
Bandwidth Steering in HPC Using
Silicon Nanophotonics

George Michelogiannakis1, Yiwen Shen2, Min Yee Teh2, Xiang Meng2, Benjamin Aivazi2, Taylor
Groves1, John Shalf1, Madeleine Glick2, Manya Ghobadi4, Larry Dennison3, Keren Bergman2

1Lawrence Berkeley National Laboratory, 2Columbia University, 3NVIDIA, 4MIT

1

Spine

Aggregation

ToR

Standard Static (‘Vanilla’) Fat Tree Architecture
(Originally Folded Clos)

2

• Fat tree is a proxy for hierarchical topologies

Spine

Aggregation

ToR

Favorable Task Placement

3

Top-level links
are not used!

Spine

Aggregation

ToR

• Inter-pod traffic needs to traverse (+ hops) through spine to connect between pods

Worst-Case Placement

4

The Problem: Bandwidth Tapering
Bandwidth tapering removes higher-level expensive bandwidth

Examples: Facebook 4x oversubscription [1], Microsoft up to 5.3x [2]

If all traffic uses high level, congestion forms [2]

[1] Andreyev, Alexei et al, “Introducing data center fabric, the next-generation Facebook data center network”, Facebook engineering, 2014
[2] Chatzieleftheriou, Andromachi et al, “Larry: Practical Network Reconfigurability in the Data Center”, NSDI, 2018

Halving top-level cables
would be 2x tapering

5

• Metric: Observed number of Aries (Dragonfly) groups that an application spans, divided by
the smallest possible number of groups that the application would fit in.

Fragmentation in NERSC’s Cori

6

Spine

Aggregation

ToR

Problem Statement: Recover Locality by Changing Topology
Connectivity

7

Flexible Fat Tree: Insertion of SiP Switches – Bandwidth Steering

Flexibly Switched
Photonic Layer

8

Flexible Fat Tree: Direct Connectivity with Bandwidth Steering

9

Why Optical Switches Efficiently Steer B/W

• Negligible dynamic power and latency
for traversal

• Orders of magnitude lower static power
than modern electronic switches

• However:
• We avoid consecutive hops in the optical

domain to avoid optical loss

• No buffering inside optical switches. They
need to be pre-configured (circuit switching)

10

Reconfiguration Algorithm

• Traffic estimation or observation
• A multi-node job starts every 17 seconds

• PINE switches reconfigure in ~20usec

• Commercial switches every few msec

• Algorithm is heuristic. Optimal solution is NP-Complete
• Iteratively solve in each optical switch a maximum-weight matching problem

• On-line update matching weights, considering already established links
between pod pairs

• Scalable: O(kr4)
• k is # of SiP switches in network. r is optical radix and tends to be small

1

2

3

4

5

6

11

Traffic Patterns Persist

• Applications may go
through phases, but the
dominant pattern persists
throughout

DOE exascale miniapps: https://portal.nersc.gov/project/CAL/cesar.htm
12

https://portal.nersc.gov/project/CAL/cesar.htm

• 32 compute nodes composed of VMs on 16 servers, with 10G NICs

• Electronic virtually partitioned from two OpenFlow PICA8 Ethernet packet switches (48 10G SFP+ ports)

PINE Prototype System Testbed

13

PINE Bandwidth Steering Architecture – Fat
Tree Topology: Prototype System Testbed

14

Throughput of Upper Layer Links in Standard Fat-Tree Topology

Throughput of Upper Layer Links in Bandwidth-Steered Topology

56 72

25% execution
time

difference

• Operating skeletonized
Gyrokinetic Toroidal Code
(GTC) application with MPI

• Standard Fat Tree: all
upper layer links used

• Flexible PINE Fat Tree:
Only 4 upper layer
links used

Standard Fat Tree Versus Steered Fat Tree

15

1 2 3 4 5 6 7 8 A B C D E F G H
4x4

SiP Switch 1
4x4

SiP Switch 2

4x4
SiP Switch 3

4x4
SiP Switch 4

Pod 1 Pod 2Spine

Aggregation

ToR 1 2 3 4 5 6 7 8

9 10 11 12

13 14
Electronic Packet
Switch (EPS)

Server

• Remove spine layer links to reduce energy consumption

2x Oversubscription (B/W Tapering)

16

Throughput of Upper Layer Links in Fat-Tree Topology with Some Upper Links Removed

Throughput of Upper Layer Links in Bandwidth-Steered Topology with
Some Upper Links Removed

115

69% execution time
difference

56

• Standard Fat Tree: all
remaining upper layer
links congested

• Flexible Fat Tree:
unaffected by removal of
links, remains at 56 sec
runtime

• 69% faster execution

Flexible Fat Tree Unaffected by Tapering

17

System-Scale Evaluation Methodology

• Booksim simulator

• Minimal-path routing with oblivious per-packet load balancing

• Network size and radix chosen for each trace

• Randomize placement to simulate fragmentation

• 36x36 Mellanox switches and active optical cables
• 16x16 SiP optical switches

18

System-Scale Evaluation Traces

Application Algorithm

Facebook Production-level database pod

MiniDFT Plane-wave density functional theory (DFT)

MILC 4D stencil with nearest-neighbor traffic

Nekbone Poison equation using conjugate gradient iteration

AMG Algebraic multigrid solver (AMG)

AMR Adaptive mesh refinement (AMR)

19

Transactions per Second (Throughput)

• Average 1.7x
improvement
• Large spread

• Fat tree in the
baseline:
• Operated past

saturation at
times

• Load balancing
was not perfect

20

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 Im

p
ro

ve
m

en
t

(%
)

Steered vs Vanilla (No Tapering)
587%597%

Network Average Latency

• Average 20%
improvement

• Two reasons:
• Lower hop

count

• Lower
congestion
in some
cases

21

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
ge

 Im
p

ro
ve

m
en

t
(%

)

Percentage Improvement of Steered vs Vanilla (No Tapering)

Power Consumption

22

0

10

20

30

40

50

60

70

80

90

P
er

ce
n

ta
ge

 Im
p

ro
ve

m
en

t
(%

)

Average Power per Unit Throughput Improvement

Static Power Dynamic Power

• Average 36%
static and
14% dynamic

SiP Optical Switch Radix

• If we reduce SiP optical switch radix 8x8, throughput drops
appreciably in only two traces
• Plenty of locality to recover with lower-radix switches

• Much of related work used expensive high-radix optical switches

23

Related Work / Task Migration

• Previous studies show a disjoint optical network for heavy traffic,
optimize for metrics other than tapering and fragmentation, or
provide reconfiguration but require large-radix optical switches

• Task migration can take seconds to complete [1]. Our optical switches
reconfigure in microseconds. Electronic switches in milliseconds

[1] Chao Wang et al, “Proactive Process-level Live Migration in HPC Environments”. SC 2008

24

Summary

• Bandwidth steering reconstructs locality lost from system
fragmentation and reduces higher-level link utilization
• Therefore, can aggressively taper higher-layers with no performance penalty

• SiP optical switches efficiently change the connectivity of lower layers
to match the traffic pattern

• 36% less static and 14% less dynamic power per unit throughput
• Also 69% faster execution in our testbed

25

Questions?

26

