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ÅFat tree is a proxy for hierarchical topologies
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Favorable Task Placement
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Top-level links 
are not used!
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ÅInter-pod traffic needs to traverse (+ hops) through spine to connect between pods

Worst-Case Placement
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The Problem: Bandwidth Tapering
Bandwidth tapering removes higher-level expensive bandwidth

Examples: Facebook 4x oversubscription [1], Microsoft up to 5.3x [2]

If all traffic uses high level, congestion forms [2]

ώмϐ !ƴŘǊŜȅŜǾΣ !ƭŜȄŜƛ Ŝǘ ŀƭΣ άLƴǘǊƻŘǳŎƛƴƎ Řŀǘŀ ŎŜƴǘŜǊ ŦŀōǊƛŎΣ ǘƘŜ ƴŜȄǘ-ƎŜƴŜǊŀǘƛƻƴ CŀŎŜōƻƻƪ Řŀǘŀ ŎŜƴǘŜǊ ƴŜǘǿƻǊƪέΣ CŀŎŜōƻƻƪ ŜƴƎƛƴŜŜring, 2014
[2] Chatzieleftheriou, AndromachiŜǘ ŀƭΣ ά[ŀǊǊȅΥ tǊŀŎǘƛŎŀƭ bŜǘǿƻǊƪ wŜŎƻƴŦƛƎǳǊŀōƛƭƛǘȅ ƛƴ ǘƘŜ 5ŀǘŀ /ŜƴǘŜǊέΣ b{5LΣ нлму

Halving top-level cables 
would be 2x tapering
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ÅMetric: Observed number of Aries (Dragonfly) groups that an application spans, divided by 
the smallest possible number of groups that the application would fit in.

CǊŀƎƳŜƴǘŀǘƛƻƴ ƛƴ b9w{/Ωǎ /ƻǊƛ
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Problem Statement: Recover Locality by Changing Topology 
Connectivity
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Flexible Fat Tree: Insertion of SiPSwitches ςBandwidth Steering

Flexibly Switched 
Photonic Layer
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Flexible Fat Tree: Direct Connectivity with Bandwidth Steering

9



Why Optical Switches Efficiently Steer B/W

ÅNegligible dynamic power and latency 
for traversal

ÅOrders of magnitude lower static power 
than modern electronic switches

ÅHowever:
ÅWe avoid consecutive hops in the optical 

domain to avoid optical loss

ÅNo buffering inside optical switches. They 
need to be pre-configured (circuit switching)
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Reconfiguration Algorithm

ÅTraffic estimation or observation
ÅA multi-node job starts every 17 seconds

ÅPINE switches reconfigure in ~20usec

ÅCommercial switches every few msec

ÅAlgorithm is heuristic. Optimal solution is NP-Complete
ÅIteratively solve in each optical switch a maximum-weight matching problem

ÅOn-line update matching weights, considering already established links 
between pod pairs

ÅScalable:  O(kr4)
Åk is # of SiPswitches in network. r is optical radix and tends to be small
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Traffic Patterns Persist

ÅApplications may go 
through phases, but the 
dominant pattern persists 
throughout

DOE exascaleminiapps: https://portal.nersc.gov/project/CAL/cesar.htm
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