= BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction to the
Roofline Model

Samuel Williams

Computational Research Division
Lawrence Berkeley National Lab

S

™ BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

S5 U.S. DEPARTMENT OF

5}” saas i)
.2/ENERGY

Acknowledgements

» This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

» This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

= This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

= This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

Why Use Performance Models or Tools?

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

* Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

= A
3 P L

BERKELEY LAB

Performance Models /| Simulators

= Historically, many performance models and simulators tracked latencies
to predict performance (i.e. counting cycles)

= The last two decades saw a number of latency-hiding techniques...

e Qut-of-order execution (hardware discovers parallelism to hide latency)
« HW stream prefetching (hardware speculatively loads data)
« Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

= Effectively latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

_— A
, Y

BERKELEY LAB

Roofline Model

o0 e < D =0 & crd.Ibl.gov ¢ i) g [

* The Roofline Model is a throughput-
oriented performance model...

. CRi _ .
 Tracks rates not times D e
Performance and Algorithms Research

f?"o‘ U.S. DEPARTMENT OF
\8/ENERGY

BERKELEY LAB | |

e COMPUTATIONAL RESEARCH

 Augmented with Little’s Law
anp oance - Roofline Performance Model

ALGORITHMS

—_— * :
(CO n C u rre n Cy - I ate n Cy b a n d WI d t h) RESEARCH Roo!line is a visually intuitive performance model ufed to bound the performance of various numerical methods and operations running on
R

or p Rather than simply using percent-of-peak estimates, the model can be used to
assess the quality of attained performance by combining locality, i and different izati i into a single

* Independent of ISA and architecture . v

Arithmetic Intensity
GGGGG The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to

H 1 Roofline total data movement (bytes). A BLAS-1 vector-vector it it (x[i]+=y[i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
(applies to CPUs, GPUs, Google TPUs', etc...) T e

versely, FFT's perform 5*N*logN flops for a N-point double complex

000000 transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's

Previous Projects would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would
limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have

* Three Components: G

Facebook 0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
A A A

« Machine Characterization G

(realistic performance potential of the system) o2,

Stencils (PDEs)

Lattice Boltzmann
Methods (BLAS3)

* Application Execution Monitoring R— o ow

 Theoretical Application Bounds -
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

(how well could my app perform with perfect
.. Compilers,CaCheS’Overlap’...)

A
I

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017. 5 r:}l
BERKELEY LAB

(DRAM) Roofline

= One could hope to always attain peak

performance (Flop/s) !
= However, finite locality (reuse) and Peak Flop/s 5 / |
bandwidth limit performance. P |
Q |
= Consider idealized processor/caches i |
Qo |
= Plot the performance bound using 3 |
Arithmetic Intensity (Al) as the x-axis... § i
Al = Flops / Bytes presented to DRAM Memory-bound E Compute-bound
Attainable Flop/s = min(peak Flop/s, Al * peak GBI/s) E ! :
Log-log scale makes it easy to doodle, extrapolate : : : : >
per?orn?ance along Moore’s)Il_aw, etc... P Arithmetic Intensity (Flop:Byte)
Kernels with Al less than machine balance are ultimately
DRAM bound (we'll refine this later...)
6 i

BERKELEY LAB

Roofline Example #1

= Typical machine balance is 5-10

flops per byte...
« 40-80 flops per double to exploit compute capability Peak Flop/s
« Artifact of technology and money "
 Unlikely to improve é‘
T
Q@
N®)
s
= Consider STREAM Triad... 5 Gflop/s < Al * DRAM GB/s
#pragma omp parallel for
for(i=0;i<N;i++){
z[i] = X[i] + alpha*Y[i];
: >
. _ 0.083
- 2 flops per iteration Arithmetic Intensity (Flop:Byte)

« Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
« Al =0.083 flops per byte == Memory bound

_— A

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant

coefficient stencil...
« 7 flops Peak Flop/s
« 8 memory references (7 reads, 1 store) per point "
« Cache can filter all but 1 read and 1 write per point E—
« Al =0.44 flops per byte == memory bound, E | Gtiop/s <Al * DRAM GB/s
but 5x the flop rate 'cgs :
#pragma omp parallel for E§ :
for(k=1; k<dim+1;k++){ b | 7-D0i
fg:(jzl;j<d}m+1;j++){ < | 4 pCNnt
for(i=1;i<dim+l;i++){ ! Stencil
int ijk = 1 + j*jStride + k*kStride; I
new[ijk] = -6.0%oTd[ijk] .
old[ijk-1] : >
Td[1jk+1]
g1d[1’3!ktj5tr1'de] 0.083 0.44
old[ijk+jstride] Arithmetic Intensity (Flop:Byte)

old[ijk-kstride]
old[ijk+ksStride];

— A

BERKELEY LAB

Hierarchical Roofline

= Real processors have multiple levels of
memory
 Registers
« L1,L2, L3 cache
« MCDRAM/HBM (KNL/GPU device memory)
 DDR (main memory)
NVRAM (non-volatile memory)

= Applications can have locality in each
level

= Unique data movements imply unique Al’'s

= Moreover, each level will have a unique
bandwidth

= A
; P L

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...
= Measure a bandwidth

= Measure Al for each level of memory @
« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... %
DRAM) .. -% DDR Bound
= DDR AI"BW <
. ... performance is bound by the < MICORAM AI'BW
minimum

- A
10 r:ml ""|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...
= Measure a bandwidth

= Measure Al for each level of memory @

« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... %
DRAM)... g

+ ... performance is bound by the <
minimum DDR bottleneck

pulls performance
below MCDRAM
Roofline

etic Intensity (Flop:Byte)

- A
11 r:r>| ‘"'|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of

Rooflines... I
= Measure a bandwidth
= Measure Al for each level of memory @
« Although an loop nest may have multiple i

Al's and multiple bounds (flops, L1, L2, ... % VICDRAM bound

DRAM)... s ODRANBW
+ ... performance is bound by the <

minimum

Arithmetic Intensity (Flop:Byte) g
12 oryf

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of

. i
Rooflines...
= Measure a bandwidth Peak Flop/s
= Measure Al for each level of memory @
« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... %
DRAM)... g
+ ... performance is bound by the < bottloneck pulls
minimum performance below
DDR Roofline
Arithmetic Intensity (Flop:Byte

= A
13 rr/r>| "“|

BERKELEY LAB

Data, Instruction, Thread-Level Parallelism...

= \We have assumed one can attain
peak flops with high locality.

= |n reality, this is premised on Peak Flop/s
P No FMA
sufficient... sl
Use special instructions (e.g. fused multiply-add) %
Vectorization (16 flops per instruction) ®
k=
unrolling, out-of-order execution (hide FPU latency) g No vectorizatj Lack of DLP pulls
OpenMP across multiple cores performance
below DDR

= Without these, .

Peak performance is not attainable

Roofline

Arithmetic Intensity (Flop:Byte)

Some kernels can transition from memory-bound to
compute-bound

n.b. in reality DRAM bandwidth is often tied to DLP and

= A
14 rr/r>| "“|

BERKELEY LAB

= A
rrrrrrr " BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Initial LBL/NERSC
Roofline Efforts

Initial LBL Roofline Efforts / Goals

1.Node Characterization
2.Application Instrumentation/Characterization

3.Using Roofline to drive application performance analysis
and optimization for KNL.

16

Node Characterization?

Cori/ KNL

= “Marketing Numbers” can be

deceptive... o S

e TurboMode / Underclock for AVX

+ Pin BW vs. real bandwidth o | SUMmitDev / 4GPUSs

« compiler failings on high-Al loops. s Bl o tss kbhum)
= |BL developed the Empirical

Roofline Toolkit (ERT)... &

« Characterize CPU/GPU systems

 Peak Flop rates

« Bandwidths for each level of memory o

« MPI+OpenMP/CUDA == multiple GPUs

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

= A
7 Py

BERKELEY LAB

Instrumentation with Performance Counters?

= Characterizing applications with performance counters can be
problematic...

X Flop Counters can be broken/missing in production processors
X Vectorization/Masking can complicate counting Flop’s

X Counting Loads and Stores doesn’t capture cache reuse while counting
cache misses doesn’t account for prefetchers.

X DRAM counters (Uncore PMU) might be accurate, but...
» are privileged and thus nominally inaccessible in user mode

* may need vendor (e.g. Cray) and center (e.g. NERSC) approved
OS/kernel changes

18

Forced to Cobble Together Tools...

= Use tools known/observed to work on NERSC's T —
Cori (KNL, HSW)...

 Used Intel SDE (Pin binary instrumentation + W MEASURING ARITHMETIC INTENSITY

» My NERSC
» Getting Started Arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the

L]
» Connecting to NERSC amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte
» Accounts & Allocations ratio (F/B). This note provides a for ing arithmetic intensity using Intel's Software Development
» Computational Systems Emulator Toolkit (SDE) and VTune Amplifier (VTune) tools. A tutorial on using SDE on Edison can be found here, and a tutorial

on using VTune can be found here. This method can also be used to determine arithmetic intensity for use in the Roofline
» Storage & File Systems

Performance Model.
» Application Performance

NESAP Historically, processor manufacturers have provided counters for FLOPs and/or Bytes and profiling tools to support the F/B
[] Application Porting and calculation. Some modern processors such as Intel's vy Bridge (used in Edison) and Haswell (used in Cori Phase 1) do not
Refm= provide counters for FLOPs. However, Intel's SDE can be used to count floating-point instructions in addition to core-level

nersc.gov

Login

Site Map | My NERSC | < Share

search...

Powering Scientific Discovery Since 1974

HOME ~ ABOUT SCIENCEATNERSC ~ SYSTEMS WUIL{NINM NEWSGPUBLICATIONS R&D EVENTS LIVESTATUS TIMELINE

Home » For Users » Application Performance » Measuring Arithmetic Intensity

IXPUG memory accesses, and VTune can be used to count data accesses to the uncore (off-chip DRAM DIMMs).
Performance and Debugging

Tools

‘The SDE dynamic instruction tracing capability, and in particular the mix histogram tool, captures dynamic instructions executed,

m_";'ﬂ Arithmetic instruction length, instruction category and ISA extension grouping. Intel has developed a methodology for calculating FLOPs
with SDE. In general the following uses the method *lInstructions to Count Unmasked FLOP" from Intel, which is applicable for
Data & Analytics

Edison and Cori Phase 1.

Job Logs & Statistics.
Training & Tutorials This application note provides additional instruction on how to only capture traces around certain key segments of a code. This is
Software critical for real applications as both SDE and VTune collect traces that can use large amounts of disk space if tracing is enabled for
) Policies more than a few minutes. And maybe more importantly, post-processing the traces can take an intractable amount of time.
ccurate measurement o Oop S dan e
NERSC Users Group An example command line for SDE is:
Help

Staff Blogs ! § srun -n 4 -c 6 sde -ivb -d -iform 1 -omix my_mix.out -i -global_region -start_ssc_mark 111:repeat -stop_ssc_mark 222:repeat -

DRAM data movement (HSW and KNL

o -ivb s used to target Edison's vy Bridge ISA (use -hsw for Cori's Haswell processors)

« -d specifies to only collect dynamic profile information

o -iform 1 turns on compute ISA iform mix

Used by NESAP (NERSC KNL a pplication et e
readiness project) to characterize apps on Cori...

An example command line for VTune is:

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL's Computational Research Division cerreed ||||
NESAP is NERSC’s KNL application readiness project 19

LBL is part of SUPER (DOE SciDAC3 Computer Science Institute) SERIEREVEAS

>

Initial Roofline Analysis of NESAP Codes
MFDn EMGeo PICSAR

10000 10000 10000
1000 1000 e==Roofline Model 1000
; £ «==Roofline Model £ = ewo/FMA
N S 100 = =wo/FMA S 100 i Original
L 5 - & 1RHS G A SELL
o 10 A 4RHS 10 o SB
N 1 . . - ¢ 8RHS . | M SELL4SB
0.01 0.1 1 10 0.1 1 10 © NRHS+SELL+SB
Arithmetic Intensity (FLOP/byte) Arithmetic Intensity (FLOP/byte)
10000 10000
1000 1000 e==Roofline Model
@ «==Roofline Model K = ewo/FMA < «==Roofline Model
— § 100 : == *wo/FMA § 100 - & Original § = *wo/FMA
2| © ¢ - i 1RHS G A SELL G A i Original
\¢ 10 A 4RHS 10 o sB 10 15 A w/Tiling
. | | ¢ 8RHS . | - 1 SELL+SB . | @ w/TilingsVect
0.01 0.1 1 10 0.1 1 10 © NRHS+SELL+SB 0.1 1 10
Arithmetic Intensity (FLOP/byte) Arithmetic Intensity (FLOP/byte) Arithmetic Intensity (FLOP/byte)

>

20 i

BERKELEY LAB

Evaluation of LIKWID

= LIKWID provides easy to use wrappers AR D lioation Charadterization
for measuring performance counters... o =
v Works on NERSC production systems - —Roofine |
v Minimal overhead (<1%) §256
v" Scalable in distributed memory (MPI-friendly) £ 128
v Fast, high-level characterization é 64
X No detailed timing breakdown or optimization advice @
X Limited by quality of hardware performance counter 16
implementation (garbage in/garbage out) o N
> Useful tool that complements other E§EEgiBF@
tools gg“v:>v§;;
r T § S o

https://github.com/RRZE-HPC/likwid .
21 il

BERKELEY LAB

Need an integrated solution...

= Having to compose VTune, SDE, and plotting tools...
v worked correctly and benefited NESAP’s application readiness
X forced users to learn/run multiple tools and manually parse/graph the output
X forced users to instrument routines of interest in their application
X lacked integration with compiler/debugger/disassembly

= LIKWID was...

v fast and easy to use
X Suffered from the same limitations as VTune/SDE

= ERT...

v/ Characterized flops, and bandwidths (cache, DRAM)
v Interoperable with MPI, OpenMP, and CUDA
... xRequ”'eduserStQmanua”yparse/mcgrpgratethegutput

— A
29 rr/r>| ‘"'|

BERKELEY LAB

Intel Advisor

* Includes Roofline Automation...
v Automatically instruments applications

(one dot per loop nest/function)

v" Computes FLOPS and Al for each
function (CARM)

v" Full AVX-512 integration that incorporates O] T

Welcome | €000 X Start Survey Analysis

l I IaS k Va I u eS Start Trip Counts and FLOP Analysis
(8] Eipsed tme: 5.805 gy eymyes
FILTER: E/ Start Memory Access Patterns Analysis Threads v]l Loads and stores v]

v Integrated Cache Simulator’ S o oo I~

B rcrformance (GFLOFs) - w, - ¥ , Use Single-Thre_aded Roofs? .
(hierarchical roofline / multiple Al’s) B e 0 0® o SHTgETEEEY
‘/ AUtomatlcaIIy benChmarkS target SyStem O%iw;.z; ;"‘;\\2;‘1 0.1 1 10 100 1000 10000 1.0e+5 1

(CaICUIateS Cel I | ngS) E_ Source ITop Down I Code Analytics | Assembly IvRecommendatlons & Why No Vectorization?

/ . . . L L Ll Address |Line Assembly Total Time % Self Time
Full integration with existing Advisor GRS 0x610760 ock 1 146079716
0x4107d0 492 pushq %rbp 0.020s 0.020s

0x4107d1 492 mov %rsp, %rbp 0.010s 0.010s

Ca pa bi | iti eS 0x4107d4 492 sub $0x210, %rsp

Technology Preview, not in official product roadmap so far. "
This version will be made available during the hands-on component of this tutorial. 23 ;ﬁ}l

A
I

BERKELEY LAB

= A
rrrrrrr " BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Hierarchical Roofline vs.
Cache-Aware Roofline

...understanding different Roofline
formulations in Advisor

There are two Major Roofline Formulations:

= Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, ...)...

Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
« Defines multiple bandwidth ceilings and multiple Al's per kernel

Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

= Cache-Aware Roofline

 llic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
« Defines multiple bandwidth ceilings, but uses a single Al (flop:L1 bytes)

 As one looses cache locality (capacity, conflict, ...) performance falls from one BW ceiling to a lower one at constant Al

= Why Does this matter?

« Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
« Cache-Aware Roofline model was integrated into production Intel Advisor

« Evaluation version of Hierarchical Roofline' (cache simulator) has also been integrated into Intel Advisor

> You will be allowed to explore both in the hand—on component of this tutorial

"Technology Preview, not in official product roadmap so far.

This version will be made available during the hands-on component of this tutorial. 0

= A
25 rjlml

BERKELEY LAB

Hierarchical Roofline

>
b
rrrrrrr ‘ |

Captures cache effects

Al is Flop:Bytes after being filtered by
lower cache levels

Multiple Arithmetic Intensities
(one per level of memory)

Al dependent on problem size
(capacity misses reduce Al)

Memory/Cache/Locality effects are
observed as decreased Al

Requires performance counters or
cache simulator to correctly measure Al

26

Cache-Aware Roofline

Captures cache effects

Al is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

Single Arithmetic Intensity

Al independent of problem size

Memory/Cache/Locality effects are
observed as decreased performance

Requires static analysis or binary
instrumentation to measure Al

BERKELEY LAB

Example: STREAM

= L1 Al... #pragma omp parallel for
for(i=0;i<N;i++){
. 21 JU=NE
OpPS z[1] = X[i] + alpha*Y[i]:

2 x 8B load (old) }
1 x 8B store (new)
= 0.08 flops per byte

= No cache reuse...

Iteration i doesn’t touch any data associated with
iteration i+delta for any delta.

= ... leads to a DRAM Al equal to
the L1 Al

e A
. Y

BERKELEY LAB

Example: STREAM

Hierarchical Roofline

,T

Peak Flop/s

Performa/nce IS bound to

the minimum of the two
/

Inte/rcepts. .

Al , *L1 GB/s

Alpram ¥ DRAM GB/s

Attainable Flop/s

«—— Multiple Al’s....

Arithmetic Intensity (Flop:Byte)

Cache-Aware Roofline

,T

Peak Flop/s

Attainable Flop/s

Obseryved performance
IS 9orrelated with DRAM
bandwidth

i 1) Flop:DRAM bytes +« Single Al based on flop:L1 bytes
| 2) Flop:L1 bytes (same)
I > 1 >

0.083 0.083

Arithmetic Intensity (Flop:Byte)

= A
28 r:}l "“|

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

O L_1 /\l_,_ #pragma omp parallel for
for(k=1;k<dim+1;k++) {
* [fiops for(j=1;j<diml; j++){
« 7 x8Bload (old) for(i=1;i<dim+1;i++){
. int 1jk = 1 + j*jStride + k*kStride;
1 x 86 store (new) new[ijk] = -6.0%01d[1 7k]
« =0.11 flops per byte old[ijk-1]
- some compilers may do register shuffles to reduce the old[1jk+1]
number of loads. old[1jk-Jjstride]
old[1jk+jStride]
= Moderate cache reuse... old[1jk-kstride]

old[1jk+kStride];

« oldijk] is reused on subsequent iterations of i,j,k

« old[ijk-1] is reused on subsequent iterations of i.
« old[ijk-jStride] is reused on subsequent iterations of j.

« old[ijk-kStride] is reused on subsequent iterations of k.

= ... leads to DRAM Al larger than
the L1 Al

-
29 :}l "“|

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

Hierarchical Roofline Cache-Aware Roofline
A A

Peak Flop/s Peak Flop/s

Berformance bound is
the minimum of the two

Attainable Flop/s
Attainable Flop/s

Multiple Al’s....

«— 1) flop:DRAM ~ 0.44
—— 2) flop:L1 ~0.11
0.11 0.44 g 0.11

Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

= A
30 rfr}l ""|

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak Flop/s Peak Flop/s

Observe/d performance
is between L1 and DRAM lines

Berformance bound is
/ .
some cache locality)

the minimum of the two

Attainable Flop/s
Attainable Flop/s

Multiple Al’s....

«— 1) flop:DRAM ~ 0.44
— 2) flop:L1 ~0.11
0.11 0.44

Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

>

- A
31 r:ml "“|

BERKELEY LAB

Example: 7-point Stencil (Large Problem)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak Flop/s Peak Flop/s

Observe/d performance
is closer to DRAM line

Capacity misses reduce 1&ss cache locality)

PRAM Al and performance

. Multiple Al’s....
'«—— 1) flop:DRAM ~ 0.20

: 2) flop:L1 ~ 0.11

. >
0.11 0.20

Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

Attainable Flop/s
Attainable Flop/s

- A
32 r:ml "“|

BERKELEY LAB

Example: 7-point Stencil (Observed Perf.)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak Flop/s Peak Flop/s

Observe/d performance
is closer to DRAM line
7 .
less cache locality)

Actual observed performance

£ . o is tied to the bottlenecked resource
. and can be well below a cache

i Roofline (e.g. L1).

Attainable Flop/s
Attainable Flop/s

0.11 0.20

- A
33 r:ml "“|

BERKELEY LAB

Example: 7-point Stencil (Observed Perf.)

Hierarchical Roofline Cache-Aware Roofline
A A

Peak Flop/s Peak Flop/s
2 : 2
r3 . S
O : O
L : L
= : = Observegd/performance
T : © is clogef to DRAM line
© . Actual observed performance T less cache locality)
< ./ is tied to the bottlenecked resource <

(_______
. and can be well below a cache
> i Roofline (e.g. L1). '« Single Al based on flop:L1 bytes
O . > >
0.11 0.20
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

= A
34 rr/r>| ""|

BERKELEY LAB

S

rereereer

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

" BERKELEY LAB (%) ENERGY

&

74’"{5“@

Questions?

