
1

Vol.:(0123456789)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports

Terabase‑scale metagenome
coassembly with MetaHipMer
Steven Hofmeyr1*, Rob Egan2, Evangelos Georganas3, Alex C. Copeland2, Robert Riley2,
Alicia Clum2, Emiley Eloe‑Fadrosh2, Simon Roux2, Eugene Goltsman2, Aydın Buluç1,4,
Daniel Rokhsar2,5, Leonid Oliker1 & Katherine Yelick1,4

Metagenome sequence datasets can contain terabytes of reads, too many to be coassembled together
on a single shared‑memory computer; consequently, they have only been assembled sample by
sample (multiassembly) and combining the results is challenging. We can now perform coassembly of
the largest datasets using MetaHipMer, a metagenome assembler designed to run on supercomputers
and large clusters of compute nodes. We have reported on the implementation of MetaHipMer
previously; in this paper we focus on analyzing the impact of very large coassembly. In particular,
we show that coassembly recovers a larger genome fraction than multiassembly and enables the
discovery of more complete genomes, with lower error rates, whereas multiassembly recovers more
dominant strain variation. Being able to coassemble a large dataset does not preclude one from
multiassembly; rather, having a fast, scalable metagenome assembler enables a user to more easily
perform coassembly and multiassembly, and assemble both abundant, high strain variation genomes,
and low‑abundance, rare genomes. We present several assemblies of terabyte datasets that could
never be coassembled before, demonstrating MetaHipMer’s scaling power. MetaHipMer is available
for public use under an open source license and all datasets used in the paper are available for public
download.

A metagenome is a representation of the genomic content of a soil, water or other environmental sample.
Metagenome assembly is challenging due to sequencing error, repetitive content, and library and sequencing
bias. In addition, a metagenome sample can contain many thousands of different genomes with varying degrees
of similarity, sometimes sharing genetic material, and occurring at vastly different abundances. Advances in
sequencing technology make it possible to sample low abundance organisms but pose additional challenges for
assembly, with datasets on the order of terabytes, too big to be assembled as one set of reads by assemblers that
only run on shared memory machines. This has led to various approaches which either reduce input size by
 filtering1 or combine results of multiple partial assemblies2,3. Many authors have attempted to estimate sequenc-
ing effort required to recover the majority of organisms in complex communities4–7. However, limitations in
assembler design have prevented testing these models since it has been possible for some time to produce more
sequence data than can be assembled in a single shared memory computer.

In this paper we show that assembling all the reads from a project or sample together (coassembly) has ben-
efits that cannot be realized by combining the results of multiple partial assemblies (multiassembly). To achieve
coassembly for terabase-scale metagenomic datasets we have developed MetaHipMer, a metagenome assembler
able to run on high-performance supercomputers. MetaHipMer can run effectively on a single node or a small
cluster, but importantly, can also scale to thousands of compute nodes, allowing it to utilize potentially petabytes
of memory to assemble terabase-scale or larger metagenomes. MetaHipMer assemblies can be completed rap-
idly, on the order of minutes or hours for multiple terabytes of data. The technical details of the parallelization
approach for MetaHipMer have been described in detail elsewhere8; here we focus on the benefits of coassembly
of terabase-scale datasets.

We show several advantages of coassembly over multiassembly for a large marine dataset. Coassembly recov-
ers a larger fraction of the input genomes than multiassembly, especially for low abundance species. Furthermore,
the sequence duplication present in a multiassembly leads to error rates up to 3.5x higher and state-of-the-art
deduplication tools do not resolve that problem. We also investigate a disadvantage of coassembly, namely poor

OPEN

1Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 2Joint
Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 3Parallel Computing Lab,
Intel Corp., Santa Clara, CA 95054, USA. 4Department of Electrical Engineering and Computer Sciences, University
of California, Berkeley, CA 94720, USA. 5Department of Molecular and Cellular Biology, University of California,
Berkeley, CA 94720, USA. *email: shofmeyr@lbl.gov

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-67416-5&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports/

recovery of strain variation9. As expected, coassembly recovers smaller fractions of strains than multiassembly.
However, with a fast, scalable assembler, terabase-scale datasets can be both coassembled and rapidly multias-
sembled to give complete assemblies of both dominant strain variation and rare species.

Results
We investigate coassembly and multiassembly using a large (822 GB) marine dataset, both with and without the
injection of synthetic reads, and analyze various aspects of coassembly versus multiassembly, including MAG
discovery, assembly quality, and the impact of strain variation. In addition, we compare MetaHipMer against
two of the most commonly used assemblers, MEGAHIT10 and metaSPAdes11, and show that MetaHipMer pro-
duces equivalent quality assemblies on a variety of different datasets. Finally, we describe several new large-scale
metagenomes recently assembled with MetaHipMer that could not be done before, ranging from 2.6 TB of
sequencing data for a time series of wetlands soil samples to 3.3 TB for soil samples in carbon cycle experiments.
These assemblies are too big to be coassembled on a shared-memory computer, but they could all be assembled
in a matter of hours using NERSC’s Cori supercomputer12.

Comparing coassembly to multiassembly. To explore the benefits of coassembly of very large scale
datasets, we used the WA dataset, which is a collection of marine microbial communities from the Western Arc-
tic Ocean, and consists of 822 GB of 2.5 billion reads in 12 samples, with a read length of 150 and average insert
size distribution of 270±30. Additional details of the WA dataset and all others used in this paper can be found
in the Supplementary information. We ran MetaHipMer (v1.2.1) on the Cori supercomputer12, performing both
a coassembly of all 12 samples together, and an asssembly of each sample individually, and we combined the
individual sample assemblies to form a multiassembly.

We used MetaQUAST13 to evaluate the assemblies, using as references all 971 genomes in the MarRef marine
genomes database14. The parameters used for MetaQUAST and all other software tools can be found in the
Supplementary information. We found traces of 871 genomes in the coassembly, with 40 of those exceeding a
1% genome fraction, and 8 with at least a 10% genome fraction; these are shown in Fig. 1. The series marked
“best sample” are the highest genome fractions for any single sample assembly. Most of the genomes recovered
at above 10% are of the Pseudoalteromonas genus, with two strains of the same species (P. issachenkonii). For all
of these, coassembly typically recovers 40–50% more than multiassembly. However, for the two largest fraction
genomes recovered (of the Pelagibacter genus), multiassembly recovered a slightly higher fraction (up to 14%
more) than coassembly, which is likely a consequence of the strain variation in these dominant genomes. The
MarRef database has only one strain of P. ubique, so to further investigate the issue of strain variation, we used
an additional 10 strains of P. ubique as references for another MetaQUAST assessment. It can be seen in Fig. 2
that multiassembly recovers a higher genome fraction for all strains than coassembly (up to 18% more), but
coassembly still manages to recover the same set of strains as multiassembly.

To assess the presence of unlabeled MAGs (not from known references), we ran MetaBAT215 on the assemblies
and used CheckM16 to assess the quality of the bins discovered. We used the MetaBAT R tool17 to determine the
number of medium quality MAGs (completion ≥50% and contamination ≤10%)18. When contamination due to
strain heterogeneity is filtered out (the strain removal flag is set to true), the number of MAGs is almost identical
between coassembly (31) and multiassembly (30). Without strain heterogeneity filtering, there are 26 medium
quality MAGs in the coassembly, and only 1 in the multiassembly. This is to be expected: in the coassembly, out
of 77 bins with completion ≥50% there are 21 with a strain heterogeneity ≥50%, whereas in the multiassembly,
out of 109 bins with ≥50% completion, there are 75 with strain heterogeneity ≥50%. Thus it is clear that coas-
sembly removes strain information.

To explore the impact of coassembly on low abundance genomes, we injected a set of synthetic reads into the
WA dataset, following an approach similar to Wang et al.19. The genomes for generating the synthetic reads were
drawn from the MarRef database, and were selected based on two criteria: first, they are Arctic ocean genomes,
and second, they were found in the WA dataset with the MetaQUAST analysis, but at low genome fractions
(generally under 1%). Thus we have a set of genomes (25 were found) that are realistic constituents of the WA

Figure 1. Genome fractions for references from MarRef found in the WA assemblies.

3

Vol.:(0123456789)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports/

community, but are of low enough abundance that we can better analyze the effects of sequencing depth on the
various assembly approaches. We used CAMISIM20 to generate a set of 12 synthetic metagenome samples (one
per sample of WA), with the replicate model and the default lognormal abundance distribution. This is similar to
the way the first CAMI challenge’s high complexity dataset was generated21. Each generated sample was injected
into one of the WA samples to create the WAmix dataset.

Running MetaHipMer on the Cori supercomputer12, we assembled the complete dataset of all 12 samples
of WAmix together (coassembly), and we assembled each individual sample separately. We then assessed the
quality of the assembly in terms of the known 25 references, using MetaQUAST. Table 1 shows results for several
different assemblies: the coassembly; the multiassembly, with all 12 samples combined; a deduplicated version of
the multiassembly (using bbtools dedupe22); the average across all single samples (single sample avg); and the
synthetic reads only, i.e. not injected into WA (ArcticSynth). As expected, the duplication ratio is very high for
the multiassembly (7.3), and although deduplication helps, it is clearly difficult to remove duplicates, because
the ratio is still high, at 4.3. Note that the duplication ratio is the total number of bases in the assembly aligned
to the reference, divided by the number of bases in the reference. A consequence of these highly duplicated
assemblies is that misassemblies are also high; as expected, the number of extensive misasssemblies in multias-
sembly (365) is roughly 12x that of the single sample average (30). By contrast, the coassembly has a far lower
number of extensive misassemblies (96), which is only double that of the purely synthetic assembly (45), and
the duplication ratio (1.2) is much lower than the deduplicated multiassembly. Also, the coassembly captures
the same fraction of the genomes as the purely synthetic assembly (94%), whereas the multiassembly is missing
a large fraction of the genomes, capturing around 46%.

The coassembly captures much higher genome fractions of low depth genomes than multiassembly, as can be
seen in Fig. 3, which shows the fractions of the assembly that align to the various depths of reference genomes.
For low depths (under 20), the coassembly usually captures most of the genome (above 90%), whereas the
multiassembly captures very little of the genome (under 5%), and it only does as well as the coassembly when
the depth reaches 70. The multiassembly is still an improvement over one sample, which only exceeds 90% at
depths greater than 130. There is one notable exception (labeled on the figure): for T. oleivorans strain K188 at
depth 21, coassembly recovers 57% whereas multiassembly recovers 76%. There is another, more abundant strain
of T. oleivorans (strain R6 15) at a higher depth (85), and it is likely that the overlap between these two strains is
what makes coassembly perform worse, since it is unable to capture both strains fully.

The coassembly also improves contiguity, as can be seen in Fig. 4, which shows a cumulative length plot of
all sequences that align to the synthetic reference genomes, broken at misassemblies. The cumulative length is
computed with the contigs ordered from longest to shortest. The multiassembly is much more fragmented than
the coassembly, and has contiguity not much better than a single sample. Because the contigs are sorted by length,
we can see that the longest contigs (on the left hand side of the x-axis) produced by coassembly are at least an
order of magnitude longer than the ones produced by multiassembly. Although the multiassembly gives an overall
larger cumulative length (the right hand side of the x-axis in Fig. 4), these results do not reflect useful information
because they are due to the duplications (everything above the reference dotted line represents duplications).

Figure 2. Genome fractions for strains of P. ubique found in the WA assemblies.

Table 1. Assembly quality for WAmix.

Sample type

Length (gbp) Largest alignment Contigs (millions) Genome % Misassemblies Mismatches/100 kbp Indels /100 kbp Duplication ratio

Extensive Local

Coassembly 7.4 1,085,233 5.5 94 96 58 159 3.3 1.2

Multiassembly 12.0 50,429 10.2 46 365 396 1654 66.1 7.3

Deduplicated 8.6 50,429 7.0 45 243 294 1146 59.6 4.3

Single sample avg 1.0 29,207 0.8 24 30 33 264 10.6 1.2

ArcticSynth 0.1 1,085,223 0.01 94 45 15 26 1.5 1.0

4

Vol:.(1234567890)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports/

Related to the issue of strain diversity is chimericity23, where a contig comprises reads from multiple genomes.
The impact of coassembly on chimericity is unknown, so we calculated the chimericity for the synthetic reads in
the WAmix dataset. Chimericity is computed as entropy, i.e. chimericity =

∑
i pilog(pi) , where pi is the propor-

tion of reads that came from genome i24. Multiassembly is slightly worse for chimericity, with an average over all
contigs of 0.011, compared to 0.005 for coassembly. However, this result is a consequence of the fact that there
are more chimeric contigs in multiassembly (2.2%) compared to coassembly (1%); the average chimericity over
the chimeric contigs is 0.49 for multiassembly and 0.52 for coassembly. We conclude that coassembly does not
substantially increase chimericity, and chimeric contigs remain rare.

Quality comparisons. There have been many assembler comparison studies (e.g. 19,25,26). These have dem-
onstrated that different assemblers have different strengths and weaknesses. Here we compare MetaHipMer to
two of the most commonly used assemblers: MEGAHIT10 and metaSPAdes11. The comparison here does not
purport to be extensive; rather it is intended to demonstrate that MetaHipMer produces assemblies that are
roughly equivalent in quality to those produced by the other assemblers on datasets small enough to assemble
on a single shared memory computer.

All the assemblers were run in their default settings and no attempt was made to tune them for the given
datasets. In practice, it is often the case that an assembler can be tuned for a given dataset, which may make one
assembler work better than others for particular datasets. However, for assemblers that take a long time to run,
there is often not the luxury of repeated runs to fine-tune the parameters. For clean comparisons, we do not do
any pre- or post-processing of the data. Of course, in practice, many assembly pipelines use extensive pre- and
post-processing, which can improve assembly quality or reduce running time.

Datasets. The quality comparisons involve the assemblies of four different datasets, two that are purely syn-
thetic (ArcticSynth and MBARC-26), and two that are mixed real world and synthetic (Gut and Marine):

• ArcticSynth. This consists of only the synthetic references from WAmix. As noted before, 25 references were
selected from MarRef, and we used CAMISIM to generate a total of 32 million synthetic reads (9.9 GB) of
length 150 bp, in 12 replicate samples with a lognormal abundance profile. All samples were combined into
a single dataset. The average insert size was 270 and the standard deviation was 30.

• MBARC-26. This is a synthetic high-depth, simple dataset composed of 23 bacterial and 3 archaeal strains
with finished genomes that span 10 phyla and 14 classes, a range of GC contents, genome sizes, repeat con-
tent, and that encompass a diverse abundance profile27. The dataset comprises 173 million (32 GB) 150 bp
paired-end reads with average insert size of 270 and standard deviation of 30.

Figure 3. Genome fraction vs depth for synthetic reference genomes within WAmix.

Figure 4. Cumulative lengths for contigs aligned to synthetic reference genomes within WAmix.

5

Vol.:(0123456789)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports/

• Gut: This is a mixed dataset, with 101 bp-length paired-end reads, drawn from real sequencing of the human
gut microbiome, and injected synthetic reads from 5 other genomes19. Injection of all the genomes was done
at depths 5x, 20x and 50x. Each one was evaluated separately. The dataset sizes, respectively, are 31 million
reads (6.8 GB), 33 million reads (7.3 GB), and 37 million reads (8.2 GB). The real gut dataset without injec-
tions is 30 million reads (6.7 GB).

• Marine: This is another mixed dataset, with 101 bp-length paired-end reads drawn from the sequencing of
a Tara Oceans Polar Circle DNA sample, and injected synthetic reads from 8 other genomes19. Injection of
all the genomes was done at depths 5x, 20x and 50x. Each one was evaluated separately. The dataset sizes,
respectively, are 480 million reads (101 GB), 483 million reads (102 GB), and 489 million reads (104 GB).
The real marine dataset without injections is 479 million reads (101 GB).

Assembly quality evaluation. Table 2 shows the quality results for the assemblies of the synthetic datasets (Arc-
ticSynth and MBARC-26). We assessed the completed assemblies using MetaQUAST and focus on several dif-
ferent aspects: contiguity, as measured by the NGA50 (computed over the combined references) and the largest
alignment; genome fraction recovered, as measured by the percentage of the reference aligning to the assembly;
errors, as measured by misassemblies, mismatches and indels; and revealed diversity, as measured by genome
bins and rRNA counts. For the rRNAs, we focus on the 16S and 23S (since the 5S are very short − 120bp),
and only report the complete rRNAs, as determined by barrnap28. The metaSPAdes assembly has noticeably
lower rRNA discovery than the other two. This is a trend consistent across all datasets. The genome bins were
determined using the same process with MetaBAT/CheckM as described before; reported here are the medium
quality counts, where medium quality is defined according to the MAG standard as completion ≥ 50% and
contamination < 10%. These counts are similar except for metaSPAdes, which has much lower counts (4 and 8)
compared to the other assemblers (from 15 to 19).

The comparisons between the assemblers on ArcticSynth are further illustrated in Figs. 5 and 6. The impact
of depth on the genome fraction is shown in Fig. 5; generally genome fraction is close to 100% for higher depths
and only low when considering very low depth or non-dominant strains. The genome fraction recovered is similar
across the different assemblies. Figure 6 shows the cumulative lengths of the contigs that align to the references
for ArcticSynth, broken at misassemblies, and ordered from the longest to the shortest. The extent of the x-axis
data indicates the total number of contigs, and the extent of the y-axis data indicates the total assembled length,
which is related to the genome fraction and the duplication ratio. The three assemblers are generally equivalent
in contiguity, which is dominated by the assembly of high abundance genomes.

The quality assessments for the assemblies of the mixed synthetic/real results are shown Table 3 for Gut and
in Table 4 for Marine. In general, the MEGAHIT assemblies tend to have more misassemblies, resulting in lower

Table 2. Quality of assemblies of synthetic datasets.

Assembler NGA50 (kbp) Largest alignment Contigs Genome %

Misassemblies

Mismatches/100 kbp Indels /100 kbp Genome bins

rRNAs

Extensive Local 16S 23S

ArcticSynth

MetaHipMer 52 1,085,233 9060 93.8 45 15 26 1.5 15 13 11

MEGAHIT 65 1,085,427 7432 95.1 110 78 134 1.9 16 14 7

MetaSPAdes 17 1,290,245 17,701 91.2 53 50 291 1.9 8 7 3

MBARC-26

MetaHipMer 152 2,055,376 4239 92.3 80 30 3 0.4 19 15 11

MEGAHIT 121 1,636,294 5371 93.1 69 34 8 0.7 19 16 12

MetaSPAdes 193 2,055,367 4987 92.1 76 58 69 3.3 4 6 4

Figure 5. Genome fraction vs depth for assemblies of the ArcticSynth dataset.

6

Vol:.(1234567890)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports/

NGA50s (similar to the trend seen for the assemblies of the synthetic datasets), and once again, the metaSPAdes
assemblies have the lowest rRNA discovery (and in the case of Gut, the lowest count of genome bins). At low
depth (5x), the metaSPAdes assemblies have the best genome fraction, whereas the MetaHipMer assemblies are
more conservative, and consequently have reduced genome fraction, but fewer misassemblies.

Figure 6. Cumulative lengths for contigs for assemblies of the ArcticSynth dataset.

Table 3. Quality of Gut mixed assemblies for various depths.

Assembler NGA50 (kbp) Largest alignment Contigs Genome %

Misassemblies

Mismatches/100 kbp Indels /100 kbp Genome bins

rRNAs

Extensive Local 16S 23S

5x

MetaHipMer 0.13 12,213 82,299 81.8 23 3 77 10.0 8 18 8

MEGAHIT 0.14 37,232 94,473 82.8 48 15 66 4.1 12 5 6

MetaSPAdes 0.15 32,154 106,047 87.4 29 9 94 6.3 10 5 6

20x

MetaHipMer 127 667,522 74,209 99.1 8 3 17 0.9 14 15 11

MEGAHIT 88 391,021 86,687 98.3 30 10 22 1.6 17 3 7

MetaSPAdes 138 458,963 97,852 99.1 1 6 13 1.8 9 3 6

50x

MetaHipMer 150 667,521 73,881 98.6 5 4 14 0.6 13 19 12

MEGAHIT 111 666,969 86,608 98.7 18 7 21 1.8 16 5 8

MetaSPAdes 150 1,365,043 97,869 99.2 0 6 14 1.8 9 2 6

Table 4. Quality of Marine mixed assemblies for various depths.

Assembler NGA50 (kbp) Largest alignment Contigs Genome %

Misassemblies

Mismatches /100 kbp Indels/100 kbp Genome bins

rRNAs

Extensive Local 16S 23S

5x

MetaHipMer 0.18 28,718 196,390 88.2 3 95 72 2.4 7 12 6

MEGAHIT 0.24 34,471 197,872 90.5 68 27 71 2.5 9 15 8

MetaSPAdes 0.36 28,334 158,348 95.6 23 24 96 4.2 12 1 6

20x

MetaHipMer 251 1,238,326 179,308 99.6 4 10 16 0.2 11 20 14

MEGAHIT 239 1,382,528 184,773 99.7 3 15 24 1.3 13 15 9

MetaSPAdes 249 1,382,094 147,628 99.5 0 20 12 0.7 14 1 7

50x

MetaHipMer 328 1,410,119 181,509 99.6 6 7 15 1.3 12 21 12

MEGAHIT 239 1,410,120 184,646 99.7 6 16 24 1.2 12 17 9

MetaSPAdes 246 1,382,118 147,619 99.8 0 24 16 1.2 12 1 6

7

Vol.:(0123456789)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports/

Assembler running times. MetaHipMer is designed to run on distributed memory high performance supercom-
puters, such as NERSC’s Cori system. This enables us to complete very large assemblies, such as those described
in a previous section. By contrast, the other assemblers we have compared against can only run on single server
shared memory systems. Although MetaHipMer is designed for supercomputers, it still runs efficiently on a
single shared memory computer, and can be used on a variety of hardware platforms, and has the potential to
be used on cloud systems, such as Microsoft Azure29. For comparison of running times and resource utilization,
MetaHipMer was thus also run on a single server shared memory system.

Table 5 presents results of running the three assemblers on a single server with four 20-core (total 80) Intel
Xeon E7-8870 2.10 GHz processors, and 1 TB of RAM, for the test datasets. We can see that although MetaHip-
Mer is designed to run on distributed memory systems, its performance on a single shared-node machine is still
reasonable, being about one-third to two times slower than MEGAHIT and about two to five times faster than
metaSPAdes. Because we have ample memory on the distributed systems, MetaHipMer has not been optimized
extensively for memory use; hence the memory usage is higher than the other assemblers.

MetaHipMer can utilize petabytes of distributed memory to assemble very large datasets, and it does so with
efficient use of compute resources. To demonstrate this, we assembled the Marine 50x dataset on a cluster com-
prised of Xeon Phi processors (the Knights Landing–KNL–partition of the NERSC Cori system). The assembly
takes 100 min at 8 nodes (the minimum required because of memory constraints—each node has 96 GB RAM),
31 min at 32 nodes and 20 min at 64 nodes. This is a scaling efficiency of 80% from 8 to 32 nodes, and 64% from
8 to 64 nodes.

In summary, we have shown that the quality of assemblies produced by MetaHipMer is competitive with
MEGAHIT and metaSPAdes assemblies. And although MetaHipMer can be run on a single server with compa-
rable running times to other assemblers, it has the unique capability to scale efficiently on a distributed memory
supercomputer.

New terabase‑scale assemblies. MetaHipMer has already enabled the coassembly of several large scale
datasets that could not be assembled before. A few of these are described here; see Table 6 for some of their char-
acteristics. In the original publication for the cow rumen dataset, the sequences were assembled individually, not
as a single coassembly. The running times for all the assemblies were on 1024 nodes on the Cori supercomputer,
KNL partition. Note that although the cow rumen dataset includes long reads, we did not use these because
MetaHipMer is a short-read assembler.

Discussion
For the analysis of the impact of coassembly, we compared the coassembly to a simple case of performing
multiple individual assemblies of each sample and then concatenating the results. We attempted to improve the
multiassembly by running dedupe to automatically remove duplicated sequences, but found that although the
duplication ratio was reduced from 7.3 to 4.3, it was still very high and the misassemblies remained high. Clearly,
there could be better ways of producing the multiassembly than simple concatenation, but exploring this is still
an open research topic9. With the ability to do complete coassemblies of all the data, there is less of a need to
improve the quality of multiassemblies.

For our comparisons, we made no attempt to tune the different assemblers, and simply used the default
parameter settings. It is highly likely that careful tuning for particular datasets will improve the assembly quali-
ties; however, tuning is expensive and can require multiple runs, which can be prohibitive with an assembler
than runs on a single shared-memory computer and takes hours to complete. This points to another benefit of

Table 5. Running time (minutes) and memory usage (GB) of the assemblers.

Assembler

ArcticSynth SYNTH64D MBARC-26 Gut 50x Marine 50x

Time Memory Time Memory Time Memory Time Memory Time Memory

MetaHipMer 20 93 24 100 153 281 22 119 203 614

MEGAHIT 22 4 15 4 90 42 16 4 143 42

MetaSPAdes 101 76 101 76 347 129 80 42 403 128

Table 6. New terabase-scale dataset assemblies. Columns labeled * are calculated for scaffolds ≥ 500bp.

Description

Data Assembly∗ Scaffolds∗ N50∗ Time

(TB) (gbp) (millions) (kpb) (hrs)

Wetlands: Metagenomics sequences from a time-series of wetlands soil samples collected from several physical sites in the
Twitchell Wetlands in the San Francisco Bay-Delta30 2.63 46.2 41.6 1.2 5.14

Cow Rumen: A collection of metagenomic DNA sequenced from microbes adherent to plant fiber incubated in the cow
 rumen31 2.66 18.4 12.7 1.7 2.10

Soil Carbon: Metagenome DNA sequenced for a project that aims to identify and characterize the dominant uncultivated
microorganisms that mediate major transformations in the soil carbon cycle32 3.34 15.1 15.5 1.0 3.20

8

Vol:.(1234567890)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports/

fast assemblies on distributed memory systems: if an assembly takes on the order of minutes instead of hours,
it is reasonable to do multiple runs to explore the parameter space and find the best settings possible. With
MetaHipMer, the ability to do runs very quickly makes it possible to do parameter sweeps, and potentially tune
the assembly in different ways on different runs for different outcomes, for example, one run for contiguity, one
for minimal errors, etc.

Based on the data presented here and our experience with combined assembly of metagenomes, we are not
suggesting that metagenomes should only be coassembled. There are cases when multiassembly would be prefer-
able, for example, to recover strain variation in high abundance genomes. Of course, being able to coassemble a
large dataset does not preclude one from multiassembly; rather, having a fast, scalable metagenome assembler
enables a user to more easily perform both coassembly and multiassembly, and assemble both abundant, high
strain variation genomes, and low-abundance, rare genomes.

Conclusions
We have explored the trade-offs between coassembly and multiassembly using MetaHipMer, a new distributed
memory metagenome assembler that can scale to thousands of compute nodes in a supercomputer or compute
cluster. Our results showed that on a mixed dataset combining both real-world and synthetic reads, coassembly
recovers a larger fraction of both synthetically injected genomes and real genomes than multiassembly, espe-
cially for low-depth genomes. The only exception is for high abundance strains, where multiassembly recovers
more strain information. Furthermore, the duplication present in a multiassembly leads to much higher error
rates (up to 3.5x higher) and state-of-the-art deduplication tools do not significantly address that problem. We
also compared MetaHipMer to two leading assemblers, MEGAHIT and metaSPAdes, on smaller assemblies.
We analyzed the quality in multiple dimensions, including contiguity, accuracy (errors), feature recovery and
genome fraction, and found that MetaHipMer produces assemblies of similar quality to the other two assemblers.
Finally, we described the results of a number of new assemblies performed by MetaHipMer that are too large to
be coassembled on a single shared-memory computer; these results demonstrate the potential for new scientific
discovery enabled by the massive computational power harnessed by MetaHipMer.

Methods
Most of the implementation of MetaHipMer has been described in detail previously8,33. We recapitulate this
description at a high level here for clarity. There are two new parts, however, compared to our previous pres-
entations. First, k-mer analysis was previously implemented in MPI using collectives; here we describe a new
implementation in UPC++. Second, we present an entirely new scaffolding module, called cgraph, which was
developed specifically to target metagenomes, and improves both the quality of the assemblies and the parallel
scalability relative to the previous scaffolder.

MetaHipMer can be split into two broad phases: first, contigs are iteratively constructed using de Brujin
graphs (similar to the way the IDBA-UD34 and MEGAHIT10 assemblers work), and, second, in scaffolding, the
contigs are joined together to resolve repetitive genomic regions and further increase contiguity. Both iterative
contig generation and scaffolding employ distributed memory parallelization via UPC35 and UPC++36. Unlike
popular send/receive message passing systems, UPC and UPC++ allow a thread on one processor to directly
read or write the memory or execute a function on another processor, even when the two processors are on dif-
ferent network-connected nodes.

Iterative contig generation. The de Bruijn graph approach relies on k-mers, which are subsequences of
length k, extracted from reads. In general, a higher value of k is better because it produces longer k-mers that
can span repeats. However, a metagenome dataset will likely contain some species that have been sampled at
low abundance, and a large k will lead to a very fragmented graph and low contiguity. Thus there is a trade-off
in k-mer size that affects high and low frequency species differently. The solution employed by MetaHipMer
and other assemblers is to iterate through repeated contig constructions, with increasing values of k10,11,34. Each
iteration (for a given value of k), produces a set of contigs that is then used in the next iteration to add k-mers
(the contigs are treated as error-free reads). This iterative process is shown in Fig. 7 (reproduced from Georganas
et al.8). In this way, low abundance species are assembled in the early iterations, and more repeats are resolved
in the later iterations.

There are multiple steps within each contig generation iteration. First, in k-mer analysis (step 1 in Fig. 7),
overlapping k-mers are extracted from reads, and only those occurring more than once are retained to filter out
sequencing errors. In addition, all possible extensions (single nucleotides) on either side of a k-mer are recorded,
provided they are high quality, i.e. they occur at least twice and are of sufficient sequencing quality (as reported
by the read quality scores). In MetaHipMer, we use a parallel implementation of k-mer analysis in UPC++ (this
is a new implementation, not previously described). Each rank processes a subset of the reads and splits them
into k-mers, which are then stored, via remote procedure call (RPC) updates, in a global hash table. Each rank
can then access its local portion of the global hash table to count the k-mers independently, and discard those
that are infrequent and hence likely errors. Because this approach filters out errors MetaHipMer does not require
preprocessing to remove errors from reads (which is often a computationally expensive operation). Similar to the
MPI implementation described in HipMer37,38, the k-mer analysis also uses distributed Bloom filters to reduce
the memory explosion that is induced by erroneous k-mers.

In the second step (2 in Fig. 7), contigs are formed by traversing the de Bruijn graph of k-mers, which is rep-
resented as a distributed hash table. During a traversal, MetaHipMer uses the count of an extension to determine
whether to extend the contig or abort the traversal. If an extension is the only one with a count that exceeds a
threshold, thq , then it is chosen. If no extension count exceeds the threshold, there is a deadend in the graph,

9

Vol.:(0123456789)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports/

whereas if multiple extension counts exceed the threshold then there is a fork (the dashed lines in (a) in Fig. 7).
Because metagenomes consist of many different sampling abundances, the threshold is adaptive, and depends
on the frequency of the k-mer being extended: the higher the frequency, the higher the threshold. An adaptive
threshold allows the assembly of both high and low coverage genomes, without the fragmentation that would
result from a static value for thq.

Several additional steps are executed in an iteration to improve the quality of the contigs (steps 3 to 6 in Fig. 7).
In step 3, short alternative sequences with the same start and end k-mers (bubbles) are merged and short dead-end
forked sequences (hairs) are removed. Next, in iterative graph pruning (step 4), contigs on forks that differ from
the depth of neighboring contigs are treated as errors and the connections are removed. Finally, in steps 5 and 6,
the reads are aligned to the end of contigs and used to extend the contigs through localized assemblies, without
the forks caused by global k-mer analysis39. All these refinements are parallelized by leveraging distributed graphs
(implemented as distributed hash tables in UPC).

Finally, in step 7, the contigs produced in iteration i are used to generate a new set of longer (k + s)-mers
(where s is the size of the increase in k in the next iteration). The contigs are treated as long error free reads and
the longer (k + s)-mers are extracted from them, and added to the set used in the next iteration. Each of these
added (k + s)-mers will have unique extensions on both sides.

Scaffolding. The contigs that are produced by the iterative contig generation are joined together to form
longer contigs (scaffolds) during a final scaffolding phase. The scaffolding algorithms described here are imple-
mented in the cgraph module, which is a new development since the previous description of MetaHipMer8. The
first step in scaffolding is to align the reads to the contigs, and use the resulting information to determine which
contigs can connect together. The contigs and their connections form a contig graph, where the vertices are con-
tigs and the edges are links between the contigs determined from the alignments. The edges can be derived both
from single reads that overlap two contigs (a splint) or from a pair of reads, where one side of the pair aligns to
one contig, and the other side to a second contig (a span). The scaffolding phase first builds the contig graph, and
then traverses it to determine the paths that form scaffolds, which are contigs linked together with possible gaps
between them. A final pass fills the gaps where possible using the reads that formed the edges.

The contig graph traversal follows an approach similar to that used by ExSPAnder40. When a traversal encoun-
ters a fork, it does a search of all possible paths out from that fork, up to a certain depth, looking for a unique
contig (vertex) with a similar depth to the overall walk depth. If a unique contig is found, then the traversal
will choose the appropriate edge out of the fork; otherwise the traversal terminates. Thus the traversal ends up
connecting contigs of similar depth to form a longer path, and can span high-depth regions. There are several
additional refinements that can further resolve forks when the depths are similar, for example, choosing much
longer alignments, or choosing much better supported edges (where support is the number of reads that confirm
an edge).

UPC++ is used to parallelize the graph traversal. First, two distributed hash tables are built, one storing the
vertices and the other the edges. Once built, each process then iterates through its local portion of the vertices,

!

"

#

$

%

k-mer analysis

de Bruijn graph traversal

bubble merging & hair removal

iterative graph pruning

local assembly

bubble

hair

reads to contigs alignment

&

iterate for k=k+s

extract (k+s)-mers
from contigs

Reads

7

8
!"#$"%&'!"#(

(a)

(b)

(c)

(d)

(e)

Figure 7. Iterative contig generation workflow in MetaHipMer. Image source: Georganas et al.8. Reproduced
under a CC BY 4.0 open access license by permission of E. Georganas.

10

Vol:.(1234567890)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports/

starting a traversal from each one in turn, from the longest contig to the shortest (because longer contigs are
more likely to have accurate depth and low error). Because the search for the next edge out of a fork is limited
and depends on the depth of the starting vertex in the traversal, a vertex could end up being included in multiple
different paths, started by different ranks. MetaHipMer resolves these conflicts with a speculative approach: each
rank builds its own set of paths independently, and then discards paths than include a vertex that is included
in another, longer path. This can result in vertices than are not included in any paths, so the process is repeated
until no more starting vertices are available (they are all included in longer paths).

Finally, the whole process of aligning reads to contigs, building a contig graph, and traversing it to find longer
contigs, can be repeated multiple times. Each repeat tends to increase the contiguity of the assembly, at a cost of
an increase in errors. This presents a trade-off that the user can tune to achieve results that suit their goals. By
default, the scaffolding is repeated twice.

Data availability
The datasets supporting the conclusions of this article are described in Table 1 in the Supplementary information,
with details about how to obtain every dataset.

MetaHipMer is available for public use under an open source license, and can be downloaded from https://
sourc eforge. net/ proje cts/ hipmer.

Received: 13 February 2020; Accepted: 5 June 2020

References
 1. Howe, A. C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Nat. Acad. Sci.111, 4904–4909.

https:// doi. org/ 10. 1073/ pnas. 14025 64111 (2014).
 2. Scholz, M., Lo, C.-C. & Chain, P. S. G. Improved assemblies using a source-agnostic pipeline for MetaGenomic Assembly by

Merging (MeGAMerge) of contigs. Sci. Rep.4, 6480. https:// doi. org/ 10. 1038/ srep0 6480 (2014).
 3. Deng, X. et al. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-

generation sequencing data. Nucleic Acids Res.43, e46 (2015).
 4. Royalty, T.M. & Steen, A.D. Simulation-based approaches to characterize the effect of sequencing depth on the quantity and quality

of metagenome-assembled genomes. bioRxiv 356840 (2018).
 5. Rodriguez-R, L. M. et al. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems3, e00039. https://

doi. org/ 10. 1128/ mSyst ems. 00039- 18 (2018).
 6. Wendl, M. C., Kota, K., Weinstock, G. M. & Mitreva, M. Coverage theories for metagenomic DNA sequencing based on a gener-

alization of Stevens theorem. J. Math Biol.67, 1141–1161 (2013).
 7. Stanhope, S. A. Occupancy modeling, maximum contig size probabilities and designing metagenomics experiments. PLoS ONE5,

e11652. https:// doi. org/ 10. 1371/ journ al. pone. 00116 52 (2010).
 8. Georganas, E. et al. Extreme scale de novo metagenome assembly. in SC18: International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, 122–134 (IEEE, 2018).
 9. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. drep: a tool for fast and accurate genomic comparisons that enables improved

genome recovery from metagenomes through de-replication. ISME J.11, 2864–2868. https:// doi. org/ 10. 1038/ ismej. 2017. 126 (2017).
 10. Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community

practices. Methods (San Diego, Calif.)102, 3–11 (2016).
 11. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res.27,

824–834. https:// doi. org/ 10. 1101/ gr. 213959. 116 (2017).
 12. NERSC. Nersc cori system (2019).
 13. Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics32, 1088–1090.

https:// doi. org/ 10. 1093/ bioin forma tics/ btv697 (2015).
 14. Klemetsen, T. et al. The MAR databases: development and implementation of databases specific for marine metagenomics. Nucleic

Acids Res.46, D692–D699 (2017) https:// doi. org/ 10. 1093/ nar/ gkx10 36. https:// acade mic. oup. com/ nar/ artic le- pdf/ 46/ D1/ D692/
23162 110/ gkx10 36. pdf.

 15. Kang, D. et al. Metabat 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assem-
blies. PeerJ Preprints7, e27522v1 (2019).

 16. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. Checkm: assessing the quality of microbial genomes
recovered from isolates, single cells, and metagenomes. Genome Res.25, 1043–1055 (2015).

 17. MetaBAT. Metabat r tool (2017).
 18. Bowers, R. M. et al. Minimum information about a single amplified genome (misag) and a metagenome-assembled genome

(mimag) of bacteria and archaea. Nat. Biotechnol.35, 725 (2017).
 19. Wang, Z., Wang, Y., Fuhrman, J. A., Sun, F. & Zhu, S. Assessment of metagenomic assemblers based on hybrid reads of real and

simulated metagenomic sequences. Briefings Bioinform.https:// doi. org/ 10. 1093/ bib/ bbz025 (2019).
 20. Fritz, A. et al. Camisim: simulating metagenomes and microbial communities. Microbiome7, 17–17, (2019). https:// doi. org/ 10.

1186/ s40168- 019- 0633-6arXiv: 30736 849 [pmid].
 21. Sczyrba, A. et al. Critical assessment of metagenome interpretation-a benchmark of metagenomics software. Nat. Methods486,

207. https:// doi. org/ 10. 1038/ nmeth. 4458 (2017).
 22. Bushnell, B. Bbmap (2019).
 23. Mavromatis, K. et al. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat. Methods4,

495–500. https:// doi. org/ 10. 1038/ nmeth 1043 (2007).
 24. Aguirre de Cárcer, D., Angly, F. & Alcami, A. Evaluation of viral genome assembly and diversity estimation in deep metagenomes.

BMC Genom.15, 989. https:// doi. org/ 10. 1186/ 1471- 2164- 15- 989 (2014).
 25. Vollmers, J., Wiegand, S. & Kaster, A.-K. Comparing and evaluating metagenome assembly tools from a microbiologist’s perspec-

tive-not only size matters! PloS ONE12, e0169662 (2017).
 26. Sczyrba, A. et al. Critical assessment of metagenome interpretation-a benchmark of metagenomics software. Nat. Methods14, 1063

(2017).
 27. Singer, E. et al. Next generation sequencing data of a defined microbial mock community. Sci. Data3, 160081 (2016).
 28. Seemann, T. barrnap 0.9 : rapid ribosomal rna prediction.https:// github. com/ tseem ann/ barrn ap (2013).
 29. Microsoft. Microsoft azure: Cloud computing services (2019).

https://sourceforge.net/projects/hipmer
https://sourceforge.net/projects/hipmer
https://doi.org/10.1073/pnas.1402564111
https://doi.org/10.1038/srep06480
https://doi.org/10.1128/mSystems.00039-18
https://doi.org/10.1128/mSystems.00039-18
https://doi.org/10.1371/journal.pone.0011652
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1093/bioinformatics/btv697
https://doi.org/10.1093/nar/gkx1036
https://academic.oup.com/nar/article-pdf/46/D1/D692/23162110/gkx1036.pdf
https://academic.oup.com/nar/article-pdf/46/D1/D692/23162110/gkx1036.pdf
https://doi.org/10.1093/bib/bbz025
https://doi.org/10.1186/s40168-019-0633-6
https://doi.org/10.1186/s40168-019-0633-6
http://arxiv.org/abs/30736849
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1038/nmeth1043
https://doi.org/10.1186/1471-2164-15-989
https://github.com/tseemann/barrnap

11

Vol.:(0123456789)

Scientific Reports | (2020) 10:10689 | https://doi.org/10.1038/s41598-020-67416-5

www.nature.com/scientificreports/

 30. JGI SRA. Wetland surface sediment feb2011, various sites. Sequence Read Archive: SRR1182407, SRR1184661, SRR403474,
SRR404111, SRR404117, SRR404119, SRR404151, SRR404204, SRR407529, SRR407548, SRR407549, SRR410821, SRR437909,
SRR5198900, SRR5198901, SRR5198902, SRR5198903, SRR5246785, SRR5246787, SRR5246790, SRR5246791, SRR6203186 (2011).

 31. Hess, M. et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science331, 463–467 (2011).
 32. Buckley, D. Microbes that impact the soil carbon cycle (2018).
 33. Georganas, E. Scalable Parallel Algorithms for Genome Analysis. Ph.D. thesis, EECS Department, University of California, Berkeley

(2016).
 34. Peng, Y., Leung, H. C., Yiu, S.-M. & Chin, F. Y. Idba-ud: a de novo assembler for single-cell and metagenomic sequencing data

with highly uneven depth. Bioinformatics28, 1420–1428 (2012).
 35. El-Ghazawi, T., Carlson, W., Sterling, T. & Yelick, K. UPC: distributed shared memory programming Vol. 40 (Wiley, New York,

2005).
 36. Bachan, J. et al. UPC++: A high-performance communication framework for asynchronous computation. In 2019 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS), 963–973 (IEEE, 2019).
 37. Georganas, E. et al. Hipmer: an extreme-scale de novo genome assembler. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, 14 (ACM, 2015).
 38. Georganas, E. et al. Parallel de bruijn graph construction and traversal for de novo genome assembly. In SC’14: Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis, 437–448 (IEEE, 2014).
 39. Georganas, E. et al. meraligner: A fully parallel sequence aligner. In 2015 IEEE International Parallel and Distributed Processing

Symposium, 561–570 (2015).
 40. Prjibelski, A. D. et al. ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics30, i293–i301. https://

doi. org/ 10. 1093/ bioin forma tics/ btu266 (2014).

Acknowledgements
Authors from Lawrence Berkeley National Laboratory were supported by the Applied Mathematics and Com-
puter Science Programs of the DOE Office of Advanced Scientific Computing Research and the DOE Office
of Biological and Environmental Research under contract number DE-AC02-05CH11231. This research used
resources of the National Energy Research Scientific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work conducted by
the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under
Contract No. DE-AC02-05CH11231.

Author contributions
S.H. wrote most of the paper with sections written by A.C.C. and E.G. S.H. and S.R. conceived the study. S.H.,
S.R., and E.E.F. edited the manuscript. The MetaHipMer software was written by E.G., S.H., R.E., A.B., and E.G.
S.H, R.R., A.C., and R.E. carried out the experiments and analysis. A.C. and A.C.C. provided datasets and help
with analysis and interpretation of results. The original algorithms behind parts of the software were developed
by D.R. The project was devised and coordinated by K.Y. and L.O. All authors read and approved the final
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https:// doi. org/ 10. 1038/ s41598- 020- 67416-5.

Correspondence and requests for materials should be addressed to S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection
may apply 2020

https://doi.org/10.1093/bioinformatics/btu266
https://doi.org/10.1093/bioinformatics/btu266
https://doi.org/10.1038/s41598-020-67416-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Terabase-scale metagenome coassembly with MetaHipMer
	Results
	Comparing coassembly to multiassembly.
	Quality comparisons.
	Datasets.
	Assembly quality evaluation.
	Assembler running times.

	New terabase-scale assemblies.

	Discussion
	Conclusions
	Methods
	Iterative contig generation.
	Scaffolding.

	Data availability
	References
	Acknowledgements

