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HANS JOHANSEN AND TERRY LIGOCKI

In this paper, we present a fourth-order algorithm to solve Poisson’s equation in
two and three dimensions. We use a Cartesian grid, embedded boundary method
to resolve complex boundaries. We use a weighted least squares algorithm to
solve for our stencils. We use convergence tests to demonstrate accuracy and
we show the eigenvalues of the operator to demonstrate stability. We compare
accuracy and performance with an established second-order algorithm. We also
discuss in depth strategies for retaining higher-order accuracy in the presence of
nonsmooth geometries.

1. Introduction

There are many numerical approaches to solve Poisson’s equation in complex
geometries. Green function approaches [26; 16; 8], such as the fast multipole
method, are fast and near-optimal in complexity, but they are not conservative. Also,
they cannot be easily extended to variable and tensor coefficient Poisson operators,
which are important in the earth sciences and multimaterial problems.

Another popular approach is to use the finite element method, which has a number
of advantages. These advantages include negative-definite discrete operators, higher-
order accuracy, and ease of extension to variable coefficients. The conditioning and
accuracy of the discrete finite element operator can be strongly mesh-dependent,
however [6]. Unfortunately, generating meshes with higher-order conforming
elements for complex three-dimensional domains is still an expensive, globally
coupled computation, and an open area of research [30].

This motivates the need for simpler grid generation. Cut cells are a simple way of
addressing this. In a cut cell (or embedded boundary) method, the discrete domain
is the intersection of the complex geometry with a regular Cartesian grid. Such
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102 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

intersections are local, and can be calculated very efficiently in parallel, enabling
fast computation of solution-dependent moving boundaries [1; 33; 27]. Cut cells
have been used successfully to solve Poisson’s equation in finite volume [19; 32]
and finite difference [14; 24] discretizations.

For many problems, such as heat and mass transfer, discrete conservation is im-
portant. Finite volume methods are discretely conservative by construction because
they are in discrete flux-divergence form [22]. Previous finite volume methods for
Poisson’s equation are first order in truncation error near the embedded boundary
and second order in solution error [19; 32]. Our finite volume discretization of
Poisson’s equation is third order in truncation error and fourth order in solution error.
The discretization is in flux-divergence form and therefore strongly conservative.

The second-order, finite volume, strongly conservative Schwartz et al. algorithm
[32] has been used in many larger applications, including incompressible Navier—
Stokes with moving boundaries [27], compressible Navier—Stokes [15] and a DNA-
transport application [37]. We compare our algorithm to the Schwartz et al. algorithm
by comparing both eigenvalue spectrums and the number of degrees of freedom
that are required to achieve a given degree of accuracy.

Realistic boundaries can have discontinuities in their derivatives. For example,
it is common to make a geometric description out of the intersection of several
simpler geometries. We show that these discontinuities can have profound effects
upon accuracy. We provide a strategy for maintaining higher-order accuracy in
the presence of geometric discontinuities using geometric regularization with a
smoothing length which can be controlled. We show that the rate at which this
smoothing length converges with grid refinement matters greatly.

2. Algorithm

The algorithm is described in several steps. First, we introduce the embedded
boundary finite volume discretization for Poisson’s equation. Then we obtain a
Taylor-series-based interpolant of the solution and operator that is compatible with
cell- and face-averaged quantities, and achieves the desired order of accuracy. Lastly,
we introduce a weighted least-squares approach that uses nearest neighbor values
to stably interpolate the quantities needed by the finite volume operator.

2.1. Finite volume discretization. Given a charge density p, Poisson’s equation
for the potential ¢ can be written as

V- (Vo) = p. (D)

Integrating this over a control volume V' and applying the divergence theorem yields

f V(j)-ﬁdAzfpdV, (2
A% |4



PROOFS - PAGE NUMBERS ARE TEMPORARY

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 103
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9
— AB. (. j)
10
i Figure 1. Illustration of cut cell notation. The shaded region is outside the solution
12 domain. The volume V; = V|; ;) is connected to other volumes via the faces aligned with
13 the coordinate planes. The EB face is formed by the intersection of the embedded boundary

— and the cell.

15

16 where 7 is the outward-facing unit normal to the surface.

17 Our volumes are rectangular control volumes on a Cartesian mesh, cut by an
18 embedded boundary. Formally, the underlying description of space is given by

o Yi =[G —iwh, (i +3wh], ieZ”

201/, —
— where D is the dimensionality of the problem, / is the mesh spacing, and u is the
— vector whose entries are all one. Note we use bold fontu = (uy, ..., uq4, ..., up) to
— indicate a vector quantity. Given an irregular domain €2, we obtain control volumes
% Vi =7; N and faces A; Loy which are the intersection of the boundary of 9V;
oo~ With the coordinate planes {x x4 = (ia £ $)h} (eq is the unit vector in the d
- direction). We also define Ag ; to be the intersection of the boundary of the irregular

. domain with the Cartesian control volume: Ag; = dQ2() Y;. Figure 1 illustrates

2 @ volume cut by an embedded boundary.

o We define a flux function to be the gradient of the potential (F = V¢). Given a

o volume V; we can rewrite the integral form of Poisson’s equation (2) as a sum of

. integrals over each face in the volume,

33 D

34 /v-(w)dsz( / FydA — / FddA+/FdﬁddA). (3)

35 g d=1 .
—_— V’ i+%ed Aif%ed AB”
36

37 We use the following notation to denote the averages of ¢ over a computational

38 volume:

o1, (); = li|f¢dv. @
Vi

40 |V
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1 The average flux over a coordinate face is defined as

2 1
(Fd>i:|:%ed_ |Aii%ed| / FddA,

izle

3
4
5 . .
o and the average flux at the irregular face is given by
7
8 |AB

~ 1 ”
(Fang)p; = | /Fd”ddA-
J
Api

10 To create a conservative divergence operator, we discretize our divergence operator

11 as a sum of average fluxes. We define the volume fraction « to be the fraction of
12 the volume of the cell inside the solution domain, so that

S K =hP|Vil. (5)

14
15 Given a flux function F, the k-weighted divergence of the flux is defined to be the

16 volume average of the divergence multiplied by «:

T kL($)i =k (V-F);

18

19 =—| V.FdV

23 o

21 12 X

5 =52 (1A 10, 0Fa)i 1o, ~VAi 1o, XFa)i 1, HABil(Faia)si). ()
7 d=1

23
-4 We weigh the conservative divergence this way to avoid small-x numerical insta-

o5 Dbilities. Implicit algorithms for Poisson’s equation (1) solve the discrete system

26

27 K(V V)i =K(p)i @)

* for ¢ [19; 32], which avoids very large negative eigenvalues from terms with =,
2 Up to this point, no approximations have been made.

% The accuracy of the method is dependent only upon the accuracy of the dis-
> cretization of the average fluxes. Previous conservative algorithms for embedded
* boundaries compute fluxes that are second order [29; 27; 32; 13; 15; 28; 11]. In
*_ those algorithms, the face-averages of V¢ are approximated to second order by
i pointwise values at the centroids of faces. These fluxes are constructed by pointwise

» differencing those cell-centered values of ¢.
36

E 2.2. Taylor series expansions for average quantities. In our discretization, we
38 use the cell-averages of ¢ directly in the local polynomial expansion of ¢ that
39 matches the boundary conditions to some order of accuracy. We use this polynomial

40 expansion to construct a more accurate approximation to the face-averaged flux.
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1 Throughout this paper, we use the following compact “multi-index” notation:

D D
@—8)f=[[ea—2D", p'=]]pa.
d=1 d=1

3
4
5
_5 Given a point in space X, and a D-dimensional integer vector p, we define mf’ (x)
_7 to be the p-th moment of the volume V; relative to the point x:

8
9

m? (x) = / (x —x)?dv. ®)
11 Vi

2 The volume of the cut cell Viis |Vi| = mlz where z is the zero vector. We define
5 the face moments mf e (x) to be the p-th moments (relative to the point x) of
2¢€d

14
o the faces A; |

o ml,,, ()= / (x —¥)? dA. 9)

17

1, .
2€d

A,
18 'i%ed

19

o We define two moments corresponding to the embedded boundary face Ag ;,

2

2 m§ (%) = f(x—i)”dA (10)
23 Ap.i

24

— and

2

> mh (%) = / (x — %) Ay (x) dA, (11)
27

- Ag.i
28

29 where ng is the d-th component of the outward-facing unit normal to the EB face.
30 For some integer Q, suppose we want an O(h?) approximation to the flux

31 F = V¢. Given a sufficiently smooth function ¢, we can approximate ¢ in the

32 neighborhood of ¥ using a multidimensional Taylor expansion:

33

» b= Y W@ @ — B+ 0K, (12)
. lgl<=0 :
36

37 where we use the multi-index partial derivative notation
38

a1 94D
9 @ — 594 — o
40 ¢ ¢ ax]' axiP

(13)
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1 If we put the expansion (12) into one of the integrals in (3) over a coordinate-aligned

» face and set ¢, = i!gb(q)(i), we get

3
= 0

: / 2 an = Z qacq / (x—®)1UdA+ 0G0 (14
B Al *d lgl<= Ly
[ v 78

6
- Z qacqm? ! (@) + O(h?). (15)
" lgl<=
9 The flux equation at the irregular boundary becomes

10 P
1 / _¢nd dA= )" queg / (x —X)" %Ay dA+ O(h?) (16)
o 9xg - Ap,i
2 Ap.i lgl<=0
= Z qacqm 9(%) + O(h?). (17)
. lgl<=

~_ All the moments can be generated to any order as shown in Schwartz, et al. [33].

16
o Therefore, generating an O(h?) algorithm for Poisson’s equation reduces to finding
; the coefficients ¢, .

19 2.3. Weighted least-squares interpolants We define N to be the set of vol-

l—|— eq
20 umes in the neighborhood of face i + 2ed Our nerghborhood algorithm is described
21 in Section 2.3.3. We put the expansion (12) into (4) for every volume V; € /\/'l 1

22

— 1 _
23 7 E cq (x —xi+%8d)q dv (18)
24 J lgl<=
25 1

= E 19
26 [Vl =0 CqMj (xl+ ea) (19)

27
2% -5 Where x; ey = h(i + %ed) is the center of the target face. This forms a system of

29 €quations For the coefficients Cq.

30 Define C to be a column vector composed of the Taylor coefficients ¢ . In C,
5; the powers of ¢ are listed in lexicographical order. For example, in two dimensions,
5, for O =2, ~ _
= 0.0
o (1.0
— 2.0
35 C= L0 |- (20)
36

> D)

> 0,2)
38 ¢

g Define @ to be the column vector of all (¢); such that V; € N1 +leg Define

40 M to be the matrix of the volume moments of the neighbors normahzed by their
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1 volumes. Each row of M corresponds to a particular neighbor. In particular, suppose
o /V’i—i-%ed ={Vj,, ..., Vjy}. Then the [-th row of M are the moments for neighbor V.
3 Each column of M corresponds to a particular power ¢g. Because the volume of V;

18 mj., the first column consists of ones.

4
5 For example, in two dimensions, with Q = 2, the moment matrix M takes the
¢ form
2 - 00 Q0 0D ) (0.2)7
7 1 J1 J1 J1 J1 J1
— 0.0 _ (00 _ 00 _ (00 _ (00
8 ao My My my my
0 M=|: o i n @1
10 (1,0) 2,0 ©,1) (1,1 0,2)
; 1 Min My My My My
1 n©@0 00 00 00 00
12 - JN JN JN JN JN -

13 Extending both C and M to Q = 4 simply requires adding the extra moments in
12 Pascal’s triangle in lexicographical order. All moments in the system of equations
15 are centered around the target face at X; Lo, = h(i + 3e4). The system of equations

16 formed by (19) over the neighborhood N , Loy takes the form

1 ®=MC. (22)

18

19 Say there are P coefficients we need and N neighbors in Ny Loy IfN > P, we

20 have an over-determined system that we can solve by weighted least squares. We

21 define a weighting matrix W and use it to multiply both sides of our system

2 Wd = WMC.
23

g The choice of weighting matrix is discussed in Section 2.3.2. Taking the Moore—
25 Penrose pseudoinverse, we solve for the Taylor coefficients
26

= C=WMWo,

27
g and use these coefficients to compute the flux at the face. Recall from (15) that
29 we need to shift and transform the coefficients to compute the average gradient at

30 the face. Define G to be the row vector G = - - - qdm;l;f ---], where |g| <= Q.

£ Then, (15) becomes 2
32 |Ai+%ed|<Fd>i+%ed:GC'

33
- We express this flux calculation as a stencil. Because these are all linear operators,

. we know we can express the flux as a column vector S, , 1, acting on the solution,
2

35
> _ T
% |Ai+%ed|(Fd>i+%ed = Si+%edq)’ where
37

— S

38 i+leq

e,

=GWM)'W. (23)

g At every face in the domain, we solve for the stencil S; Loy For faces near the
40 domain boundaries and the embedded boundary we add boundary equations to the
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E system (22). This is discussed in Section 2.3.1. We solve for our stencils using the
Vi singular value decomposition framework from LAPACK [5].
Putting the flux stencils from (23) into (6), we get the stencil for our operator « L:

D
1
L= (g, ~Sige) + 517 24
d=1

where SFB, the stencil for the embedded boundary flux, is discussed in Section 2.3.1.

[ele |~ Tofo]a]e]w

10 2.3.1. Boundary conditions. Boundary conditions for this algorithm are used in
11 two ways. First, we need to calculate the fluxes at the boundary to complete our
12 finite volume discretization (see (24) ). Second, including the boundary conditions
13 in the interpolant (22) provides additional rows in the matrix that can compensate
14 for ill-conditioned rows from small cells.

15 To calculate boundary fluxes, we need different procedures for different types of
16 boundary conditions. For Neumann boundary conditions, the flux is the specified
17 boundary condition. For Dirichlet boundary conditions, on the other hand, we need
18 to compute a stencil to calculate the flux. For Dirichlet domain boundary faces, we
19 solve for the flux stencil as we would for any other face. For Dirichlet boundary
20 conditions on embedded boundary faces, we follow the same procedure except that
21 we use the polynomial expansion from (17), where the derivatives of the normal to
22 the boundary are included.

23 We add equations that contain boundary condition information to the system (19)
24 used to compute polynomial coefficients. This is done for two reasons: first, it
25 increases the rank of the interpolation matrix if there are small cells. Second, in
26 combination with the weighting matrix described in Section 2.3.2, it “smoothly”
27 incorporates boundary conditions into interior cells that are near the embedded
28 boundary, so the interpolants at nearby faces are more consistent with each other.
29 We have found that this greatly improves the spectrum of the resulting operator.

30 Specifically, suppose a volume V; in the neighbor set N, i ey

201/,

contains a domain

31 face j + %ed which has a Dirichlet boundary condition (¢) . jtles = ¢pg- We add
32 the equation
33 1
" b= [ ¢ @s)
s ety
- j+§ed
36
® 1 _
" o e, G (20
38 1+zed lgl<=0 A1+5ed
39 -
9z = Z cqm Fi1e,) 27)

A
— j+ied lg|<=
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1 to the system (19). If V; contains an embedded boundary face with a Dirichlet

22 boundary condition (¢)§B = ¢ We add the appropriate form of (17):
3 1 -
N Prp = Z g | (x—=%)nydA (28)
- s | =, s,
5 ql<=0 i
o 1 i
6 =—— > cqmf (&) (29)
7 |AB,‘| | — ’
- ql<=0
8

— to our equation set (19). The extension of this process to Neumann boundary

9 e .
— conditions is straightforward.
10

11 2.3.2. Weighting matrix. Using weighted least squares adds a great deal of flexibil-
12 ity to the least-squares system solver, in that we do not need to carefully choose
13 neighbor sets that are both optimally minimal, and produce a well-conditioned
14 interpolation. As the simplest choice, we use a diagonal weighting matrix W in
15 (23), which amounts to assigning relative importance to the various equations in the
16 system: larger weights mean that equation will more heavily influence the solution
17 to the system [35]. If the volume being weighted is j and the target face is i + %ed,
18 the weight value W, ; ley is chosen to be
19
20 Wiitle, = (Dj,i+%ed)_5’

e
2! where D jit+leq is the Euclidean distance between the volume center and the target
2 face center. We have found that the choice of weighting function strongly influences
% the locality of the resulting stencil, and thus the eigenvalues and stability of the
** resulting operator. Using this weighting, we find that our stencil values in the
% interior appear to be a perturbation off of a standard second-order stencil, while
*° operator eigenvalues are stable despite small or missing neighboring cells near the
2" embedded boundary.
*®  To understand the effect of the weighting matrix power, we can apply discrete

% Fourier analysis [23] to the Poisson problem in a one-dimensional periodic domain.

3% For an eigenmode ¢ = P~ the exact differential operator is d,,¢ = A¢p, where

doa=— B2. Our discrete operator based on (23) can be written as:

32

= | N/2

v LO =2 (Siite, = Siste)®. LO= > sioi- (30)
— i=—N/2

35

g From this it is straightforward to calculate the eigenvalues A, of our discrete operator,
37 which we have plotted in Figure 2 for N = 14. Note that the weight power p in
38 W = D’ has a dramatic effect for p > —4, and relatively little effect for p < —4.
39 We believe this is because the entries of Vandermonde-like matrix M in (22), which
40 increase like O(D*%), can be counteracted with W = D™ or greater. This allows us
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2

7 0, no weight
[ o 7

3 -1

4 2+ -

5
— -2

6 -aF 1
— -4

7
0 |
— -5, -8, -12

9
i ol |
10
11 .
T 1% 05 1 5 2 25 5 35
12
13 Figure 2. Discrete Fourier analysis of the effect of the weighting matrix power in one
14 dimension, plotting wave number S € [0, w) versus operator eigenvalue A for mode
15 ¢ = ¢!P*. The dotted line is the exact differential operator, A = —B2. The solid lines
— represent the discrete operator (30) with N = 14 points in the stencil, and different weight
106 powers p, for W = DP.
17

117
8 W
]

19
2 | mu.
21 ,‘Q:: g
22 n
— ~ >
23
24
o Figure 3. Neighbors of faces cut by the embedded boundary. Geometric constraints can
- greatly alter the number of neighbors available within a given radius
26
27

— to not be concerned with how many neighbors are in our stencil, and maintains the
% desired accuracy and stability properties of the differential operator. This analysis
2 can be extended to two or more dimensions, and for other operators, which will be

*_ the focus of a future paper.
31

32 2.3.3. Neighborhood algorithm. We define the neighborhood of the face to be the

33 set of valid cells within a discrete radius R = 3 cells of either cell of the face:

34

={j:id—jd<Rorjd—(id+1)<Rforany1§d§D}. (31
35

i +%ed
g We use this many cells because we need enough cells in the system (22) so that
37 the system will be over-determined even in the case where the embedded boundary
38 cuts out half of the cells in the neighborhood. Figure 3 illustrates how the number
39 of neighbor volumes can vary due to geometric constraints. We detect if there are
40 not enough cells for any given face and, for that face, we use a larger R.
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1 2.4. Multigrid algorithm. Once our stencils are calculated, we use the Chombo
~, infrastructure [9; 10], which uses the Martin and Cartwright multigrid algorithm
3 [25], to solve the system. The bottom solver for our multigrid algorithm is the
~, PETSc algebraic multigrid solver [4; 2; 3]. For eigenvalue calculations, we use the
5 SLEPc infrastructure [18; 17; 7]. For details of our adaptive multigrid algorithm,
see Devendran et al. [12].

3. Convergence tests

To validate our algorithm, we present convergence tests to show that our algorithm
is converging at expected rates. We test both truncation error 7' and solution error €.
We evaluate convergence using the L, L, and Lo, norms. Given an error field £ h
whose resolution is £, defined on volumes V; in €2, and a norm operator || - ||, the
rate of convergence @ is defined as

R R e
W N | +H|O|lO || N | O | U

15 = log (||E2h||)
16 2\JEM )

Given a computational domain 2, we define the L., norm of a field to be the
maximum value of that field while the L; and L, norms are integral norms. These
take the form

21 | Elloc = max |E;],
ieQ
22

1 1
Elh=—— [ |EildV ==Y |E||Vil,
2 1E] |vg|/9' i1V = 5 D I Vil

24 ieQ

25

1 1
1 ) 2 ( 1 ) )2
Elp=(— | |E;|*dV :—E:E Vil ,
2 1E|2 (|VQ|/Q| il ) 'V9|,~eg| il* Vil

27
28 where |Vgq]| is the volume of the whole domain.
29 Given a smooth input potential ¢, we compute the truncation error 7' by com-

30 paring the discrete operator L with the exact average Poisson operator L¢:
31

32 T =k(L(¢°) — L*(9)), (32)

33

34

35

36

37

where « L(¢) is given in (6) and

L@ = [V (999 av. (33)
i
g We weight the operator this way because the volume fraction « can be arbitrarily

39 small and because this is the form of the operator that is used in the solution process
40 (see (7)). The solution error € is given by comparing the computed solution ¢ to
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il @ lle"

norm lle
Lo 1.290-107* 2.60 2.130-1073
L 5.336-100% 399 3.358.1077

D
2
2
2 L, 1200-100° 3.55 1.022-10°°
3
3
3

Loo 9.222-107* 3.86 6.334-107°
L, 1.071-107° 4.00 6.687-1077
L, 2.507-107° 3.66 1.984-10°°

Table 1. Truncation error convergence rates with Dirichlet boundary conditions on the
embedded boundary and Neumann boundary conditions on the domain. The geometry is
the exterior of the ellipse shown in Figure 6, and h = 1/128.

the exact solution ¢°:

13 €=¢—¢°. (34)

14 We expect the truncation error to be larger at the embedded boundary since the
15 operator is formally third order in the cut cells. Potential theory tells us that these
16 truncation errors at the boundary should be smoothed out in solution error. We
17 therefore expect solution error to be uniformly fourth order in all norms.

18 For these tests, we need a smooth geometry and preferably one whose curvature

19 varies. Our computational domain is the unit cube. Given a center point x(, we use

201/,-2 the exterior of an ellipse of the form

391/

21
- D 2 2

22 Xd —X0,d

23
- d=1 Fa

24

— where r = (0.25, 0.5, 0.75) and xo = (0.5, 0.5, 0.5). A picture of this ellipse is

25

. given in Figure 6. We generate our geometric moments to O (%) so that our results

- would only reflect the accuracy of our Poisson discretization. In these tests our

o finest grid spacing is 1287 (h = 1/128), and the exact potential field is given by

29 D

o ¢¢ = [ ] costrxa). (36)
n d=1
32 3.1. Truncation error. In Table 1, we present truncation error rates for the case
33 where the domain has Neumann boundary conditions and the irregular boundary
34 has Dirichlet boundary conditions (¢|3e = ¢°). In Table 2, we present truncation
35 error rates for the case where the domain has Dirichlet boundary conditions and the
36 irregular boundary has Neumann boundary conditions (V¢ - i = V¢ - ). For the
37 two examples, we present convergence rates for both two and three dimensions. The
38 third-order truncation error at the embedded boundary dominates the error on the do-
39 main, and the L error reflects this. The truncation error in the L norm, on the other

zg hand, is fourth-order because the embedded boundary only has codimension one.
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1y, D norm 2| o lle"|
2 2 Ly 1979-107* 299 2.485.107°
3 2 L, 1.423-107° 3.95 9.184-1077
4 2 L, 3.897-107° 3.46 3.530-10°°
5 3 Lo 4.490-100% 222 9.645.1073
6 3 L 2.698-107° 3.95 1.747-107°
7 3 L, 6.697-107° 344 6.161-107°
8 Table 2. Truncation error convergence rates with Neumann boundary conditions on the
9 embedded boundary and Dirichlet boundary conditions on the domain. The geometry is
10 the exterior of the ellipse shown in Figure 6, and h = 1/128.
1
12 D norm €] o e
13 2 Ly 1.626-1077 394 1.060-10°3%
14 2 Ly 8934107 391 5.952:107°
15 2 L, 1.032:1007 393 6.783-107°
16 3 Lo 3.060-1007 397 1.954.1078
17 3 L, 1.955-1077 3.95 1.265-107%
18 3 L, 2.154.1077 3.96 1.386-107
o Table 3. Solution error convergence rates with Dirichlet boundary conditions on the
201/, 20 embedded boundary and Neumann boundary conditions on the domain. The geometry is
21 the exterior of an ellipse and 7 = 1/128.

391/

22

*_3.2. Solution error. In [19; 20], the authors show that a method can have a lower-
**_ order truncation error on the embedded boundary (which is a codimension one set)
% than in the interior and still maintain the proper order for the solution error. We solve
l k Lp =k L(¢°) and compute the solution error. For this test ¢¢ is given by (36). In
>’ Table 3 we present solution error rates for the case where the domain has Neumann
. boundary conditions and the irregular boundary has Dirichlet boundary conditions
- (Plaqe = ¢.). We present solution error rates for the case where the domain and
* the irregular boundary have Neumann boundary conditions (V¢ - i = V¢° - i) in
L Table 4. In both cases, we show uniform fourth-order convergence rates in all norms.

2 We also run this test at much higher resolutions in Section 5.1.
33

il 4. Operator eigenvalues

35

g In this section, we compare the spectrum of our algorithm to the widely used,
37 second-order algorithm presented by Schwartz et al. [32].

38 The eigenvalues of the Poisson operator will depend upon the geometry and
39 resolution of the problem as well as the operator boundary conditions. Due to

2 .. . . .
40 limitations in computational resources, we are only able to show the spectrum for
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D norm |2 @ ™|

2 2 L, 18351077 396 1.176-107%

3 2 L, 6.904-107% 3.95 4.459.107°

4 2 L, 8.678-107% 396 5.558-107°

5 3 L. 3.879-1007 3.86 2.669-1078

6 3 Ly 9325100 392 6.175-107°
= 3 L, 13151077 394 8.559-107°
8 Table 4. Solution error convergence rates with Neumann boundary conditions the em-
9 bedded boundary and Dirichlet boundary conditions on the domain. The geometry is the
10 exterior of an ellipse and h = 1/128.
i 02 — 3
z 0.15 A
13 0.1
T 0.05 !
14
[ o 0
15
N -0.05 4
16 ol
17 015 | — 2
18 02 . . . . . [h— . 3 . JE— P P .
o -9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 O -10000-9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 O
9 Second-order operator from [32]. Fourth-order operator.
20
o1 Figure 4. Plots of eigenvalues for the two-dimensional Poisson operators with Neumann
. boundary conditions on the embedded boundary and Dirichlet boundary conditions on
p— the domain boundary. Real and imaginary parts on the x- and y-axes, respectively, with
23

similar scales for each operator. The geometry implicit function is described by (35) and
24 the resolution is 322.

25

oo coarse two-dimensional problems (our resolution is 322). We use the Krylov—Schur

P module in SLEPc [18] to compute the eigenvalues.

. We present the spectrum for our fourth-order operator with Neumann boundary

2 conditions on the embedded boundary and Dirichlet boundary conditions on the

o domain in Figure 4, right, We present the spectrum for the second-order operator with
. identical conditions in Figure 4, left. We also present the fourth-order spectrum for
. Dirichlet boundary conditions on the embedded boundary and Neumann boundary
o conditions on the domain in Figure 5, right. and the second-order spectrum in
e Figure 5, left. In both cases, Dirichlet boundary conditions on the embedded
o boundary introduce more complex eigenvalues. In both cases, all the eigenvalues

o have negative real components and are therefore stable.

Z% 5. Effect on accuracy of geometric differentiability
39 Fundamentally, the appeal of a higher-order method is that one can achieve higher

40 accuracy with fewer degrees of freedom. To reliably achieve this rate of convergence,
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Second-order operator from [32]. Fourth-order operator.

Figure 5. Plots of eigenvalues for the two-dimensional Poisson operators with Dirichlet
boundary conditions on the embedded boundary and Neumann boundary conditions on
the domain boundary. Real and imaginary parts on the x- and y-axes, respectively, with
different scales for each operator. The fourth-order operator is very similar to second-order
one, but with a few eigenvalues with significantly larger real or imaginary components.
The geometry implicit function is described by (35) and the resolution is 322,

however, one needs a sufficiently smooth description of the geometry. To achieve
O(h*) accurate fluxes, Schwartz, Percelay et al. [33] show that all geometric
moments in the calculation must also converge at oh").

Unfortunately, geometric descriptions are not always sufficiently smooth. This
is not necessarily catastrophic. In [20], it is shown that large truncation errors can
be ameliorated under certain circumstances; specifically, O(1) truncation errors
at a Dirichlet boundary condition will not prevent second-order solution error
convergence. Similarly, O(h) truncation errors at a Neumann boundary will not
prevent second-order solution error convergence.

These competing effects present a bit of a complex picture. To see how our algo-
rithm fits into this picture, we compare our algorithm to the widely used Schwartz
et al. [32] algorithm for Poisson’s equation. We compare the two algorithms using
both a smooth and a nonsmooth geometric description. These comparisons are done
for both Dirichlet and Neumann boundary conditions at the embedded boundary. Be-
cause some of the techniques used in this section are resource-intensive, we restrict
our comparisons to two dimensions so we can achieve much higher resolutions.

All of these tests are done with an exact potential

D
¢e = [ [ sin(rxa),
d=1
and a charge distribution p = V- V¢,. The calculation domain is the unit square
and there are Dirichlet boundary conditions on the domain boundary. In all of
these results we present both the resolution and the number points in 2 at that
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1 1.09
Fy l 0.82
— 0.55
3 = 027

4 0
? x10~1
E

7

8

9
10
- Figure 6. Solution error for the ellipse geometry in two dimensions using the current fourth-
12 order algorithm with a resolution of 5 122, Left, using Neumann boundary conditions on
13 the embedded boundary and Dirichlet boundary conditions on the domain boundary. Right,
e using Dirichlet boundary conditions both on the embedded and on the domain boundary.
15
6 algorithm resolution # points Loo(€) Li(e) L;(e) w
17 | Schwartz 322 952 1.419-107 3.354.107* 4.144.107* —
s Schwartz 642 3752 3.511-100* 8.645-107 1.070-107* 1.95
o Schwartz 1282 14884 8.639-107°  2.186-107°> 2.709-10~> 1.98
— | Schwartz 2562 59312 2.083-10™° 5.443.10°° 6.741-10° 2.00
— | Schwartz 5122 236832 5.167-107® 1.354.10° 1.677-107° 2.00
2L | Schwartz 10242 946432 1.272-107° 3.380-1077 4.185-1077 2.00
2z current 322 952 2.786-107° 1.041-107% 1.316-107° —
= current 647 3752 1.833.1077  6.897-107%  8.670-10"% 3.91
all current 1282 14884 1.176-107%  4.459.10™° 5.557-10~° 3.95
. current 2562 59312 7.431-107'° 2.833.107' 3.512.1071° 3.97
26 current 5122 236832 5.045-107'" 1.941.107'" 2.396-107!'" 3.86
27
o8 Table 5. Error vs. refinement comparison with the second-order Schwartz et al. algorithm
— with the elliptical geometry. This uses Neumann boundary conditions on the embedded
29 boundary and Dirichlet boundary conditions on the domain boundary. The convergence
30 rates @ are calculated using L.
31
32 resolution This number of points represents the number of degrees of freedom in
33 the calculation.
34

g 5.1. Accuracy vs. resolution for a smooth geometry. First we compare our algo-
36 rithm to the Schwartz et al. algorithm with a smooth geometry. Here, our geometry
37 1is the exterior of the ellipse whose implicit function is described by (35). Figure 6,
38 left, shows a solution error plot with Neumann boundary conditions at the embedded
39 boundary. Figure 6, right, shows a solution error plot with Dirichlet boundary condi-
40 tions. Both cases show that the solution error is distributed throughout the domain.
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algorithm resolution # points Lo (€) Li(¢) L,(€) w
Schwartz 322 952 5.415-1073 1.322-1073 1.715-1073 —
Schwartz 642 3752 1.590-1073  3.592-107* 4.665-10~* 1.87
Schwartz 1282 14884 4.581-107* 9.569-1075  1.243-10~* 1.90
Schwartz 2562 59312 1.259-107* 2.498-10—° 3.247-10 1.93
Schwartz 5122 236832 3.430-10° 6.449.10°° 8.381-10°° 1.95
Schwartz 10242 946432 9.289-107% 1.647-107® 2.142-107° 1.96
current 322 952  7.190-1077 3.169-1077 3.841-1077 —
current 642 3752 4.146-107%  1.907-10~%  2.300-10~% 4.05
current 1282 14884 2.527-107° 1.173-107° 1.400-10° 4.02
current 2562 59312 1.564-107% 7.370-1071 8.717-10711 3.99
current 5122 236832 1.093-1071 5.195-1072 6.109-10712 3.82

Table 6. Error vs. refinement comparison with the second-order Schwartz et al. algorithm
with the elliptical geometry. This uses Dirichlet boundary conditions everywhere. The
convergence rates @ are calculated using L.

Tables 5 and 6 show norms of our solution error at many resolutions for Neumann
and Dirichlet boundary conditions, respectively, for both algorithms. For both
Neumann and Dirichlet boundary conditions, we show the expected convergence
rate of 4 for both Neumann and Dirichlet boundary conditions at the irregular faces.

We also get much smaller errors even with greatly reduced resolution. For
example, in the Neumann case, we get an order of magnitude smaller errors at 642
(Iess than one thousand degrees of freedom) than Schwartz et al. get at 10242 (over
one million degrees of freedom). We expect a different cross-over point depending
on both resolution and the complexity of the boundary. Although our approach
requires significantly more computation and memory, both due to setup (SVD-based
solvers) and solution (using larger stencils), this impact is on a smaller-dimension
domain (codimension 2 and 1 when D is 3 and 2, respectively) only near the
embedded boundary. For a given size problem, there is likely a cross-over point
where our algorithm delivers the same accuracy with many fewer total points.

5.2. Accuracy vs. resolution for a nonsmooth geometry. Now we compare our
algorithm to the Schwartz et al. algorithm with a geometry that is only piecewise
smooth. The geometry is given by the exterior of four or circles as shown in Figure 7.
The implicit function is C! discontinuous. Figure 8, left, shows a solution error plot
with Neumann boundary conditions. Figure 8, right, shows a solution error plot
with Dirichlet boundary conditions. In both cases, the solution error is concentrated
near the discontinuities in the geometry; in the Dirichlet case, it is concentrated in
a very small area.

For Neumann boundary conditions at the embedded boundary, Tables 7 and 8
compare our solution errors with the Schwartz et al. algorithm for Dirichlet boundary
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Ry

— Figure 7. Diagram for our four circle geometry. The computational geometry is the region
1 not covered by these four circles in the unit square, with centers P; = (0.5, 0.5, 0.5),
12 P, =(0.5,0.735,0.5), P3 = (0.2965, 0.3825, 0.5), P4 = (0.7035, 0.3825, 0.5), and radii
13 R; =02, Ry =R3=R4=0.1.

14

15 0 m 119

— I —0.38 -—0.74

10 0.76 2.66

JE— . —0. | A

17 —1.14 —4.58

18 —1.52 l —6.50

; %1072 x10~4

20

21

22

23

24

25 Figure 8. Solution error for the four circle geometry in two dimensions using the current
26 fourth-order algorithm with a resolution of 5 122, Left, using Neumann boundary conditions
; on the embedded boundary and Dirichlet boundary conditions on the domain boundary.
; Right, using Dirichlet boundary conditions both on the embedded and on the domain
- boundary; the error is concentrated very near the cusps in the geometry.

29

30 .. .

~ conditions. The errors for the two algorithms are comparable for Neumann boundary
31 .. . . . ..
2~ conditions, though the higher-order algorithm does show better results with Dirichlet
32

”* boundary conditions. For Neumann boundary conditions on the irregular faces, we
*_ do not even converge at second order. For Dirichlet boundary conditions, we show

** better convergence but it is generally less than fourth order.
35

g 5.3. Singular solutions and error characteristics. One might be tempted to as-
37 cribe this loss in accuracy to a poor approximation of geometric moments. After all,
38 the implicit function from which the moments are generated is not smooth near the
39 corner. To test this theory, we use the refinement algorithm described in [33] to refine
40 the cells near circle intersections by a factor of 10242 in each direction. Since we
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y, algorithm resolution # points Loo(€) Li(e) Ly(€) o
2| schwartz 322 862 3.525-107* 3.006-107° 4.625-107° —
2 Schwartz 642 3370 2.231-1072 9.703-10~* 1.585-1073 1.63
- Schwartz 1282 13318 1.291-1072 5.649-10~* 1.134-1073 0.78
2 Schwartz 2562 52930 1.776-1073 8.885-107 1.325-107* 2.66
o Schwartz 5122 211136 3.576-107% 1.403-107* 2.192-10~* -0.66
L Schwartz 10242 843316 3.033-10~% 1.417-107* 2.089-10~* -0.01
% current 322 862 5.751-1072 4.869-1073 7.208-10° —
o current 642 3370 3.096-1072 1.420-10% 2.721-1073 1.77
o current 1282 13318 2.817-1072 2.132-103 3.204-10~% -0.58
o current 2562 52930 1.969-1072 1.383-10° 2.020-1073 0.62
5 current 5122 211136 1.517-107% 6.754-107* 1.042-10° 1.03
14 Table 7. Error vs. refinement comparison with the second-order Schwartz et al. algorithm
15 for the four circle geometry. This uses Neumann boundary conditions on the embedded
6 boundary and Dirichlet boundary conditions on the domain boundary. The convergence
o rates o are calculated using L.

% algorithm resolution # points Loo(€) Li(e) Ly(€) o
20 Schwartz 322 862 2.191-1072 1.333.107% 1.750-107° —
201/2; Schwartz 642 3370 1.026-1072 3.717-10™* 4.908-10~* 1.84
2 Schwartz 1282 13318 2.850-1073 9.703-10> 1.300-10~* 1.93
23 Schwartz 2562 52930 5.719-107* 2.654-107> 3.491-107 1.87
s Schwartz 5122 211136 8.178-107* 6.686-107% 9.117-10™® 1.98
o5 Schwartz 10242 843316 8.979-107* 1.620-107° 2.330-107% 2.04
26 current 322 862 1.818-1072 1.604-107* 5.435-107% —
27 current 64° 3370 2.797-1073 3.228-107° 1.089-10~* 231
2% current 1282 13318 2.317-1072 4.557-10° 7.391-1075 2.82
2 current 2562 52930 2.705-1073 2.014-1077 4.966-107% 4.49
30 current 5122 211136 6.502-10~* 5.940-107% 2.263-107° 1.76
ha Table 8. Error vs. refinement comparison with the second-order Schwartz et al. algorithm
32 with the four circle geometry. This uses Dirichlet boundary conditions everywhere.The
33 convergence rates w are calculated using L.
34

391/,

g know the geometric moments of the uncut subcells exactly and only one subcell con-
36 tains the discontinuity, this increases the accuracy of the geometric moments dramat-
37 ically. When we run this test, the solution errors do not change. The reason that our
38 accuracy degrades for the four circle geometry is that the solution to the error equa-
39 tion is singular at these points. With homogeneous boundary conditions, the solution
40 of the Poisson equation is singular near corners whose angle is greater than 7 /2 [21].
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Given a truncation error T (defined in (32)) and the solution error € (defined in
(34)), the error equation can be written

L(e)=T. (37)

The boundary conditions for € are homogeneous analogs of the boundary conditions
for ¢ (if ¢’s boundary conditions are inhomogeneous Dirichlet, €’s boundary
conditions are homogeneous Dirichlet). Because our equation is linear, we can
separate the truncation error into two parts. We define 7 to be the truncation error
in cells within the stencil width w of the singular points. We define the nonsingular
component of the truncation error to be 7™ = T — T°. We then compute the
convergence rate of the solution error €™ in the absence of the singular points of
the truncation error by solving

Le™ =T" (38)
with the appropriate homogeneous boundary conditions.
We are given a set of M circles {Cy, ..., Cy}, which intersect at the set of
volumes V¥ ={ Py, ..., Py}. The singular part of the truncation error 7'* is given by
T ifve)s,
TS = ! _ (39)
0 otherwise.

— We solve (38) using both the current fourth-order algorithm and the second-order

22

23

24

25

26

27

28

29

30

Schwartz et al. algorithm. The comparisons with the Schwartz et al. algorithm are
given in Tables 9 and 10. Again, we show that the current algorithm has comparable
errors at 322 resolution to the Schwartz et al. algorithm at 10247 resolution. Once
we remove the singular part of the truncation error, we once again show consistent
fourth-order accuracy with both Dirichlet and Neumann boundary conditions on
the irregular faces.

6. Geometric regularization and accuracy

£ We recognize that the technique of removing the singular parts of the truncation

32

33

34

35

36

37

38

39
40

error is not generally useful to larger applications. The tests presented in Section 5.3
are predicated upon knowing a priori the singular points and the exact solution. For
high-order methods to be more generally useful, they must produce much better
accuracy than lower-order methods in the presence of geometric discontinuities
without this prior knowledge. In this section, we present a method to smooth the
geometric description over a controlled length scale. We then show that, if one is
careful about how this length scale converges with grid refinement, she can retain
superior accuracy compared to lower-order methods even when the input implicit
function is only C°.
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algorithm resolution # points Lo (e™) Ly(e™) L,(e™) [2)

2 Schwartz 322 862 1.329.1073 3.557-107* 4.370-10™* —
3 Schwartz 647 3370 2.881-107* 8.740-107>  1.073-107* 2.02
4 Schwartz 1282 13320 7.068-107°  2.084-107° 2.552:10~° 2.06
5 Schwartz 2562 52930 1.777-107° 5.171-10°® 6.327-107® 2.01
6 Schwartz 5122 211136 4.382:107° 1.278-107° 1.564-107° 2.01
I Schwartz 10242 843316 1.033-107° 3.222.1077 3.946-1077 1.98
5 current 322 862 2.353.107% 7.242.1077 8.939.1077 —
Y current 642 3370 1.864-1077 5.838-107%  7.354.10% 3.63
o0 current 1282 13318 1.133.107%  3.783.10™° 4.735.10™° 3.94
o current 2562 52930 7.215-107'° 2.405-107'° 2.993.107'° 3.97
o current 5122 211136 5.392-107'"  1.649-10~'" 2.046-107!'" 3.86
13 Table 9. Convergence of the nonsingular part of the solution error vs. refinement for the
14 current algorithm and for the Schwartz et al. algorithm. This uses Dirichlet boundary
— conditions on the domain boundary and Neumann boundary conditions on the embedded
B boundary.The convergence rates w are calculated using L.
16
. algorithm resolution # points Loo(e™) Li(e™) Lo(€™) w
% Schwartz 322 862 6.121-1073  1.440-1073 1.875-107% —
— | Schwartz 647 3370 1.552-107% 3.911-107* 5.066-10~* 1.88
— Schwartz 1282 13320 4.119-107*  1.002-107*  1.321-10~* 1.96
2L | Schwartz 256 52930 1.355-107*  2.669-107° 3.515-10° 1.90
2 Schwartz 5122 211136 3.215-107°  6.797-10°°® 8.913.107% 1.97
23 Schwartz 10242 843316 9.172-107°® 1.640-107%  2.152.107% 2.05
2 current 322 862 5.126-1077 1.741-1077 2.236-1077 —
25 current 642 3370 2.684-107%  1.080-107% 1.338-10% 4.01
26 current 1282 13318 1.586-107° 6.380-107'% 7.764.107' 4.08
27 current 2562 52930 9.650-10~'" 3.882-107'! 4.683-10~'! 4.03
28 current 5122 211136 6.676-107'2 2.693-107'2 3.232:107'> 3.84
2 Table 10. Convergence of the nonsingular part of the solution error vs. refinement for
30 both the current algorithm and the Schwartz et al. algorithm. This uses Dirichlet boundary
31 conditions everywhere.The convergence rates @ are calculated using L.
32
*_6.1. Smoothing the geometric description. Recall that, to generate our geometric
34

= moments using the algorithm described in [33], we must start with an implicit func-

% tion I(x) whose zero surface (or contour, in two dimensions) forms the embedded

36
37
38

39

40

2% each circle C;, with radius r; and center y; is given by

D
Ci(x)=r7=> (xa—yia).

d=1

~_ boundary. Consider the geometry described in Figure 7. The implicit function for
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1 The overall implicit function at any point is given by taking the maximum of the
2", four functions:

E I(x) = | max_ Ci(x). (40)

<=d<=

1l

4
~5 Since our geometry is smooth away from specific intersection locations, we wish

"5 to only smooth within a length scale é from the intersections of implicit function
~, zero surfaces. To smooth this description we could use a mollifying function and
"5 integrate the convolution directly as in [36]. This has the advantage that the length
"5 scale over which the smoothing happens is well defined. These functions can be
1o delicate, however, to integrate numerically. Shapiro [34] presents an alternative
11 approach called R-functions (named for V. L. Rvacev, the originator of the concept
1> [31]), in which logical functions such as maxima, minima and absolute values are
13 replaced by differentiable functions. Though this method is far more numerically
14 tractable, the functions that Shapiro presents do not have a well-defined length scale
15 over which they smooth. The smoothing method described here provides both a
16 Wwell-defined smoothing length and is numerically tractable.

17 One way to write the maxima function used in (40) is by using an absolute value:

18

= max(a,b)z%(a—i—b—i—la—bl).

19

201/ 20 Let us define a function maxs which smooths the function max over a length scale §,
e

21

o maxs (@, b) = 5(a +b+ As(a—b)),

23 where A; is the convolution of the absolute value function with a sufficiently smooth

24 function 1s(x) with compact support in contained within x € [—4, §]:
25

26

o0 [ee) 0
o As(x) = / Ws(x—y)lyldy=/1lfs(x—y)ydy —/ Vs(x —y)ydy.
—00 0 —00

28

29 Since our algorithm is fourth order in fluxes, we use geometric moments to fourth
30 order. The algorithm in [33] requires that the implicit function have derivatives to
31 fourth order. This implies that the mollifier 15 needs to be C* and these derivatives

32 must also have compact support. We also require
33

37 o0
- [ vmray=1.

36

37 Our choice of s is

38
o icos“(”—x) if —8<x<6,
391/5— Vs(x) = 85

40

otherwise.
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algorithm resolution # points Loo(€) Li(e) Ly(e) w
Schwartz 322 862 1.989-1072 2.026-10~3 3.003-107° —
Schwartz 647 3368 2.593-1073 2.686-107* 3.564-107* 2091
Schwartz 1282 13316 1.171-107* 1.207-10~* 1.657-10~* 1.15
Schwartz 2567 52916 2.522-107* 3.012:107> 4.093-107 2.00
Schwartz 5122 211062 6.144-10> 7.472-107° 1.014-10> 2.01
Schwartz 10242 843004 1.417-107 1.798-107% 2.436-107° 2.05

current 322 862 1.525-107' 1.166-1072 1.905-1072 —

current 642 3368 1.739-103 5.812-10° 1.102-107* 7.64

current 1282 13316 7.054-107° 3.077-107° 5.886-107¢ 4.23

current 2567 52916 3.593-107° 4.053-10~% 8.884-107% 6.24

current 5122 211062 1.425-1077 9.227-10° 1.473-10~% 2.13
Table 11. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet on the domain
boundary and Neumann on the embedded boundary. Here we set the geometric regularization
length to a constant 6 = 0.01. The convergence rates @ are calculated using L.

algorithm resolution # points Loo(€) Li(¢) L;(€) w

Schwartz 322 862 1.184-1072 1.869-107% 2.522.1073 —

Schwartz 642 3368 1.715-1073  4.142.107* 5.414.107* 2.17

Schwartz 1282 13316 5.922-107* 1.023-107* 1.356-107* 2.01

Schwartz 2567 52916 1.355-107* 2.676-107° 3.527-107° 1.93

Schwartz 5122 211062 3.215-10° 6.784-107° 8.892.10° 1.97

Schwartz 10242 843004 8.063-107° 1.644-107° 2.159-107° 2.04
current 322 862 7.904-1073 4.768-107° 2.992.107* —
current 642 3368 9.380-10 1.418-107° 4.421.107° 5.07
current 1282 13316 2.921-107® 9.434.10° 5.098-107% 7.23
current 2567 52916 2.745-1077 2.839.107'° 2.146-107° 5.05
current 5122 211062 3.223-107° 3.365-107'2 3.125-10°'' 6.39

Table 12. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet everywhere.
Here we set the geometric regularization length to a constant § = 0.01. The convergence
rates o are calculated using L.

which fulfills these requirements. We need to integrate only where the mollifier is

nonzero. If a and b are signed distance functions, then § is the length scale over

*_ which As (a, b) represents a smoothing of the absolute value function.

36

i 6.2. Regularization length scale and grid refinement. Now we investigate how
38 one picks the length scale §. For the piecewise-smooth geometric description
39 presented in Section 5.2, we present four different choices for § and see how the
40 accuracy changes with grid refinement. First we use a constant § = 0.01. Second,
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algorithm resolution # points Lo (€) Li(¢) L, (¢) w

2 Schwartz 322 828 6.864-1073 1.503-1073 1.960-1073 —

3 Schwartz 64> 3238 1.628-1073 3.894.107* 5.070-107* 1.94
n Schwartz 1282 12810 5.351-107* 1.014-107* 1.345-10™* 1.94
5 Schwartz 2562 50918 1.404-107* 2.669-107° 3.516-107 1.92
"o | Schwartz 5122 203052 4.085-10~° 6.808-107° 8.933-10°° 1.97
I Schwartz 10242 810964 9.834-107% 1.640-107® 2.153-107% 2.05
s | current 322 828 9.448-107° 1.965-107° 5.407-10° —
Y current 642 3326 9.659-1077 1.622-107% 4.080-10~% 6.92
0 current 1282 13266 2.179-107% 8.458.1071° 1.295.107° 4.26
o current 2562 52886 2.110-107% 9.797.107"" 2.689-1071° 3.10
— current 5122 211088 1.028-107% 2.417-107"" 1.331-1071% 2.01
12
13 Table 13. Comparison of error rates with the four-circle geometry for the current algorithm
14 and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet everywhere.
— Here we set the geometric regularization length to § = 4h. The convergence rates @ are
15

calculated using L.

17 we choose delta to vary linearly with 4 (§ = 4h). Third, we choose § = +/R#,
15 where R} = 0.2 is the radius of the largest circle in Figure 7. Finally, we choose

= §=0.1v R3.

21 The convergence rates for the four choices are quite different.

22 First, we set our geometric regularization length to a constant § = 0.01. Tables
23 11 and 12 show error rates for Neumann and Dirichlet boundary conditions at the
24 cut faces, respectively. With this fixed §, the current algorithm shows much smaller
25 errors than Schwartz et al. In the L norm, we get better error rates at 322 than
26 Schwartz, et al. gets at 1024%. We also show excellent convergence rates with both
27 Neumann and Dirichlet boundary conditions at the irregular faces.

28 Next, we set our geometric regularization length to § = 4h. Tables 13 and 14

29 show the error rates for Dirichlet and Neumann boundary conditions at the cut faces,
30 respectively. With § converging linearly with grid refinement, the improvement over
31 Schwartz et al. is far more modest, especially with Neumann boundary conditions
32 at the cut faces. Our convergence rates in this case (again, especially with Neumann
33 boundary conditions), are erratic.

34 Next, we set our geometric regularization length to § = /R h. Tables 15 and 16

35 show the error rates for Neumann and Dirichlet boundary conditions at the cut faces,
36 respectively. With this formulation of §, we once again get much better error rates
37 than Schwartz et al. Here again, in the L; norm, we get better error rates at 322 than
38 Schwartz, et al. gets at 10242, Our convergence rates here for Dirichlet boundary
39 conditions at the embedded boundary are fourth order. For Neumann boundary

40 conditions at the irregular faces, our convergence rates here are more erratic.
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algorithm resolution # points Lo (€) Li(e) Ly (€) w
Schwartz 322 828 1.232.107% 3.357-107* 4.141-10~* —
Schwartz 642 3238 4.626-107* 1.379-10~* 1.736-10~* 1.28
Schwartz 1282 12810 2.328-10* 5.009-10~° 6.474-1073 1.46
Schwartz 2562 50918 1.477-10~* 2.196-107> 2.940-107° 1.19
Schwartz 5122 203052 8.893-107° 9.725-107° 1.335-107° 1.17
Schwartz 10242 810964 4.877-107° 4.166-107° 5.785-107°® 1.22
current 322 828 1.683-1073 1.122-107* 2.043.10~* —
current 642 3326 6.971-107® 5.483.1077 9.162-1077 7.67
current 1282 13266 6.512-1077 6.887-107% 9.896-107%  2.99
current 2562 52886 8.852-107 7.875-107% 1.125-1077 -0.193
current 5122 211088 4.898-1077 3.394-107% 5.000-10% 1.21
Table 14. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet on the
domain boundary and Neumann on the embedded boundary. Here we set the geometric
regularization length to § = 4h. The convergence rates @ are calculated using L.
algorithm resolution # points Lo (€) Li(e) L;(€) w
Schwartz 322 846 1.578-10% 5.115-107* 6.401-10~* —
Schwartz (e 3312 5.006-107* 1.460-107% 1.845-107* 1.80
Schwartz 1282 13088 2.112-107* 4.692-107 6.028-10° 1.63
Schwartz 2567 52022 8.354-107° 1.484.107 1.940-10° 1.66
Schwartz 5122 20751 3.258-107° 4.992.107% 6.646-107° 1.57
Schwartz 10242 82879 1.000-107 1.449-107° 1.944.107® 1.78
current 322 846 6.139-107° 4.725-107°® 8.113-107¢ —
current 642 3330 1.274-107° 8.435.107% 1.691-1077 5.80
current 1282 13252 4.698-1077 4.297-107% 6.226-10~% 0.973
current 2562 52794 8.422-107% 7.356-10° 1.057-107% 2.54
current 5122 210856 2.127-107% 1.846-10° 2.645-107° 1.99

Table 15. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet on the
domain boundary and Neumann on the embedded boundary. Here we set the geometric
regularization length to § =~/ Ry h. The convergence rates & are calculated using L.

34 Finally we set geometric regularization length to § = 0.1V th. Tables 17 and
35 18 show the error rates for Dirichlet and Neumann boundary conditions at the cut

36 faces, respectively. We see excellent convergence rates and error values for both
37 types of boundary condition.
Clearly, how the regularization length varies with grid refinement is an important
39 concern. We suspect that the optimal formulation will depend upon the nature of
40 the partial differential equation as well as its boundary conditions.

38
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algorithm resolution # points Lo (€) Li(¢) L,(€) w
Schwartz 322 846 6.581-107% 1.496-103 1.993.10° —
Schwartz 642 3312 1.890-10~2 4.014-107* 5.254.10~* 1.89
Schwartz 1282 13088 4.148-10* 9.815-10~°> 1.295-10* 2.03
Schwartz 2562 52022 1.355-107* 2.626-10> 3.447-10 1.90
Schwartz 5122 207510 3.214-107° 6.751-10°® 8.842.10°° 1.95
Schwartz 10242 828794 8.573-107° 1.643-10¢ 2.157-10°% 2.03
current 322 846 5.402-10¢ 2.143.1077 3.879-1077 —
current 642 3330 2.792-1077 1.039-107% 1.807-10°% 4.36
current 1282 13252 1.421-107% 5.089-107' 7.016-1071 435
current 2562 52794 2.260-10~° 3.414.10°"" 7.429.10-" 3.89
current 5122 210856 4.074-10°'9 2.406-10-'2 5.238-107!2 3.82

Table 16. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet everywhere.
Here we set the geometric regularization length to § = +/ Rjh. The convergence rates @

are calculated using L.

algorithm resolution # points Loo(€) Li(e) L;(€) w
Schwartz 322 846 8.863-1073 1.775-107% 2.356-1073 —
Schwartz 642 3312 1.700-1073 4.134-107* 5.400-10~* 2.10
Schwartz 1282 13088 6.486-107% 1.026-107* 1.361-107* 2.01
Schwartz 2567 52022 1.753-107% 2.692-10> 3.557-10> 1.93
Schwartz 5122 207510 3.698-10~° 6.802-107¢ 8.921-10°® 1.98
Schwartz 10242 828794 1.002-107° 1.640-10~° 2.152.10~°® 2.05
current 322 846 2.322-1073 1.896-10° 9.508-10° —
current 642 3330 8.003-10~° 1.197-107® 3.742.107¢ 3.98
current 1282 13252 3.913-10°¢ 7.621-10° 6.239-10~% 7.29
current 2562 52794 6.676-1077 7.522.107'0 6.327-107° 3.34
current 5122 210856 5.136-107% 5.920-10"'" 4.836-107'° 3.66

Table 17. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditj‘ons are Dirichlet everywhere.
Here we set the geometric regularization length to § = 0.1 R13 h. The convergence rates
w are calculated using L.

7. Conclusions

35 We present a fourth-order, conservative discretization of Poisson’s equation in

36 the presence of complex geometry. We show that our algorithm converges at the

37 expected rate for smooth solutions and geometries. We show that our algorithm
38 has a similar eigenvalue spectrum to the a widely used second-order algorithm
39 but is much more accurate with a sufficiently smooth geometric description. We
40 show that the effect of geometric discontinuities on error rates can be profound.
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algorithm resolution # points Loo(€) Li(¢) L, (€) w
Schwartz 322 846 9.291-1073 1.131-1073 1.540.107% —
Schwartz 642 3312 2.222-1073 2.422-107* 3.190-10~% 2.22
Schwartz 1282 13088 1.348-10~% 1.408-10~* 1.940-10~* 7.82
Schwartz 2562 52022 3.738-10~* 4.130-107° 5.694-10> 1.76

Schwartz 5122 207510 1.141-10™* 1.087-1075 1.500-107> 1.92
Schwartz 10242 828794 3.202-107> 3.167-10°° 4.370-10°% 1.77

current 322 846 4.085-1072 3.202-107% 5.722.1073 —
current 642 3330 1.254-107% 3.802-107 7.107-107° 6.39
current 1282 13252 1.189-107* 6.829-107° 1.186-1075 2.47
current 2567 52794 1.318-107° 6.356-1077 1.223-107° 3.42

current 5122 210856 1.134-107% 5.400-10~% 8.949.10°% 3.55

Table 18. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet on the
domain boundary and Neumann on the embedded boundary. Here we set the geometric
regularization length to § = 0.1 \/4 R%h. The convergence rates @ are calculated using L.

. Even in the presence of these discontinuities, however, higher-order convergence
can be recovered if one removes the singular parts of the solution or smooths the

5o geometric description. To retain higher-order accuracy, how the smoothing length
20%/2 5, scale varies with grid refinement is an important concern. We present one such

22

23

24

25

refinement scheme which performs quite well for both Neumann and Dirichlet
boundary conditions at cut faces.
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