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Abstract—
This paper reports our efforts on refactoring and optimizing

the Community Atmosphere Model (CAM) on the Sunway
TaihuLight supercomputer, which uses a many-core processor
that consists of management processing elements (MPEs) and
clusters of computing processing elements (CPEs). To map
the large code base of CAM to the millions of cores on the
Sunway system, we take OpenACC-based refactoring as the
major approach, and apply source-to-source translator tools to
exploit the most suitable parallelism for the CPE cluster, and
to fit the intermediate variable into the limited on-chip fast
buffer. For individual kernels, when comparing the original
ported version using only MPEs and the refactored version
using both the MPE and CPE clusters, we achieve up to
22x speedup for the compute-intensive kernels. For the 25km
resolution CAM global model, we manage to scale to 24,000
MPEs, and 1,536,000 CPEs, and achieve a simulation speed of
2.81 model years per day.

Keywords-atmospheric modeling, many-core, optimization,
tool, OpenACC

I. INTRODUCTION

Ever since the first generation of supercomputer systems
(CDC 6600, Cray-I, etc.), the atmospheric models have been
among the major users of computing resources [1], and
evolved with the development of supercomputer systems.
In the early years, the vector machines, such as the Cray
systems (Cray 1, Cray X-MP, Cray Y-MP, etc.), and the
famous Japanese earth simulator [2], have been the major
computation platform for weather and climate modelers.
Then, from the year of 2000 or so, Intel, IBM, and SGI
clusters emerged as the replacements of the traditional vector
machines, and also made the transition of the atmospheric
modeling programs to the style of MPI programs. Along this
transition process, with the increase of cores within each pro-
cessor, we see the introduction of the hybrid parallelization

scheme that combines MPI and OpenMP.
In the recent decade, again, we see the transition of

supercomputers from homogeneous systems with only multi-
core CPU processors to heterogeneous systems with both
CPUs and many-core accelerators [3], [4]. This architectural
transition, again, brings significant changes to existing high-
performance computing software in various application do-
mains, such as geophysics exploration, sky simulation, and
phase-field simulation.

Unlike the above application domains that have made a
quick adaptation to the many-core accelerators, the transition
of the weather and climate models has been relatively slow.
One big reason is the millions lines of legacy code that
have been written for multi-core CPUs rather than many-
core accelerators. As a result, most existing efforts either
focus on standalone physics schemes ( [5], [6]), or focus on
the dynamic core part ( [7], [8]).

In contrast, complete porting projects of entire models
onto heterogeneous supercomputers are still few to be seen.
Typical examples include the GPU-based acceleration of
a next-generation high resolution meso-scale atmospheric
model being developed by the Japan Meteorological Agency
(JMA) [9], and complete porting of the Princeton Ocean
Model (POM) onto GPU devices [10], both of which take
a manual rewriting of the code into CUDA. Only in newly-
developed climate or weather models, such as NIM [11]
and COSMO [12], we see careful considerations for het-
erogeneous systems, and support for multiple architectures
including CPU, GPU, and MIC.

In general, while the weather and climate models are
calling for more computing power to support higher res-
olution and more complex physics [13], there is still a gap
between the increasing demand and the increasing supply in
the form of many-core accelerators. To fill the gap between
the demand and the supply, in our work, we perform an
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extensive refactor and optimization of the CAM atmospheric
model, for the Sunway TaihuLight Supercomputer, equipped
with many-core processors that consists of Management
Processing Elements (MPEs) and clusters of Computing
Processing Elements (CPEs). We pick CAM [14] as the
our target application, as it is one of the most widely used
advanced atmospheric model in the world. Note that, to
achieve a high scalability over the Sunway system with
millions of cores, we select to use the SE dynamic core
of CAM [15], and the other dynamic core options are not
considered in this work.

We use the Sunway OpenACC compiler (a customized
version that expands from the OpenACC 2.0 standard) as the
major tool to achieve a suitable mapping of CAM onto the
new Sunway heterogeneous many-core processors. Due to
large code base developed over the last few decades, and the
general demand from climate scientists to maintain a same
source, we try to minimize the manual refactoring efforts
(to only the dynamic core part), and mainly rely on the
source-to-source translation tools to achieve an automated
and efficient porting. Besides, compared with GPU and other
many-core accelerators, both the on-chip fast buffer and the
available memory bandwidth of the Sunway processor are
relatively limited (detailed in Section III), which make our
porting significantly more challenging. A large part of our
tools and optimization strategies would focus on minimizing
the memory footprints.

Our major contributions are as follows:
• Through a careful refactor of the SE dynamic core,

we manage to combine the distributed loops in the
major computational functions into aggregated multi-
level loops, and expose a suitable level of both paral-
lelism and variable storage space for the CPE cluster
architecture.

• For the physics parts, which includes numerous mod-
ules with different code styles by different scientists,
we design a loop transformation tool to identify and
expose the most suitable level of loop body for the
parallelization on the CPE cluster. In addition, we
also design a memory footprint analysis and reduction
tool, and a number of customized Sunway OpenACC
features, to fit the frequently-accessed variables into the
local fast buffer of the CPE.

• Comparing the refactored hybrid version using both
MPE and the CPE cluster against the ported version
using only MPE, we can achieve up to 22x speedup
for compute-intensive kernels, and 2x to 7x speedup
for kernels involving both computation and memory
operations. For the entire CAM model, we achieve a
performance improvement of around 2x.

• We manage to scale the refactored CAM model to
24,000 MPEs, and 1,536,000 CPEs, and achieve a
simulation speed of 2.81 modeling years per day for
the 25km resolution.

While the speedup is not significant, it provides an im-
portant base for us to continue tuning the performance of
large and complicated scientific programs, such as CAM.

II. RELATED WORK

When compared with other HPC application domains, the
porting of the climate models onto many-core architectures
has been relatively slow. Most early-stage efforts focused on
the standalone physics modules. The Weather Research and
Forecast (WRF) model, which is one of the most widely
used numerical weather prediction (NWP) program in the
world, was among one of the earliest weather/climate models
that integrate GPU-accelerated microphysics schemes [5].
Other typical examples include GPU-based accelerations
for the chemical kinetics modules in WRF-Chem [16], and
the shortwave radiation parameterization in CAM [6]. As
these physics modules are usually compute-intensive and do
not involve communications, GPU-based acceleration can
generally achieve a speedup of one order of magnitude.

In recent years, we start to see projects that accelerate
the dynamic cores (or the major computation parts of the
dynamics cores) on GPU devices, such as the efforts on
GRAPES [7], CAM-SE [8]. Compared with the physics
modules, the dynamic parts generally require communica-
tion across different grids, and are more difficult to achieve
good parallel performance. The speedup is usually in the
range of 3 to 5 times when comparing GPU solutions against
parallel CPU solutions.

Complete porting projects that move complete atmospher-
ic or ocean models onto many-core accelerators are still
few to see. One example is the GPU-based acceleration
of ASUCA, a next-generation high resolution meso-scale
atmospheric model being developed by the Japan Meteo-
rological Agency (JMA) [9], with an acceleration of 80-
fold when compared against a single CPU core, and an
excellent scalability for up to a few thousand nodes. Another
example is the complete porting of the Princeton Ocean
Model (POM) onto GPU devices [10], which performs a
manual porting and optimization of POM onto a hybrid
server with 4 GPUs, and achieves an equivalent performance
to 408 CPU cores. While the two projects have managed to
take advantage of GPU accelerators for complete models,
these are relatively less complicated models that involve only
tens of thousands of lines of code. Moreover, both projects
take the approach of manual rewriting of the program in
CUDA, which makes it difficult to keep a same source base
and not possible to migrate to other computing architectures.

For newly developed weather or climate models, such
as NIM [11] and COSMO [12], we see the emphasis on
supporting multiple accelerator architectures. For example,
by using OpenMP, OpenACC, and F2C-ACC directives,
NIM managed to maintain a single source for application
scientists, and the portability over CPU, GPU, and MIC



architectures [11]. Similarly, the COSMO model also main-
tains both OpenMP and OpenACC directives for the physics
schemes in the model, to support both GPU and MIC. For
the dynamic core part, the COSMO model uses a C++-
based domain specific language to provide both CUDA and
OpenMP backends. As newly developed numerical models,
NIM and COSMO are relatively ahead in the transition, due
to less constraints from the code legacy.

Different from the projects mentioned above, our work
focuses on CAM 5.3, which is a complete atmospheric mod-
el with 560,000 lines of code, developed over the last few
decades. Moreover, our target platform is the new Sunway
processor, which is based on a hybrid many-core architecture
with a few MPEs and an array of CPEs. Compared with
GPU and other many-core accelerators, both the on-chip fast
buffer and the available memory bandwidth are more limited,
which make our porting significantly more challenging. For
such a large code base that have been developed over the
decades, we think a manual rewrite would not be a feasible
solution. Instead, in our approach, we would minimize the
manual refactoring (limited to the dynamic core part), and
rely on source-to-source translation tool to remap the code
onto the new architecture.

III. THE SUNWAY TAIHULIGHT SUPERCOMPUTER

A. The Hardware System

As one of the two 100PF systems supported by China’s
National 863 High-Tech Research and Development Pro-
gram in the 12th five-year plan, the Sunway TaihuLight
supercomputer [17] is the successor of the Sunway Bluelight
supercomputer hosted in the Jinan Supercomputer Center.
Similar to the Sunway Bluelight system, the new Sunway
supercomputer is also using China’s homegrown processor
designs.

The general architecture of the new Sunway heteroge-
neous processor [17] is shown in Figure 1. The proces-
sor includes 4 core-groups (CGs). Each CG includes one
management processing element (MPE), one computing
processing element (CPE) cluster with 8x8 CPEs, and one
memory controller (MC). These 4 groups are connected via
the network on chip (NoC). Each group has its own memory
space, which is connected to the MPE and the CPE cluster
through the MC. The processor connects to other outside
devices through a system interface (SI).

The MPE is a complete 64-bit RISC core, which can run
in both the user mode and the system mode. The MPE sup-
ports the complete interrupt functions, memory management,
superscalar, and out of order issue / execution. Therefore,
the MPE is an ideal core for handling management and
communication functions.

In contrast, the CPE is also a 64-bit RISC core, but with
limited functions. CPE can only run in the user mode, and
does not support interrupt functions. The design goal is to
achieve the maximum aggregated computing power, while

minimizing the complexity of the micro-architecture. The
CPE cluster is organized as an 8 by 8 mesh, with a mesh
network to achieve low-latency register data communication
among the 8 by 8 CPEs. The mesh also includes a mesh con-
troller that handles interrupt and synchronization controls.

In terms of the memory hierarchy, each MPE has a
32KB L1 instruction cache and a 32KB L1 data cache,
with a 256KB L2 cache for both instruction and data. Each
CPE has its own 16KB L1 instruction cache, and a 64KB
Scratch Pad Memory (SPM). The SPM can be configured as
either a fast buffer that support precise control by the users
or a software-emulated cache that achieves automatic data
caching in a software manner. However, as the performance
of the software-emulated cache is low, in most cases, we
need a user-controlled buffering scheme to acheive good
performance.

Combining the four CGs of MPE and CPE cluster-
s, each Sunway processor provides a peak performance
over 3 Tflops, with a performance-to-power ratio over 10
Gflops/Watt. While the computing performance and power
efficiency is among the top when compared with existing
GPU and MIC chips, the on-chip buffer size and the memory
bandwidth is relatively limited. The four CGs are sharing an
aggregated memory bandwidth of around 130 GB/s.

B. The Software System

On the software side, the TaihuLight system uses a cus-
tomized 64-bit Linux as the operating system, with a set of
compilation tools to support the development of applications
on the new Sunway processor architecture.

The compilation tool set includes the basic compiler
components, such as the C/C++, and Fortran compilers. In
addition to that, there is also a parallel compilation tool
that supports the OpenACC 2.0 syntax and targets the CPE
clusters. The customized Sunway OpenACC tool supports
mangement of parallel tasks, extraction of heterogeneous
code, and description of data transfers. Moreover, according
to the specific features of the Sunway processor architecture,
the Sunway OpenACC tool has also made a number of
syntax extensions from the original OpenACC 2.0 standard,
such as a fine control over buffering of multi-dimensional
array, and packing of distributed variables for data transfer
(detailed in Section VI-C).

IV. MAPPING CAM TO THE SUNWAY TAIHULIGHT
SUPERCOMPUTER: OUR GENERAL METHODOLOGY

A. General Workflow of CAM

CAM, which serves as the atmosphere component of the
Community Earth System Model (CESM) [18], is the most
computationally expensive component in typical configura-
tions. The computation workflow of CAM can be divided
into two phases: the dynamics and physics. The dynamics
advances the evolutionary equations for the atmospheric
flow, and the physics approximates sub-grid phenomena such



64k

64KB 
cache/core

MC MPEMaster core

Group

Slave cores

Main memory

64k

64KB 
cache/core

MC MPEMaster core

Group

Slave cores

Main memory

64k

64KB 
cache/core

MC MPEMaster core

Group

Slave cores

Main memory

64k

64KB 
cache/core

MC MPEMaster core

Group

Slave cores

Main memory

Network on Chip (NoC) SI

Figure 1. The general architecture of the new Sunway processor.

as clouds, precipitation processes, long/short-wave radiation,
and turbulent mixing. As shown in Figure 2, the physics
contains two phases. In phy run1, radiation, shallow and
deep advection are calculated, and in phy run2, aerosol, and
chemistry procedure are computed. State variables, such as
temperature and precipitation, are passed through between
two physic phases. The physics passes the traces, such as
u, v, to the dynamics. After initialization, the physics and
the dynamics are executed in turn during each simulation
time-step.

CAM initial Dyn_run Phy_run1 Phy_run2

State 
variables

State variables 
and  tracers

tracers

Figure 2. The general workflow of CAM.

B. Porting and Refactoring

As CAM has not been running on the Sunway architecture
before, the first step of our porting is to verify the modeling
results. As the current version of CAM has to be run in a
coupled mode with the Common Land Model (CLM), using
the F compset of CESM 1.2.1, we port both CAM and CLM
onto the Sunway system, using only MPE to perform the
computation.

After running the coupled CAM and CLM models on the
Sunway system for the duration of three years, we compare
results of major variables, as well as the conservation of
mass and energy, to verify the correctness of our ported
version. Compared with the results on the Intel clusters using
the same modeling parameter configuration, we see almost
identical distribution of key variables and an average relative
error in the range of 10−4. Figure 3 shows the variation of

the total mass over one year. We also observe an identical
variation cycle when compared with the results on the Intel
cluster.
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Figure 3. The variation of the total mass of a coupled CAM and CLM
run on the new Sunway system.

Using the ported MPE-only version as the starting point,
we then perform refactoring and optimization of both the
dynamic core and the physics schemes to make utilization
of the CPE clusters. During the process of expanding each
kernel from MPE-only to MPE-CPE hybrid mode, we take
the numerical result of the MPE-only mode as the true value,
and ensure that the difference of the results in the MPE-CPE
hybrid mode are within a similar range of the floating-point
rounding errors.

Considering both the code volume and complexity, for the
SE dynamic core, we take a manual approach to refactor
and optimize the code. For the physics part, we rely on our
source-to-source translation tools to perform loop transfor-
mation, and to reduce the memory footprint for the on-chip
fast buffer (the SPM of each CPE).



V. REFACTORING AND OPTIMIZATION OF THE SE
DYNAMIC CORE

A. Major Challenges and Our Solutions
The current CAM code is taking a hybrid parallelization

scheme that combines MPI and OpenMP to parallelize the
computation. As MPI is used for the inter-node paralleliza-
tion and OpenMP is used for the intra-node parallelization,
we generally apply a configuration with a large number of
MPI processes (hundreds to thousands), and small number
of OpenMP threads (8 to 16). In the Sunway system, we are
dealing with groups with one MPE and 64 CPEs. Therefore,
our first challenge is that a direct map from OpenMP to
OpenACC would not provide a suitable level of parallelism
for the CPE cluster.

The other challenge relates to the buffering of data.
As mentioned in Section III-A, 64KB SPM of each CPE
needs to be fully controlled by the user, either through a
customized buffering scheme, or a software-emulated cache
scheme. Our experiments show that the emulated software
cache scheme is not efficient enough to provide performance
benefits. Therefore, in most cases, we need to design a
buffering scheme that loads the proper data into the SPM.

For the first challenge of achieving a suitable level of
parallelism for CPE clusters, we do adjustments of both
the computational sequence and the loop structures, so as
to aggregate enough computations, and to enable the right
number of parallel threads. For the second challenge of data
buffering, on one hand, we refine the code to minimize the
usage of intermediate variables; on the other hand, we design
customized buffering schemes to determine when and where
to load or unload data arrays.

In the following subsection, we take the Euler step
function (the most time consumption part of the SE dynamic
core) as the example to demonstrate our refactorization and
optimization schemes in details.

B. Refactorization of the Euler step Function
The general structure of the Euler step function is

shown in block 1© of Figure 4.
The Euler step function is the basic forward Euler

component used to construct the Strong Stability-Preserving
(SSP) Runge-Kutta (RK) methods, consisting of the follow-
ing three major parts:

1) computation of the biharmonic mixing term and its
min/max values (later used as limiters);

2) the 2D advection step that updates each tracer’s Qdp
(the vertical integration result);

3) MPI communication for boundary exchange, including
the preparation and package of data before that.

Inside these three major parts, there are mainly three types
of loops, also shown in block 2© of Figure 4:
• the ie loop processes each column that needs to be up-

dated by the Euler step function (48602 and 777602
for resolution of ne30 and ne120, respectively);

• the q loop iterates over each tracer (5, 25, and 108
tracers for different configurations);

• the k loop iterates over the vertical levels, which is 30
in the default configuration of CAM.

The first part of biharmonic value calculation consists of
four stages, each of which is a three-level loop that iterates
for ie, k, and q (shown in the upper part of block 2©). In
the original parallelization scheme, OpenMP is used for the
second level loop of k. The value of k corresponds to the
number of vertical levels in CAM, usually in the range of 30
to 50, which does not provide enough parallelism for the 64
CPEs. Moreover, while the separate four loops do not bring
issues for the CPU cache hierarchy, for the user-controlled
SPM of the Sunway CPE, separate loops require separate
SPM loading operations, thus increasing both the loading
cost and the programming complexity. To resolve this issue,
we aggregate the four separate loops into one unified loop.
To expose enough parallelism for the CPE cluster, we switch
the loop levels of k and q to achieve consecutive memory
access of the (k, q, ie) array, and collapse ie and q into one
level of loop, with a larger number of iterations to assign
to different CPEs (the exact transformation is shown in the
upper part of block 3©, and the left part of block 4©, 5©,
and 6©).

Compared with the biharmonic part, the second advection
part is a more complex nested loop and consumes most of
the time in the Euler step function (the lower part of block
2©). The outermost loop is an ie-loop. Within the ie-loop,

we first have a k-loop that calculates the delta pressure and
the initial velocity. Then, a two-level nested loop that iterates
over q and k advances the objective function. In the end, a
k-loop prepares the data for the boundary communication
afterwards.

The major issue with the advection part is the distributed
style of loop bodies, which increases the difficulty in both
parallelization and data buffering. It is straightforward to
aggregate the three k-loops in the two-level nested loop
in the middle into one loop. However, due to variable
dependencies, the first and the last k-loop cannot be easily
congregated with the middle loop.

To resolve the above issue and to aggregate these separate
loops, we firstly try the option to switch the q-loop and
the k-loop in the middle two-level nested loop, so as to
later aggregate the three k-loops into a larger one. While
we manage to achieve an aggregated loop in this way, the
resulting loop body involves too many variables to fit into
the SPM of CPE.

Therefore, instead of aggregating the loops at the k level,
we split the k-loops at the beginning and the end of the
advection part into the two-level loop that iterates over q
and k. The related cost is that these operations that used to
be repeated for k times, now need to be performed for q · k
times (as shown in the lower part of block 3©). Although we
pay the cost of repetitive computation, we can now reformat



do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

end do

Euler_step:

do ie = nets, nete
compute Q min/max values for lim8
compute Biharmonic mixing term f

end do

do ie = nets, nete
2D advection step
data packing

end do

Bonundary exchange

Data extracting

do ie = nets, nete
do k = 1, nlev

dp(k) = func_1()
do q = 1, qsize

Qtens(k,q,ie) = func_2(dp(k))
end do

end do
end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete 
do k = 1, nlev   

do q = 1, qsize
Qtens(k,q,ie) = …        

end do     
end do

end do
Data packing

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

dp0 = func_3()
dpdiss = func_4()
do q = 1, qsize

Qtens(k,q,ie) = func_5(dp0, 
dpdiss)

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

dp(k) = func_5()
Vstar(k) = func_6()

end do

do q = 1, qsize
do k = 1, nlev

Qtens(k,q,ie) = 
func_7(dp(k), Vstar(k))

end do     

do k = 1, nlev
dp_star(k) = func_8(dp(k))

end do         

do k = 1, nlev
Qtens(k,q,ie) = 

func_9(dp_star(k))
end do

end do
Data packing

end do

optimized:

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) = func_2(func_1())

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) =

func_5(func_3(),func_4())
end do

end do
end do

do ie = nets, nete    
do q = 1, qsize

do k = 1, nlev
Qtens(k,q,ie) = 

func_7(func_5(),func_6())
end do     

do k = 1, nlev
Qtens(k,q,ie) = 

func_9(func_8(func_5())) 
end do

end do
Data packing

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
Qtens(k,q,ie) = …        

end do     
end do

end do
Data packing

!$ACC PARALLEL LOOP
do ie_q = 1, qsize*(nete-nets)

do k = 1, nlev
q = func(ie_q)
ie = func(ie_q)
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

!$ACC PARALLEL LOOP
do ie_q = 1, 
qsize*(nete-nets)    

do k = 1, nlev      
q = func(ie_q)
ie = func(ie_q)
Qtens(k,q,ie) = …        

end do     
end do
!$ACC PARALLEL LOOP
Data packing

1

2

3

4

5

6

Figure 4. The general structure of the Euler step function, and our corresponding refactor of the biharmonic computation part and the advection part.

the loops into a nested (ie, q, k) three-level loop. Similarly,
we can then collapse the ie-loop and the q-loop to expose
enough parallelism (as shown in the right part of block 4©,
5©, and 6©). The required memory space of the intermediate

variables of the resulting loop body is also reduced to fit
into the SPM.

By performing the above transform of loops and the
corresponding optimization for the buffering of local vari-
ables, we can achieve 22x speedup for the advection part,
10x speedup for the biharmonic part, and 7x speedup for
the advection part, with a 2x to 4x speedup for the entire
Euler step function.

We apply similar refactorization and optimization
schemes to the compute and apply rhs function

that computes a leapfrog timestep, and the
advance hypervis dp function that updates the
temperature. In addition, we also refactorize and parallelize
the parts that perform packing and unpacking of data
elements for the halo communication stage, so as to
improve the overall performance of the entire SE dynamic
core.

VI. REFACTORING AND OPTIMIZATION OF THE PHYSICS
SCHEMES

A. The General Parallelization Scheme

As shown in Figure 5, in most physics schemes, the
computation is performed on the columns. Each column
consists of the different vertical levels of the same surface



location. The computation of each column is completely
independent, which provides the parallelism in the physics
schemes. In order to achieve dynamic load balancing, CAM
generally organize columns in different locations into one
chunk, and assign each chunk to a different OpenMP thread.

column (col) …
…

chunk

……

pver

Figure 5. The organization of columns and chunks in the physics schemes
of CAM.

In our design, we follow a similar approach to parallelize
over different chunks. However, as the corresponding loop
body is usually at the outermost level (such as the example of
phy run1 shown in Figure 7), the loop body would involve
a huge volume of data variables and long sequences of
instructions that could overwhelm the private instruction
cache and SPM of each CPE.

Our solution is to expose the most suitable level of
loop body to the Sunway OpenACC compiler, so as to
provide a suitable level of intensity in both computation
and data variables. To achieve this goal, we develop a loop
transformation tool that moves the loop into the right level of
the function, and serves as a preprocessor for the OpenACC
compiler. To further reduce the storage space of variables
and arrays that are related to the functions targeting CPE
clusters, we also develop a variable storage analysis and
reduction tool to minimize the required storage cost, and to
fit the functions into the 64KB SPM of the CPE architecture.

In both tools, we utilize the ROSE source-to-source com-
piler [19] to construct a code translator to analyze the code
and to generate the new code. By using the source-to-source
transformation, we minimize the efforts and errors related to
the manual rewriting of the programs.

B. The Loop Transformation Tool

Figure 6 shows a typical example of our loop transforma-
tion tool. For the target function call in a do-loop, we do the
transform as follows: 1) lift the function call statement from
the scope of do-loop to the upper scope and remove the do-
loop statement; 2) push the loop index upper bound (m in
the example) back into the function call argument list; and 3)
find the array parameters containing the do-loop index (i in
the figure) and replace the very index with ”:”, which means
the entire dimension of this array is passed in. The function

declaration, which is usually written in another source file, is
located and the code is transformed by the following rules: 1)
the parameter declarations are transformed in the same way
with the function call statement; 2) the dimension of all the
local parameters is expanded by 1 if not explicitly disabled
by the developers; 3) for arrays whose dimension changes
in the declarations, the array reference in the function body
should also be changed correspondingly; and 4) move the
original do-loop into the body of the function declaration
and split the loop.

Do i = 1, m

    call F(A, B(i), C(i,:))

End do

Subroutine F(A, B, C)

    !parameter declaration

    real :: A, B

    real, dimension(:) :: C 

  

    !local variable declaration

    real :: X, Y

    

    !execution    

    X = 1

    Y = 1

    call lower1(X, C)

    call lower2(Y, C)  

    B = X+Y

    C(:) = C(:) + X*Y  

End

Subroutine F(A, B, C, m)

    !parameter declaration

    real :: A

    real, dimension(:) :: B

    real, dimension(:,:) :: C

    integer :: m 

  

    !local variable declaration

    real, dimension(m) :: X, Y

    

    !execution

    do i = 1, m    

        X(i) = 1

        Y(i) = 2

        call lower1(X(i), C(i, :))

    end do

    do i = 1, m 

        call lower2(Y(i), C(i, :))

        B(i) = X(i)+Y(i)

        C(i, :) = X(i)*Y(i)

    end do  

End

call F(A, B(:), C(:,:), m)

Figure 6. A typical example of the loop transformation tool.

A typical loop transform scenario is shown in Figure 7,
which corresponds to the first part of the physics schemes,
accounting for over 80% computation time of all the physics
parts. In the original code, the OpenMP parallelization
scheme happens on the outermost loop of different chunks
(as shown in block 1© of Figure 7). While such paral-
lelization scheme fits the OpenMP threads on the multi-core
CPU, the threads with a long sequence of computations and
loads of intermediate variables can easily overwhelm the
local faster buffer of the CPE, leading to the extremely low
performance of the CPE threads. To resolve such issues,
we apply the tool to move the chunk loop to the specific
physics scheme function (block 2© of Figure 7), and split
the large loop into separate loops for each separate physics
scheme (block 3© of Figure 7). If the function body at
such a level is still too complicated to fit into the 64-KB
SPM of the CPE, we can further apply the tool to move
the chunk loop to an even deeper level of the call stack.
Such as the function of zm conv tend function, we could
further move the chunk loop to the four sub-components of
the zm conv tend function (as shown in block 4© and 5©
of Figure 7).



do begin_chunk to end_chunk 
  tphysbc() 
  { 
    convect_deep_tend(6.47%) 
    convect_shallow_tend(15.57%) 
    macrop_driver_tend(8.38%) 
    microp_aero_run(4.29%) 
    microp_driver_tend(7.13%) 
    aerosol_wet_intr(4.29%) 
    convect_deep_tend_2(0.51%) 
    radiation_tend(54.07%) 
  } 
enddo 

tphysbc() 
{ 
  do begin_chunk to end_chunk 
    convect_deep_tend(6.47%) 
    convect_shallow_tend(15.57%) 
    macrop_driver_tend(8.38%) 
    microp_aero_run(4.29%) 
    microp_driver_tend(7.13%) 
    aerosol_wet_intr(4.29%) 
    convect_deep_tend_2(0.51%) 
    radiation_tend(54.07%) 
  enddo 
} 

tphysbc() 
{ 
  do begin_chunk to end_chunk 
    convect_deep_tend(6.47%) 
  enddo 
  …… 
 do begin_chunk to end_chunk 
    microp_driver_tend(7.13%) 
 enddo 
  …… 
 do begin_chunk to end_chunk   
    radiation_tend(54.07%) 
  enddo 
} 

do begin_chunk to end_chunk 
  convect_deep_tend(6.47%) 
  { 
    zm_conv_tend(6.47%) 
    { 
      zm_convr(2.03%) 
      zm_conv_evap() 
      montran() 
      convtranc(0.06%) 
    } 
  } 
enddo 
 

convect_deep_tend(6.47%) 
{ 
  zm_conv_tend(6.47%) 
  { 
      do begin_chunk to end_chunk 
        zm_convr(2.03%) 
      enddo 
      do begin_chunk to end_chunk 
        zm_conv_evap() 
      enddo  
      do begin_chunk to end_chunk 
        montran() 
      enddo 
     do begin_chunk to end_chunk 
        convtranc(0.06%) 
      enddo 
  } 
} 
 

1 2 
3 

4 

5 

Figure 7. Loop permutation and split for the first part of physics schemes in CAM.

C. Variable Storage Space Analysis and Reduction Tool

Our variable analysis and reduction tool provides a num-
ber of basic functions: 1) to estimate the storage require-
ments of the variable and arrays in the current function
region (how large storage is needed); 2) to identify the
lifespan of the variables and arrays (how long is the storage
needed). Based on the collected information, our tool can
then determine whether the variables and arrays of each CPE
thread can fit into the 64KB SPM.

In the cases that the 64KB SPM is not large enough to
store the values, our tool performs a number of automated
optimizations to reduce the storage space.

The most effective optimization is to reuse the memory
space for intermediate arrays. In current physics modules,
it is common that tens of local arrays are declared and
referenced, of which the dimensions are identical. The poor
coding style usually makes the SPM insufficient to hold all
the local data. We first analyze the lifespan of these local
arrays statement by statement in the scope of the function.
The arrays whose lifespan do not overlap can reuse the same
storage block. As shown in Figure 8, the original Fortran
function accesses 7 intermediate arrays (A to G) during the
computation process. By analyzing the lifespan of these 7
arrays, which are annotated by the lines above these arrays,
we can determine that 4 arrays would provide sufficient
space to store these 7 arrays in different stages of the
execution process. The mapping of the original arrays and
the new arrays can be calculated in advance as the shown by
the array tables in the lower part of the figure. Our tool first
adds the new array declarations in the function body, and

turn the original local array declaration into pointers. Then
the pointer assignment statements are inserted according to
the mapping.

A B C D A E B A F E FGC

1 A
2 B
3
4

1 A
2 B
3 C
4 D

1 A
2 B
3 C
4 E

1 F
2
3 C
4 E

1 F
2 G
3
4

statement
Ⅰ  

statement 
Ⅱ 

statement 
Ⅲ 

statement 
Ⅳ 

statement 
Ⅴ 

Figure 8. A general example of the loop transformation tool.

For the cases that the functions still involve too many
variables to fit into the SPM, we can apply other methods
to further reduce the variable storage space. One strategy is
to perform a finer control over the multi-dimensional array.
As shown in Figure 9, with the support of the Sunway
OpenACC, we can specifically request to put a certain row
of the 2D array A into the SPM for a given iteration of the
inner loop. This feature is an expansion from the standard
OpenACC syntax, which enables the CPE OpenACC thread
to pre-load the specific row instead of the entire 2D array,
thus significantly reducing the required data storage space.

Another expanded feature of the Sunway OpenACC that
could potentially improve the data copy efficiency is the in-
troduction of pack, packin, and packout clauses. The pack,
packin, and packout clauses provide similar functions to
the copy, copyin, and copyout clauses. However, for pack
clauses, the compiler would go through the variable list,



double B [ 1 0 ] ; / / i n
double A[ 1 0 ] [ 1 0 ] ; / / i n o u t

#pragma acc i n (B)
f o r ( i = 0 ; i < 1 0 ; i ++){

# pragma acc i n o u t (A[ i ] )
f o r ( j = 0 ; j < 1 0 ; j ++){

A[ i ] [ j ] += B[ j ] ;
}

}

Figure 9. Support for fine control over array variables: an example.

pack the distributed variables into one continuous memory
space, and perform the transfer of the data more efficiently.
Our experiments demonstrate that the pack clauses can be
quite helpful for the physics schemes that generally involves
dozens of input and output parameters.

VII. RESULTS

A. Results of the Kernels Running on CPE Clusters

In this section, we evaluate the individual functions/ker-
nels that we port onto the Sunway processor, and analyze
the performance benefits for using the CPE clusters.

Figure 10 shows the speedup of the major kernels in the
CAM-SE dynamic core, as well as their proportions in the
total runtime of the dynamic core part. The speedup we
demonstrate here is comparing the computational perfor-
mance of the hybrid version that uses both the MPE and
the 8x8 CPE cluster against the starting-point version that
only uses the MPE.

For the compute-intensive kernels, such as the major
computational parts in the advection step function (24.58%
of the total runtime), and the compute and apply rhs
function (37.29% of the total run time), we can achieve
a speedup of 7x to 22x. Especially for the most time-
consuming advection step function, we can achieve a sig-
nificant speedup of 22x, which is a quite efficient utilization
of the 64 CPEs.

For the other parts in these functions, a lot of the op-
erations are memory copies that prepare the message for
the following halo communication. These parts are mostly
memory-bound, but the multi-threading by the 64 CPEs can
still provide a speedup that ranges from 2x to 7x.

Similarly, Figure 11 shows the speedup of the major
kernels in the physics schemes of CAM, as well as their
proportions in the total runtime of the physics part. Different
from the CAM-SE dynamic core, the physics schemes
generally do not involve memory copy or communication
operations, and are mainly dominated by computations.
However, as the physics schemes involve a significantly
large code base with different code styles for each scheme,
we mainly rely on the loop transformation and variable
reduction tools described in Section VI. As a result, the
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Figure 10. The speedup of major kernels in CAM-SE that we port onto
the CPE clusters, and their proportions in the total runtime of the dynamic
core part. The speedup is comparing the performance of the kernel running
on 1 MPE and 64 CPEs against the performance of the kernel running on
only 1 MPE.

speedup we achieve for different kernels varies with the
specific features of the kernel. The first three kernels in
Figure 11 all include intensive computation operations.
However, only the microp mg1 0 kernel demonstrates a
significant speedup of 14x, as the intermediate variables and
arrays provide a nice fit to the SPM of the CPE clusters
after the automated optimizations. In contrast, the speedup
of the convect shallow tend kernel is relatively low (1.6x),
mainly because the intermediate variables and arrays (even
after the reduction optimization) are too large to fit into the
SPM. Therefore, the performance drops down significantly
due to the frequent access to the main memory. For the
case of the zm convr kernel, as it involves a deep function
call stack (as mentioned in Section VI-B), the performance
improvement (7x) is not as high as the microp mg1 0
kernel.
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Figure 11. The speedup of major kernels in the physics schemes of CAM
that we port onto the CPE clusters, and their proportions in the total runtime
of the physics part. The speedup is comparing the performance of the kernel
running on 1 MPE and 64 CPEs against the performance of the kernel
running on only 1 MPE.



B. Performance of the SE Dynamic Core in Different Par-
allel Scales

Figure 12 demonstrates the execution time of the entire
CAM-SE dynamic core that we can achieve with different
parallel scales and different simulation configurations. The
parallel scale is described by the number of CGs, as we
generally run one MPI process for each CG. Each CG
includes 1 MPE and 64 CPEs. For the simulation config-
uration, we change the resolution and the number of tracers.
ne30 and ne120 refer to the 100-km and 25-km resolution
configurations respectively. The number of tracers is denoted
by qsize, which can be 25 (default configuration), or 108
(heavy chemistry configuration).

While we achieve up to 22x speedup for single kernels
within the SE dynamic core, when we consider the entire
SE (including computation, memory copy, communication,
and the serial parts that simply can not take advantage of
the CPEs), the speedup is between 2 times and 4 times.
In general, the speedup drops down as the parallel scale
increases, which corresponds to the increased portion of
communication and reduced portion of computation for each
CG. As for the number of tracers, a larger qsize would bring
a better speedup, as there would be a larger q to process for
the CPE clusters (as discussed in Section V).
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Figure 12. The execution time of the CAM-SE dynamic core that we port
onto the CPE clusters with different parallel scales and different simulation
configurations. We demonstrate both the time for running the CAM-SE
dynamic core on both MPEs and CPE clusters and the time for running on
only MPEs. The x axis describes the number of CGs (each CG includes
1 MPE and 64 CPEs). ne30 and ne120 refer to the 100-km and 25-km
resolution configurations respectively. qsize denotes the number of tracers
used.

C. Performance of the Physics Part in Different Parallel
Scales

In contrast to the dynamic core, as the physics schemes
do not involve MPI communications, the performance im-
provement achieved from the CPE clusters does not change
significantly with the parallel scale.

Figure 12 demonstrates the execution time of the entire
physics part that we can achieve with different parallel scales

and different resolution configurations. With the number
of parallel CGs increasing, we see a constant performance
improvement of two times by using both MPE and CPEs.
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Figure 13. The execution time of the physics part that we port onto
the CPE clusters with different parallel scales and different simulation
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axis describes the number of CGs (each CG includes 1 MPE and 64 CPEs).
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respectively.

D. Speedup of the entire CAM model

Figure 14 shows the simulation speed of the CAM model
(measured in Model Years Per Day (MYPD)) on the new
Sunway supercomputer, with the number of CGs increasing
from 1,024 to 24,000. Similar to previous reported results
on other systems, the CAM model demonstrates a good
scalability on the new Sunway supercomputer system, with
the simulation speed increasing steadily with the number
of CGs. For the large scale cases, we demonstrate the
performances for using MPE only, and using both MPE and
CPE clusters. As shown in the last two points in Figure
14, by using both the MPE and the CPE clusters, we can
further improve the simulation speed by another 2x. When
scaling the CAM model to 24,000 CGs (24,000 MPEs, and
1,536,000 CPEs), we can achieve a simulation speed of 2.81
MYPD.

E. Performance Result Analysis

In previous sections, we provide the general results about
the performance of the refactored and optimized CAM-SE
model on the Sunway TaihuLight system. The MPE and
CPE hybrid architecture of the new Sunway system is largely
different from previous heterogeneous systems. While MPE
is like a CPU core, and the CPE cluster is like the many-
core accelerator, both the CPU and the accelerator are now
fused into one chip. The speedup of a complete CG (1 MPE
and 64 CPEs) over the one MPE provides an important
indication about how well our refactoring method and code-
transformation tools can port the heavy codes of CAM-SE,
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Figure 14. The simulation speed of the CAM model (measured in Model
Years Per Day (MYPD)) on the new Sunway supercomputer, with the
number of CGs increasing from 1,024 to 24,000. For the large-scale run
with 12,000 and 24,000 CGs, we show the performances of the model
for three scenarios: (1) using MPE only; (2) using MPE+CPE for the
dynamic core; (3) using MPE+CPE for both the dynamic core and the
physics schemes.

which were originally written for multi-core CPU, to the
new hybrid chip.

Both the MPE and the CPE support 256-bit vector
instructions. However, as the MPE supports dual issuing
of instructions and the CPE only supports single issuing
of instructions, the peak performance of one MPE (23.2
GFlops) is two times of the peak performances of one CPE
(11.6 GFlops). Therefore, in terms of computing capability,
each CG is equivalent to 33 MPEs. In terms of the memory
bandwidth, the measured bandwidths for the MPE and the 64
CPEs are 5 GB/s and 20 GB/s respectively. Thus, each CG is
only five times better than each MPE. These metrics provide
a general guideline about the performance improvement that
we can achieve when porting the code from one MPE to the
complete CG with additional 64 CPEs.

The speedup numbers we achieve for various dynamic
core and physics kernels align well with the ranges defined
by the above metrics. For compute-intensive kernels (such
as the advection step function), we see a speedup of 22
times, which is close to the 33 theoretical bound. For
memory-intensive kernels (such as edgeV pack euler and
edgeV packneighbor), the speedup is only 2 to 3 times,
which is more bounded by the bandwidth.

In contrast to our work, NCAR, ORNL, Cray, and NVIDI-
A’s collaborative effort on accelerating CAM-SE on Titan [8]
was focused on the most expensive kernels in the dynamic
core part. When moving from the multi-core CPU to the
many-core GPU (with the peak computing performance im-
proved by around 10 times and the peak memory bandwidth
improved by around 5 times), the GPU accelerator would
only bring around 6× speedup for expensive kernels, and
2× speedup for the entire model.

We originally expect a higher speedup for the kernels
in the physics parts, which are generally more compute-

intensive, and do not involve any communications. However,
due to the complexity of the physics codes, we rely on
our automated tools to perform the refactoring and the
optimization in this part. We think that the current low
speedup for certain kernels are partly due to the constraints
of our current tools. Therefore, one of our future plans is to
further improve our automated transformation tools, and to
involve manual optimizations for certain expensive physics
schemes, so as to further improve the performance of the
physics part.

For the performance of the entire model, as the execution
time is distributed in a large number of kernels, which
sometimes involve both memory and communication oper-
ations, the ported CAM-SE demonstrates a clear memory-
bound behavior. In our tested scenarios, porting onto CPEs
only improves the performance by roughly 2 times, which
we think is mostly constrained by the memory bandwidth
and the communication parts that have not yet been fully
optimized. The current model provides a simulation speed
of 2.81 MYPD for the resolution of 25 km, using 24,000
CGs (24,000 MPEs and 1,536,000 CPEs), which is similar to
the speed of around 2 MYPD for the high-resolution CESM
runs at the Yellowstone supercomputer of NCAR [18]. While
such a speed is still not good enough for scientists to perform
experiments of a few hundreds or even thousands of years,
we think it is a good starting point for our future efforts
that would further improve the speed and efficiency through
other algorithmic and architectural redesigns.

VIII. CONCLUSION

In this paper, we report our efforts on porting the CAM
model to the Sunway TaihuLight many-core supercomputer.
Due to the differences between the Sunway many-core
processor (4 CGs, each of which consists of 1 MPE and 64
CPEs) and the traditional multi-core CPUs, and especially
the 64KB SPM that needs to be explicitly controlled by the
user, we perform an extensive refactor of CAM to expose
the right level of parallelism to the 64 CPEs in each CG,
and apply various optimization techniques to fit the involved
variables and arrays into the 64KB SPM of each CPE. For
single kernels in both the dynamic core and the physics
schemes, we achieve 14x to 22x speedup for kernels that
provide a suitable fit to both the computational and memory
architecture of the CPE cluster. For kernels that are not
suitable, we can still achieve around 2x to 7x speedup after
applying the loop transformation tool and various variable
storage reduction tool. Our refactored CAM model shows a
good scalability on the Sunway TaihuLight supercomputer,
and can efficiently use up to 24,000 MPEs and 1,536,000
CPEs, and provide a simulation speed of 2.81 MYPD when
using the 25-km resolution.

While the speedup of the entire CAM model is not
significant, it provides an important base for us to continue
optimizing the performance of such a large and complicated



scientific simulation program. In our future work, we will
continue working on our source-to-source translation tools
to provide an automated workflow. The goal is to refine
the refactor and optimization strategies for more suitable
mappings between the algorithm and the architecture, and
to improve the simulation speed of the model to a level that
makes high-resolution simulation an applicable scientific
tool on the Sunway system.
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