The EP
benchmark consistently performs better on Jaguar due
to its higher processor frequency as discussed before.
This can also be deduced from its lower computation
time in Fig. 13. For all the other applications, the com-
putation time on these two platforms are very close,
which is to be expected from the single-node experi-
ments. The performance differences are mainly caused
by different communication performance. For IS, the
communication time on Jaguar is 3.5 times higher than
Hopper, leading to the worst normalized performance
on Jaguar. Using more cores per node without increas-
ing the network bandwidth causes more network con-

tention, degrading the overall performance substan-
tially.

We now consider the multi-zone benchmarks. For
BT-MZ, the performance ratio is very close to the ex-
pected value, one, as shown in Fig. 14. For SP-MZ,
Jaguar always performs worse than Hopper. (For LU-
MZ, since there are total 16 zones for Class C data set
so we can not run cases which uses more than 16 MPI
processes.) The difference in performance between
Jaguar and Hopper decreases with increasing number
of OpenMP threads which indicates that the problem
of network and memory contention is increased in the
hex-core configuration.
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Fig. 13. The normalized time breakdown of Jaguar vs. Hopper for MPI programs using 1024 cores. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/SPR-2010-0306.)

Fig. 14. The performance ratio of Jaguar vs. Hopper for NPB3.3-MZ. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2010-0306.)

7. Related work

A lot of literature has been published comparing dif-
ferent programming models. Among them, the most
related to our work is [4], where the performance of
MPI, OpenMP and UPC were evaluated on a machine
with 142 HP Integrity rx7640 nodes interconnected
via InfiniBand. The authors claim that MPI is the best
choice to use on multicore platforms, as it takes the
highest advantage of data locality. Our work differs
from several perspectives. First, we use more applica-
tions in our evaluation and the UPC codes we used
are better written and tested. Secondly, we find that
the best performance is not always produced by the

MPI version of the code, both OpenMP (inside a node)
and UPC can outperform MPI for some applications.
Thirdly, we quantitatively studied the performance ef-
fects of increasing from 8 cores to 12 cores in a node.

We also examined the performance of NPB3.3-MZ
which is developed in MPI + OpenMP hybrid pro-
gramming models. We found that using more OpenMP
threads always delivers better performance than us-
ing one OpenMP thread per MPI process. Similar
work to evaluate the performance effects of hybrid
MPI + OpenMP models on Cray XT5 can be found
in [2]. However, in this paper, we provide detailed
time breakdowns to help to understand how the per-
formance changes with varying number of MPI and



166 H. Shan et al. / A programming model performance study using the NAS parallel benchmarks

OpenMP tasks instead of only the absolute perfor-
mance. We also provide detailed time breakdowns to
compare the MPI performance and UPC performance.
This differs from previous research which only com-
pare the absolute performance of MPI and UPC [3,4].

Furthermore, we quantitatively measured the amount
of memory needed by different programming mod-
els, including MPI, OpenMP, UPC, and hybrid MPI +
OpenMP. To the best of our knowledge this is the first
time that memory usage of these different program-
ming models has been quantitatively analyzed and
compared.

8. Conclusions

In this paper we have examined the performance
of three different programming models OpenMP, MPI
and UPC on the Cray XT5 machine, Hopper at
NERSC, and the Linux InfiniBand cluster Ranger at
TACC. As well as simply measuring the runtime by us-
ing IPM and by inserting explicit timers into the code
we were able to measure the contributions to the run-
time from computation, communication and OpenMP
regions of the applications. Therefore we were able to
gain insight into the reasons behind any performance
differences observed.

Our results show that in most cases the single-node
performance of each of the different programming
methods is very close for the NAS Parallel Bench-
marks. In the cases that show the most performance
difference it is always OpenMP that is the fastest.
Our performance analysis shows that this is always
due to the reduced communication costs in the shared-
memory model. Our initial results showed that for the
FT and IS benchmarks this effect was especially pro-
nounced. For the UPC case, this was mostly because
the UPC version was a translation of the MPI one
and used the same communication algorithm. When
we produced shared-memory style versions using UPC
that took full advantage of the features of the language
the performance of IS and FT was almost identical
to that of OpenMP. This nicely illustrates the need to
take into account the features of a programming model
that allow closest match to the attributes of the hard-
ware. We also compared the performance of MPI and
UPC on 64 cores of Hopper and Ranger. The results
showed that the performance of the two methods is al-
most identical in this case.

We examined the memory usage of each of the
different programming models. In general OpenMP

has much reduced memory requirements. This is es-
pecially true for the FT and IS benchmarks, because
these applications need extra arrays to hold commu-
nication data. This advantage is also been reflected in
MPI + OpenMP hybrid results. Furthermore, the hy-
brid results indicate that using more than one OpenMP
thread always produces better results than using only
one OpenMP thread per MPI process, showing great
promise for the future of the hybrid programming mod-
els.

We also looked at the overheads present when us-
ing OpenMP and compared their cost to the cost of a
simple loop of the stream program. We found that the
overhead with eight threads was approximately 2 µs.
This is useful to bear in mind for application develop-
ers looking to add OpenMP directives to their codes –
any loop that takes less than this amount of time is not
going to gain any performance benefit.

Finally, we looked at the performance differences
caused by the different node size of Hopper and Jaguar
(quad- and hex-core, respectively). The results tell us
that putting more cores on a node will potentially
cause more memory contention. This may degrade the
performance of applications which are memory band-
width bound, often obviating the potential advantage of
the additional two cores per socket. Another disadvan-
tage of the hex-core configuration is the increased con-
tention for interconnect resources. This is especially
apparent from the results for the IS benchmark which
runs 3× slower on Jaguar than Hopper on 1024 cores.
In this case it maybe better to run using less MPI tasks
than cores and use hybrid programming models as this
will lead to less contention for shared resources, as in
the case of the SP-MZ results.

In future work we plan to look at another hybrid
programming model, UPC + MPI, as well as extend
our analysis to full scale scientific applications to un-
derstand in greater depth the advantages and disadvan-
tages of each programming model.
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