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Why Use Performance Models or Tools?
§ Identify performance bottlenecks
§ Motivate software optimizations
§ Determine when we’re done optimizing

• Assess performance relative to machine capabilities
• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures
• Sets realistic expectations on performance for future procurements
• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 

computational needs of today’s applications.
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Performance Models / Simulators
§ Historically, many performance models and simulators tracked latencies 

to predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ Effectively latency hiding has resulted in a shift from a latency-limited 
computing regime to a throughput-limited computing regime
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Roofline Model
§ The Roofline Model is a throughput-

oriented performance model…
• Tracks rates not times
• Augmented with Little’s Law

(concurrency = latency*bandwidth) 
• Independent of ISA and architecture

(applies to CPUs, GPUs, Google TPUs1, etc…)

§ Three Components:
• Machine Characterization

(realistic performance potential of the system)
• Application Execution Monitoring
• Theoretical Application Bounds

(how well could my app perform with perfect 
compilers, caches, overlap, …)

51Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline



(DRAM) Roofline
§ One could hope to always attain peak 

performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Consider idealized processor/caches
§ Plot the performance bound using 

Arithmetic Intensity (AI) as the x-axis…
• AI = Flops / Bytes presented to DRAM 
• Attainable Flop/s = min( peak Flop/s,  AI * peak GB/s ) 
• Log-log scale makes it easy to doodle, extrapolate 

performance along Moore’s Law, etc…
• Kernels with AI less than machine balance are ultimately 

DRAM bound (we’ll refine this later…)
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Roofline Example #1
§ Typical machine balance is 5-10 

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound
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TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

0.083



Roofline Example #2
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate
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Gflop/s ≤ AI * DRAM GB/s

TRIAD

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

Arithmetic Intensity (Flop:Byte)
0.083 0.44



Hierarchical Roofline
§ Real processors have multiple levels of 

memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications can have locality in each 
level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique 

bandwidth
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DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW 

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Data, Instruction, Thread-Level Parallelism…
§ We have assumed one can attain 

peak flops with high locality.
§ In reality, this is premised on 

sufficient…
• Use special instructions (e.g. fused multiply-add)
• Vectorization (16 flops per instruction)
• unrolling, out-of-order execution (hide FPU latency)
• OpenMP across multiple cores

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from memory-bound to 

compute-bound
• n.b. in reality, DRAM bandwidth is often tied to DLP and 

TLP (single core can’t saturate BW w/scalar code)
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Initial LBL/NERSC 
Roofline Efforts



Initial LBL Roofline Efforts / Goals

1.Node Characterization

2.Application Instrumentation/Characterization

3.Using Roofline to drive application performance analysis 
and optimization for KNL.
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Node Characterization?
§ “Marketing Numbers” can be 

deceptive…
• TurboMode / Underclock for AVX
• Pin BW vs. real bandwidth
• compiler failings on high-AI loops.

17
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical 
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems
• Peak Flop rates
• Bandwidths for each level of memory
• MPI+OpenMP/CUDA == multiple GPUs
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Instrumentation with Performance Counters?
§ Characterizing applications with performance counters can be 

problematic…
✘ Flop Counters can be broken/missing in production processors
✘ Vectorization/Masking can complicate counting Flop’s
✘ Counting Loads and Stores doesn’t capture cache reuse while counting 

cache misses doesn’t account for prefetchers.
✘ DRAM counters (Uncore PMU) might be accurate, but…

• are privileged and thus nominally inaccessible in user mode
• may need vendor (e.g. Cray) and center (e.g. NERSC) approved 

OS/kernel changes
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Forced to Cobble Together Tools…
§ Use tools known/observed to work on NERSC’s 

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation + 

emulation) to create software Flop counters
• Used Intel VTune performance tool (NERSC/Cray 

approved) to access uncore counters
Ø Accurate measurement of Flop’s (HSW) and 

DRAM data movement (HSW and KNL)
Ø Used by NESAP (NERSC KNL application 

readiness project) to characterize apps on Cori…
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http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)



Initial Roofline Analysis of NESAP Codes
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Evaluation of LIKWID
§ LIKWID provides easy to use wrappers 

for measuring performance counters…
ü Works on NERSC production systems
ü Minimal overhead (<1%)
ü Scalable in distributed memory (MPI-friendly)
ü Fast, high-level characterization
✘ No detailed timing breakdown or optimization advice
✘ Limited by quality of hardware performance counter 

implementation (garbage in/garbage out)

Ø Useful tool that complements other 
tools
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Need an integrated solution…
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§ LIKWID was…
✓ fast and easy to use
✘ Suffered from the same limitations as VTune/SDE

§ ERT…
✓ Characterized flops, and bandwidths (cache, DRAM)
✓ Interoperable with MPI, OpenMP, and CUDA
✘ Required users to manually parse/incorporate the output

§ Having to compose VTune, SDE, and plotting tools…
✓ worked correctly and benefited NESAP’s application readiness
✘ forced users to learn/run multiple tools and manually parse/graph the output
✘ forced users to instrument routines of interest in their application
✘ lacked integration with compiler/debugger/disassembly



Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each 
function (CARM)

ü Full AVX-512 integration that incorporates 
mask values

ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system 

(calculates ceilings)
ü Full integration with existing Advisor 

capabilities
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Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..

1Technology Preview, not in official product roadmap so far.
This version will be made available during the hands-on component of this tutorial.



Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline 
formulations in Advisor



There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009 
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel
• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)
• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI
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§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor
• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor
Ø You will be allowed to explore both in the hand—on component of this tutorial

1Technology Preview, not in official product roadmap so far.
This version will be made available during the hands-on component of this tutorial.
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Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1 
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by 
lower cache levels

§ Memory/Cache/Locality effects are 
observed as decreased performance

§ Memory/Cache/Locality effects are 
observed as decreased AI

§ Requires static analysis or binary 
instrumentation to measure AI

§ Requires performance counters or 
cache simulator to correctly measure AI



Example: STREAM
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with 

iteration i+delta for any delta. 

§ … leads to a DRAM AI equal to 
the L1 AI



Example: STREAM
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Cache-Aware RooflineHierarchical Roofline
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AIDRAM * DRAM GB/s



Example: 7-point Stencil (Small Problem)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the 

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than 
the L1 AI



Example: 7-point Stencil (Small Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Small Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Large Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Observed Perf.)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Observed Perf.)
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Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)
0.11

Single AI based on flop:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)



Questions?


