

Maximizing The Impact of Emerging Photonic Switches At The System Level

George Michelogiannakis⁺, Min Yeh Teh^{*}, Madeleine Glick^{*}, John Shalf⁺, Keren Bergman^{*}

+LBNL *Columbia University

Motivation

 Photonics West presentation in 2018 on simulation photonic networks at the architectural level

> How many Js per bit are enough?

> > I'd rather we focus on other metrics

Overview

- Provide a discussion of:
 - Emerging trends in HPC and datacenter systems
 - How key photonic switch properties motivate different network architectures
- Using photonics as a drop-in replacement in existing networks does not promise a substantial system-wide impact
- * Highlight the value of <u>co-design</u> and multi-disciplinary collaboration

Pries, R., Jarschel, M., Schlosser, D., Klopf, M., and Tran-Gia, P., "Power consumption analysis of datacenter architectures," in [Green Communications and Networking]

Systems Trends

- * Resource Disaggregation
- ★ Larger scales
- * Non-volatile memory
- ★ 3D memory
- Compute specialization
- Vector computing
- Collective operations
- * Application data locality management
- Adapting photonic switches to serve these trends bear significant promise

* 75% of node hours use 25% or less of node memory

John Shalf et al, ""Photonic Memory Disaggregation in Datacenters", OSA Advanced Photonics Congress (AP), July 2020

Resource Disaggregation

Keren Bergman, "PINE: An Energy Efficient Flexibly Interconnected Photonic Data Center Architecture for Extreme Scalability", OI 2018

 Nanosecond-scale reconfiguration latencies motivate per-packet reconfiguration

Slower Reconfiguration Motivates Different Network Architecture

Michelogiannakis et al, "Bandwidth Steering in HPC Using Silicon Nanophotonics", SC 2019

TULLIN

BERKELEY LAB

Synergistic Advancements

- * Electronic packet switch routing tables
- ★ Control plane
- * Algorithms

- ***** *Reconfiguration serves multiple trends*
- * But it also motivates a variety of network architectures

- Currently more than one photonic switch hop is challenging due to signal loss
 - Usually have to convert back to the electrical domain
- Low signal loss enables all-photonic topologies or sub-networks with multiple consecutive photonic hops
- In turns, this increases the radix of efficient all-photonic paths, reducing the importance of resource placement across the system

 OEO conversion cost affects the distance for which photonics are prudent

Other Properties

- Optical computing
 - All-optical routers?
- ★ Multicast capability
 - Co-designed with other network components

Conclusion

- * Photonic switches are not best used as drop-in replacements
- Instead, lets adapt photonic switches to support existing system trends
- Also, understand the architectural opportunities from each photonic switch property
- ★ Co-design