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Standard Static (‘Vanilla’) Fat Tree Architecture
(Originally Folded Clos)
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• Fat tree is a proxy for hierarchical topologies
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Favorable Task Placement
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Top-level links 
are not used!
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• Inter-pod traffic needs to traverse (+ hops) through spine to connect between pods

Worst-Case Placement
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The Problem: Bandwidth Tapering
Bandwidth tapering removes higher-level expensive bandwidth

Examples: Facebook 4x oversubscription [1], Microsoft up to 5.3x [2]

If all traffic uses high level, congestion forms [2]

[1] Andreyev, Alexei et al, “Introducing data center fabric, the next-generation Facebook data center network”, Facebook engineering, 2014
[2] Chatzieleftheriou, Andromachi et al, “Larry: Practical Network Reconfigurability in the Data Center”, NSDI, 2018

Halving top-level cables 
would be 2x tapering
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• Metric: Observed number of Aries (Dragonfly) groups that an application spans, divided by 
the smallest possible number of groups that the application would fit in.

Fragmentation in NERSC’s Cori
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Problem Statement: Recover Locality by Changing Topology 
Connectivity
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Flexible Fat Tree: Insertion of SiP Switches – Bandwidth Steering

Flexibly Switched 
Photonic Layer
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Flexible Fat Tree: Direct Connectivity with Bandwidth Steering
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Why Optical Switches Efficiently Steer B/W

• Negligible dynamic power and latency 
for traversal

• Orders of magnitude lower static power 
than modern electronic switches

• However:
• We avoid consecutive hops in the optical 

domain to avoid optical loss

• No buffering inside optical switches. They 
need to be pre-configured (circuit switching)
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Reconfiguration Algorithm

• Traffic estimation or observation
• A multi-node job starts every 17 seconds

• PINE switches reconfigure in ~20usec

• Commercial switches every few msec

• Algorithm is heuristic. Optimal solution is NP-Complete
• Iteratively solve in each optical switch a maximum-weight matching problem

• On-line update matching weights, considering already established links 
between pod pairs

• Scalable:  O(kr4)
• k is # of SiP switches in network. r is optical radix and tends to be small
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Traffic Patterns Persist

• Applications may go 
through phases, but the 
dominant pattern persists 
throughout

DOE exascale miniapps: https://portal.nersc.gov/project/CAL/cesar.htm
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• 32 compute nodes composed of VMs on 16 servers, with 10G NICs 

• Electronic virtually partitioned from two OpenFlow PICA8 Ethernet packet switches (48 10G SFP+ ports)

PINE Prototype System Testbed
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PINE Bandwidth Steering Architecture – Fat 
Tree Topology: Prototype System Testbed
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Throughput of Upper Layer Links in Standard Fat-Tree Topology

Throughput of Upper Layer Links in Bandwidth-Steered Topology

56 72

25% execution 
time 

difference

• Operating skeletonized 
Gyrokinetic Toroidal Code 
(GTC) application with MPI

• Standard Fat Tree: all 
upper layer links used

• Flexible PINE Fat Tree: 
Only 4 upper layer 
links used

Standard Fat Tree Versus Steered Fat Tree
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SiP Switch 1
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SiP Switch 2

4x4 
SiP Switch 3

4x4 
SiP Switch 4

Pod 1 Pod 2Spine

Aggregation
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9 10 11 12

13 14
Electronic Packet 
Switch (EPS)

Server

• Remove spine layer links to reduce energy consumption

2x Oversubscription (B/W Tapering)
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Throughput of Upper Layer Links in Fat-Tree Topology with Some Upper Links Removed

Throughput of Upper Layer Links in Bandwidth-Steered Topology with 
Some Upper Links Removed

115

69% execution time 
difference

56

• Standard Fat Tree: all 
remaining upper layer 
links congested

• Flexible Fat Tree: 
unaffected by removal of 
links, remains at 56 sec 
runtime

• 69% faster execution

Flexible Fat Tree Unaffected by Tapering
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System-Scale Evaluation Methodology

• Booksim simulator

• Minimal-path routing with oblivious per-packet load balancing

• Network size and radix chosen for each trace

• Randomize placement to simulate fragmentation

• 36x36 Mellanox switches and active optical cables
• 16x16 SiP optical switches
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System-Scale Evaluation Traces

Application Algorithm

Facebook Production-level database pod

MiniDFT Plane-wave density functional theory (DFT)

MILC 4D stencil with nearest-neighbor traffic

Nekbone Poison equation using conjugate gradient iteration

AMG Algebraic multigrid solver (AMG)

AMR Adaptive mesh refinement (AMR)
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Transactions per Second (Throughput)

• Average 1.7x 
improvement
• Large spread

• Fat tree in the 
baseline:
• Operated past 

saturation at 
times

• Load balancing 
was not perfect
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Network Average Latency

• Average 20% 
improvement

• Two reasons:
• Lower hop 

count

• Lower 
congestion 
in some 
cases
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Power Consumption
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• Average 36% 
static and 
14% dynamic



SiP Optical Switch Radix

• If we reduce SiP optical switch radix 8x8, throughput drops 
appreciably in only two traces
• Plenty of locality to recover with lower-radix switches

• Much of related work used expensive high-radix optical switches
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Related Work / Task Migration

• Previous studies show a disjoint optical network for heavy traffic, 
optimize for metrics other than tapering and fragmentation, or 
provide reconfiguration but require large-radix optical switches

• Task migration can take seconds to complete [1]. Our optical switches 
reconfigure in microseconds. Electronic switches in milliseconds

[1] Chao Wang et al, “Proactive Process-level Live Migration in HPC Environments”. SC 2008
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Summary

• Bandwidth steering reconstructs locality lost from system 
fragmentation and reduces higher-level link utilization
• Therefore, can aggressively taper higher-layers with no performance penalty

• SiP optical switches efficiently change the connectivity of lower layers 
to match the traffic pattern

• 36% less static and 14% less dynamic power per unit throughput
• Also 69% faster execution in our testbed
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Questions?
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