
Bandwidth Steering in HPC Using
Silicon Nanophotonics

George Michelogiannakis1, YiwenShen2, Min Yee Teh2, Xiang Meng2, Benjamin Aivazi2, Taylor
Groves1, John Shalf1, Madeleine Glick2, ManyaGhobadi4, Larry Dennison3, Keren Bergman2

1Lawrence Berkeley National Laboratory, 2Columbia University, 3NVIDIA, 4MIT

1

Spine

Aggregation

ToR

{ǘŀƴŘŀǊŘ {ǘŀǘƛŎ όΨ±ŀƴƛƭƭŀΩύ Cŀǘ ¢ǊŜŜ Architecture
(Originally FoldedClos)

2

ÅFat tree is a proxy for hierarchical topologies

Spine

Aggregation

ToR

Favorable Task Placement

3

Top-level links
are not used!

Spine

Aggregation

ToR

ÅInter-pod traffic needs to traverse (+ hops) through spine to connect between pods

Worst-Case Placement

4

The Problem: Bandwidth Tapering
Bandwidth tapering removes higher-level expensive bandwidth

Examples: Facebook 4x oversubscription [1], Microsoft up to 5.3x [2]

If all traffic uses high level, congestion forms [2]

ώмϐ !ƴŘǊŜȅŜǾΣ !ƭŜȄŜƛ Ŝǘ ŀƭΣ άLƴǘǊƻŘǳŎƛƴƎ Řŀǘŀ ŎŜƴǘŜǊ ŦŀōǊƛŎΣ ǘƘŜ ƴŜȄǘ-ƎŜƴŜǊŀǘƛƻƴ CŀŎŜōƻƻƪ Řŀǘŀ ŎŜƴǘŜǊ ƴŜǘǿƻǊƪέΣ CŀŎŜōƻƻƪ ŜƴƎƛƴŜŜring, 2014
[2] Chatzieleftheriou, AndromachiŜǘ ŀƭΣ ά[ŀǊǊȅΥ tǊŀŎǘƛŎŀƭ bŜǘǿƻǊƪ wŜŎƻƴŦƛƎǳǊŀōƛƭƛǘȅ ƛƴ ǘƘŜ 5ŀǘŀ /ŜƴǘŜǊέΣ b{5LΣ нлму

Halving top-level cables
would be 2x tapering

5

ÅMetric: Observed number of Aries (Dragonfly) groups that an application spans, divided by
the smallest possible number of groups that the application would fit in.

CǊŀƎƳŜƴǘŀǘƛƻƴ ƛƴ b9w{/Ωǎ /ƻǊƛ

6

Spine

Aggregation

ToR

Problem Statement: Recover Locality by Changing Topology
Connectivity

7

Flexible Fat Tree: Insertion of SiPSwitches ςBandwidth Steering

Flexibly Switched
Photonic Layer

8

Flexible Fat Tree: Direct Connectivity with Bandwidth Steering

9

Why Optical Switches Efficiently Steer B/W

ÅNegligible dynamic power and latency
for traversal

ÅOrders of magnitude lower static power
than modern electronic switches

ÅHowever:
ÅWe avoid consecutive hops in the optical

domain to avoid optical loss

ÅNo buffering inside optical switches. They
need to be pre-configured (circuit switching)

10

Reconfiguration Algorithm

ÅTraffic estimation or observation
ÅA multi-node job starts every 17 seconds

ÅPINE switches reconfigure in ~20usec

ÅCommercial switches every few msec

ÅAlgorithm is heuristic. Optimal solution is NP-Complete
ÅIteratively solve in each optical switch a maximum-weight matching problem

ÅOn-line update matching weights, considering already established links
between pod pairs

ÅScalable: O(kr4)
Åk is # of SiPswitches in network. r is optical radix and tends to be small

1

2

3

4

5

6

11

Traffic Patterns Persist

ÅApplications may go
through phases, but the
dominant pattern persists
throughout

DOE exascaleminiapps: https://portal.nersc.gov/project/CAL/cesar.htm
12

