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Abstract—Structured-grid linear solvers often require man-
ual packing and unpacking of communication data to achieve
high performance. Orchestrating this process efficiently is
challenging, labor-intensive, and potentially error-prone. In this
paper, we explore an alternative approach that communicates
the data with naturally grained message sizes without manual
packing and unpacking. This approach is the distributed
analogue of shared-memory programming, taking advantage
of the global address space in PGAS languages to provide
substantial programming ease. However, its performance may
suffer from the large number of small messages. We investigate
the runtime support required in the UPC++ library for this natu-
rally grained version to close the performance gap between the
two approaches and attain comparable performance at scale
using the High-Performance Geometric Multgrid (HPGMG-
FV) benchmark as a driver.

Keywords-HPGMG; Naturally-Grained Messages; VIS func-
tions; Group Synchronization; PGAS; UPC++;

I. INTRODUCTION

High-Performance Geometric Multigrid (HPGMG-FV) is
a benchmark designed to proxy linear solvers based on finite-
volume geometric multigrid [10]. As a proxy application,
it has been used by many companies and DOE labs to
conduct computer science research. It implements the full
multigrid F-cycle with a fully parallel, distributed V-Cycle.
Its communication is dominated by ghost exchanges at
each grid level and restriction and interpolation operations
across levels. The primary data structure is a hierarchy of
three-dimensional arrays representing grids on the physical
domain. The computation involves stencil operations that
are applied to points on the grids, sometimes one grid
at a time and sometimes using a grid at one level of
refinement to update another; the interprocessor commu-
nication therefore involves updating ghost regions on the
phases of subdomains of these grids. Given the performance
characteristics of current machines and the discontiguous
nature of the data on some of the faces of these grids,
the ghost-region data must be packed at the source process
and correspondingly unpacked at the destination process
to ensure high performance and scalability. The multigrid
computation has several different types of operators that
may involve different packing patterns, as one must deal

with unions of subdomains, deep ghost-zone exchanges, and
communication with edge and corner neighbors. The manual
packing and unpacking process is therefore very complex
and error-prone.

A different approach is to implement the algorithm in
a more natural way by expressing communication at the
data granularity of the algorithm (sequences of contiguous
double-precision words) without manual message aggrega-
tion. The PGAS programming model provides a suitable
environment for us to evaluate this approach. The global
address space and efficient one-sided communication enable
communication to be expressed with simple copies from one
data structure to another on a remote process, analogous to
shared-memory programming but using puts or gets rather
than calls to memcpy. We refer to this as naturally grained
communication, since the messages match the granularity of
the memory layout in the data structure. For example, copy-
ing a face of a multidimensional array may be accomplished
with a few large messages if it is in the unit-stride direction
or numerous small messages consisting of individual double-
precision words if it is in the maximally strided direction.

As described above, codes developed with natural mes-
sage sizes often generate a large number of small messages.
Unfortunately, current HPC systems often favor large mes-
sages, so flooding the network with millions of small mes-
sages may significantly degrade application performance. To
address this issue, we investigate what features the runtime
system can provide to enable a naturally expressed imple-
mentation to be competitive with a highly tuned but more
complex version. We use the open-source UPC++ [20] library
as our framework for this study, examining features such
as 1) exploiting hardware cache-coherent memory systems
inside a node to avoid message overhead, 2) library sup-
port for communicating non-contiguous data, and 3) group
synchronization. With these three features, our naturally-
grained implementation attains performance comparable to
the highly tuned bulk-communication version at up to 32K
processes on the Cray XC30 platform.
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Figure 1. The full geometric multigrid cycle.

II. RELATED WORK

To improve the performance of non-contiguous data trans-
fers, Chen et al. studied coalescing fine-grained messages at
compile time for UPC applications [4]. However, their work
required compiler support to find optimization candidates,
which is very difficult for complex C/C++ codes. Willcock
et al. implemented message coalescing for AM++ based
on message types [17]. Their work requires certain imple-
mentation parameters, such as the buffer length to hold the
messages, to be set properly to improve performance. On
the other hand, in our work, the runtime provides explicit
support for non-contiguous messages, which maximizes
performance at the cost of some programming effort from
the application writer.

Regarding synchronization, Belli and Hoefler [1] proposed
a notified-access mechanism to reduce synchronization over-
head for one-sided messages in producer-consumer algo-
rithms. D. Bonachea et al. [3] proposed a signaling-put
mechanism to couple data transfer and synchronization for
point-to-point communication. In our approach, we propose
an asymmetric group-synchronization mechanism to avoid
global barriers in nearest-neighbor communication. While it
may potentially provide less performance than directly using
point-to-point synchronization, it provides a simple interface
that is similar to a barrier.

In our prior work [14], we developed a naturally grained
version of the miniGMG benchmark. However, we did not
attempt to optimize performance of the naive implementa-
tion. Furthermore, HPGMG is much more complicated due
to its full multigrid cycle, level-by-level domain decompo-
sition, and redistribution of the workload to a subset of the
processes when there is not enough work at coarser levels
in the multigrid cycle.

A number of performance studies have also been done
using the Global address space Programming Interface,
GPI-2 [15], [12], [9], [8], which is a library-based PGAS
model and does not involve compiler optimizations specific
to parallel computation or data movement. Our focus is

somewhat different, namely to examine runtime support
mechanisms that enable a naturally grained implementation
to compete with highly tuned bulk-copy versions.

III. HPGMG-FV

In this paper, we use a UPC++ port of HPGMG-FV [10]
as a driver for our PGAS communication optimizations.
HPGMG-FV solves the variable-coefficient PDE b∇·β∇u =
f using the finite-volume method on a structured grid. As
such, it is superficially similar to miniGMG [13], [18] which
we used as a basis for our previous work [14]. However,
unlike miniGMG, HPGMG uses Full Multigrid (FMG) and
a distributed V-Cycle. As shown in Figure 1, first, the right-
hand side of the finest grid (e.g. 2563 on [0,1]3) is restricted
to the coarsest grid (e.g. 13 on [0,1]3) and an accurate
solution is obtained at this level. The solution on the coarsest
grid is interpolated to provide a good initial vector on the
next finer level (e.g. interpolate the 13 solution to provide
an initial guess for the 23 grid). A V-cycle starting with
this new finer grid improves the solution (e.g. a V-cycle
from 23 to 13 and back). Then, interpolation predicts the
solution for the next finer grid (43) and a following deeper
V-cycle makes it better, and so on. Ultimately, a good initial
guess is interpolated to the 2563 grid and one final V-cycle
is performed. Within the recursive V-Cycle, a series of pre-
and post-smooths are performed and the restriction of the
residual is used to provide the right-hand side for the next
coarser grid.

A. Domain Decomposition

The grids with different spacings (e.g. 2563 vs. 1283

on [0,1]3) form hierarchical grids or levels. Each level is
represented by a cubical domain and is partitioned into
cubical boxes in i, j, k directions. The box is the basic
partition unit and distributed among the processes. Boxes can
be either smaller, the same size, or larger on coarser levels,
depending on the size of the process subset assigned to work
on the level, but the total number of cells is always 8× less.
Each box maintains a list of the vectors u, r, f , etc. shown in



Figure 1. In addition, the box size is augmented with ghost
zones, which replicate data from neighboring boxes or are
computed based on boundary conditions when non-periodic
boundary conditions are applied. Therefore, only the data
in direction i are contiguous. Figure 2 illustrates the box
layout for the two-dimensional case. The shaded areas for
box 0 represent the ghost zones. At most, the ghost-zone
data may come from 8 different neighboring boxes to fill
in the 8 ghost regions. In three dimensions, the neighboring
boxes can be as many as 26, indicating that one box may
have to communicate with 26 different neighbors to fill in
its ghost zones.
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Figure 2. 2D illustration of the ghost zone exchange and boundary
condition in the 3D HPGMG-FV.

One major difference from miniGMG lies in the domain
decomposition. In miniGMG, the domain decomposition is
preserved across restrictions, so no communication is needed
for restriction and interpolation. However, in HPGMG-FV,
the domain decomposition is on a level-by-level basis: when
there is insufficient work, computation is redistributed onto
a subset of the processes. At the extreme, only one process
needs to work on the coarsest level. This changes the dis-
tribution of message sizes to favor smaller messages. More-
over, communication becomes necessary when restricting
grids to coarser levels or interpolating the solutions to finer
ones, which inflates the message count at the agglomeration
threshold.

B. MPI Communication Orchestration

There are three major communication operations in
HPGMG-FV. The first consists of the ghost exchanges inside
the smooth and residual functions, which occur at the same
grid level. The other two occur across levels inside the
restriction and interpolation operations, respectively. In this
section, we describe how these communications are setup
and executed in the highly tuned MPI implementation.

The execution of each communication operation is divided
into four steps and highlighted in Figure 3(a).

1) Packing: Post MPI_Irecv operations. Pack the data
into a series of 1D buffers based on precomputed
information, with each buffer targeting one neighbor
process.

2) Sending: Initiate MPI_Isend operations, with one
message for each neighboring process.

3) Receiving: Call MPI_Waitall to wait for incoming
data.

4) Unpacking: Unpack the 1D buffers based on precom-
puted information into the corresponding ghost zones
of the local boxes.

These steps are common in many MPI applications that
use structured grids. They ensure pairwise synchronization
and aggregate data to amortize overhead, and each process
only needs to send and receive one message for each of
its neighbors. However, setting up data structures to control
the packing and unpacking operations is challenging; each
process needs to figure out exactly which surfaces of its local
boxes need to be sent to each neighbor and how to pack them
into the 1D buffers so that they get correctly unpacked at
the destination. This procedure is not only complex but also
error-prone, as one must deal with unions of subdomains,
deep ghost-zone exchanges, and communication with edge
and corner neighbors. It comprises about 20% of the total
HPGMG-FV source code and is the most difficult part of
the code to write.

The following is a simplified description of the setup
process.

1) Prepare for packing: For each local box and every
direction, find the neighboring boxes, compute the
sending surfaces, and record the surface information
and the corresponding offset in the 1D sending buffer
into an auxiliary data structure. Sort the data structure
according to process ranks and box coordinates.

2) Prepare for unpacking: For each local box and every
direction, find the neighboring boxes, compute the
receiving ghost zone, and record the zone information
and the corresponding offset in the 1D receiving buffer
into an auxiliary data structure. Sort the data structure
according to process ranks and box coordinates.

The purpose of sorting is to guarantee that the data packed
at the source will be unpacked to their corresponding des-
tination boxes correctly. The resulting metadata are cached
for fast replay during execution.

The communication operations in the restriction and
interpolation phases are organized similarly to the ghost-
zone exchanges. The main difference is that the information
in the auxiliary data structures represents inter-level rather
than intra-level neighbors.
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Figure 3. Communication styles for a) MPI, b) Naturally grained UPC++ (Baseline), and c) Natural version with VIS support.
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Figure 4. UPC++ Implementation Software Stack

IV. UPC++

UPC++ [20] is a PGAS programming extension for C++.
It adopts a template library-based implementation but in-
cludes PGAS language features such as those from UPC,
Titanium [19] and Phalanx [6]. As shown in Figure 4,
the UPC++ implementation is built on top of the GASNet
communication library [7] and allows the application to call
GASNet directly if needed. In this section, we describe
the functions used in developing the UPC++ versions of
HPGMG-FV, which include explicit data transfers, shared-
memory support, VIS functions, and synchronization. These
features enable us to write parallel programs with naturally
grained messages and achieve performance comparable to
the bulk version without manually packing and unpacking
the communication data.

A. Global Communication

A UPC++ parallel job runs in SPMD fashion and each pro-
cess has a unique rank, which can be used to identify the pro-
cess for communication and remote task execution. In UPC++,
a global address is represented by a global_ptr<T> type,
which points to one or more shared objects of type T. Global
data movement can be done by calling the non-blocking
async_copy function:

async_copy(global_ptr<T> src,
global_ptr<T> dst,
size_t count);

Both the src and dst buffers are required to be contiguous,
and count is the number of elements of type T. A call
to async_copy initiates the data transfer and returns,
allowing communication to be overlapped with computation
or other communication. The user can query the completion
status of a non-blocking copy using async_try or wait
for its completion using async_wait. UPC++ also supports
other communication operations such as blocking copies
and implicit read and write through global pointers and
references.

B. Hardware-Supported Shared-Memory Access

UPC++ also provides an address-localization (or privati-
zation in UPC terminology) feature that takes advantage
of hardware-supported cache-coherent shared memory if
available. The user application can query if a global pointer
can be addressed directly and if so, convert it to a local
pointer as follows:

global_ptr<T> global_pointer;
if (global_pointer.is_local()) {
T* local_pointer = (T *) global_pointer;
...

}



If the memory location referenced by
global_pointer can be directly accessed by the calling
process through a hardware-supported shared-memory
mechanism (e.g., process-shared memory), the cast results
in the corresponding local pointer to the memory location.
This local pointer provides more efficient data access,
since the runtime system can use direct load and store
instructions, avoiding the overheads of address translation
and going through the underlying message-communication
layers.

C. Non-contiguous Remote Access

For non-contiguous data transfers, we developed a tem-
plate function called async_copy_vis to support the
strided data access.

template<typename T>
async_copy_vis(

global_ptr<T> src, global_ptr<T> dst,
size_t, *srcstrides, size_t *dststrides,
size_t *count, size_t dims);

Here, src and —dst— are the starting addresses for
the source and destination regions and dststrides and
srcstrides are the stride lengths in bytes of all di-
mensions, assuming the data are linearly organized from
dimension 0 to dimension dims. The count array contains
the slice size of each dimension. For example, count[0]
should be the number of bytes of contiguous data in the
leading (rightmost) dimension.

The async_copy_vis function is built on top of the
the Vector, Indexed and Strided (VIS) library in GASNet [2].
The GASNet VIS implementation packs non-contiguous
data into contiguous buffers internally and then uses active
messages to transfer the data and unpack at the destination.

The strategy used by the GASNet VIS implementation
is very similar to the array-based code described in our
previous work [14]. We chose to use GASNet VIS rather
than higher-level arrays to minimize the changes required
to the naturally grained implementation of HPGMG, and
because we did not require the generality provided by UPC++

multidimensional arrays. However, a version of HPGMG
that uses UPC++ multidimensional arrays is currently under
development.

D. Group Synchronization

The primary communication pattern in stencil applica-
tions such as HPGMG-FV is nearest-neighbor communi-
cation, which requires synchronization between processes
to signal when data have arrived and when they may
be overwritten. The simplest way to implement this syn-
chronization is to use global barriers. However, this tends
to hurt performance at scale, since it incurs a significant
amount of unnecessary idle time on some processes due
to load imbalance or interference. In contrast, a point-
to-point synchronization scheme that only involves the

necessary processes can achieve much better performance
and smooth workload variations over multiple iterations if
there is no single hotspot, as in our case. As a result,
we implemented a sync_neighbor(neighbor_list)
function that only synchronizes with the group of processes
enumerated by the neighbor_list. Unlike team barriers,
the neighbor_list is asymmetric across ranks, so that
only one call is required from each rank, whereas team
barriers would require one call per neighbor on each rank.

The current experimental implementation is based on
point-to-point synchronization, with UPC++ shared arrays
representing flag variables, and by spin-waiting until all the
individual synchronizations have completed. The algorithm
is as follows:

for (i = 0; i < number of neighbors; i++)
{set flag on neighbor i};

int nreceived = 0;
while (nreceived < number of neighbors) {

for (i = 0; i < number of neighbors; i++)
if (check[i] == 1) {

if (received flag from neighbor i)
{check[i] = 0; nreceived++;}

advance();
}

The actual implementation also includes the proper fences
to ensure operations are properly ordered. The advance
function in UPC++ is used to make progress on other tasks
while waiting.

V. IMPLEMENTATION IN UPC++

A. UPC++ Bulk Version

Our initial UPC++ version of HPGMG-FV, which we
refer to as the bulk version, follows the same strategy of
manually packing and unpacking communication buffers
as in the MPI code. Unlike the MPI code, however, the
bulk UPC++ implementation allocates the communication
buffers in the global address space and uses one-sided put
operations to transfer data instead of two-sided sends and
receives. Synchronization is implemented using a point-to-
point mechanism similar to signaling put [3]. The bulk
version delivers performance similar to the highly tuned MPI
implementation; Figure 5 shows the best solver time for both
MPI and the UPC++ bulk versions, and the corresponding data
are listed in Table I.

Table I
BEST SOLVER TIME (SECONDS) ON CRAY XC30

Cores 8 64 512 4096 32768

MPI 0.351 0.373 0.387 0.388 0.409
UPC++ 0.348 0.366 0.382 0.385 0.405
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Figure 5. Performance of the MPI and UPC++ bulk implementations on
the Cray XC30 platform.

B. UPC++ Natural Version

In order to avoid having to manually pack and unpack
data, we rewrote the communication portion of the UPC++

bulk implementation to copy contiguous chunks of data. We
refer to this as the natural or naturally grained version,
since it performs copies at the natural granularity of the
data layout, as would be done in shared memory. We made
no changes to the computation part of the bulk code.

We allocate the HPGMG box data in the global address
space, allowing remote ranks to directly access box data
rather than going through send and receive buffers. When
ghost data are needed, a rank can simply locate the neighbor-
ing box ID and use it to reference the data directly by calling
async_copy, avoiding the tedious and error-prone packing
and unpacking operations. This procedure is illustrated in
Figure 3(b). Each contiguous piece of data is directly copied
from source to destination in one message. Since the 3D box
is linearized in memory, only the data in dimension i are
contiguous. Furthermore, since the ghost zones are allocated
together with box data, the message size can be no more than
the size of the box in dimension i, while the minimum size
is one double-precision value (8 bytes) in the case of the
non-contiguous k dimension.

The following is the code used to copy a ghost zone
directly from source to destination:

for (k = 0; k < dim_k; k++) {
for (j = 0; j < dim_j; j++) {
int recv_off = recv_i +

(j + recv_j) * recv_pencil +
(k + recv_k) * recv_plane;

int send_off = send_i +
(j + send_j) * send_pencil +
(k + send_k) * send_plane;

async_copy(send_buf + send_off,
recv_buf + recv_off, dim_i);

}
}

The dim_k, dim_j, dim_i values are the ghost-
zone sizes in dimensions k, j, and i, respectively. The
send_buf, send_i, send_j, and send_k variables
represent the starting address and offsets of the source
region, while recv_buf, recv_i, recv_j, and recv_k
are the starting address and offsets of the destination region.
Finally, send_pencil and send_plane are the stride
lengths of the source data in the j, and k dimensions
while recv_pencil and recv_plane are the corre-
sponding stride lengths of the destination region. To avoid
redundant computation, we save the source and destination
information for each ghost zone for reuse. Compared to the
bulk implementation, we completely avoid the complicated
communication setup.

1) Optimizations: The above baseline implementation
avoids the extra copying to pack and unpack data into
and out of communication buffers. However, it results in
a large number of small messages, which can seriously hurt
application performance.

One optimization is that if the source and destination
ranks are on the same physical node, and the hardware and
runtime system support shared memory across processes, we
can directly copy the data from source to destination using
standard memcpy rather than UPC++ async_copy. UPC++

allows us to do so by providing mechanisms for checking
whether or not global pointers can be addressed directly
and for casting them local pointers. We can then use the
local pointer to treat a copy across co-located ranks as a
local copy operation. While UPC++ automatically performs
this check and optimization when async_copy is called,
such a check would be performed in every iteration of the
ghost-exchange loop above. Instead, we manually perform a
single check before entering the loop and then defer to the
local copy code if the destination is locally accessible.

A second optimization is to use the async_copy_vis
functions when the destination is not locally accessible,
which aggregate the small messages into large ones. Its
effect is similar to manually packing and unpacking data
but performed by the runtime library instead of the user.

Another optimization is to use group synchronization
rather than global barriers. To avoid race conditions, syn-
chronization is necessary at the beginning of the communica-
tion phase to ensure that the destination targets are available,
as well as at the end to signify that data transfer has
completed. For simplicity, the baseline implementation uses
global barriers to perform these synchronizations, which
results in excessive synchronization overhead. The optimized
version, on the other hand, uses the group synchronization
mechanism described in §IV-D, which has a similar interface
as a barrier but only involves the neighboring ranks at the
cost of requiring each rank to determine its set of neighbors
before synchronization. However, we do amortize the cost
over many iterations of the HPGMG algorithm by keeping
track of neighbor information.



We further optimize synchronization by reducing the two
synchronizations above to just one in each communication
phase. In our experiments, we use the Chebyshev polynomial
smoother, which alternately performs ghost exchanges on
two variables, resulting in a double-buffering effect and al-
lowing us to eliminate one synchronization on each variable.

VI. RESULTS

A. Experimental Setup

We evaluate flat MPI and UPC++ implementations of
HPGMG-FV on Edison, a Cray XC30 system located at
NERSC [5]. It is comprised of 5,576 compute nodes, each
of which contains two 12-core Intel Ivy Bridge out-of-order
superscalar processors running at 2.4 GHz, and is connected
by Cray’s Aries (Dragonfly) network. On Edison, the third
rank of the Dragonfly is substantially tapered and, as in
all experiments that run in production mode, there is no
control over job placement. Each core includes private 32KB
L1 and 256KB L2 caches, and each processor includes a
shared 30MB L3 cache. Nominal STREAM [16] bandwidth
to DRAM is roughly 103 GB/s per compute node.

The problem size is set as one 1283 box per rank,
and we report the best solve time. In order to simplify
analysis, in our experiments, we set the DECOMPOSE_LEX
macro in HPGMG to switch from recursive data ordering to
lexicographical ordering of data. We run 8 ranks per socket,
16 processes per node, so that it is easier to maintain that
all processes have equal number of boxes at the finest grid
level under all concurrencies. Under such configurations,
we expect the 64 processes attached to each Aries NIC to
be arranged into a plane. Such a strategy has the effect of
increasing off-node and network communication. Since we
want to examine the communication effects at as large scale
as possible on today’s systems, we chose to use the process-
only configuration.

B. Performance

Figure 6 shows the weak-scaling performance of different
implementations as a function of the number of processes
on the Cray XC30 platform. The enumerated optimizations
are incremental from the baseline.

As expected, the highly tuned UPC++ bulk version (labeled
as “Bulk”) obtains the best overall performance (comparable
to MPI as shown in §V-A), while the original implementation
with naturally grained message sizes (labeled as “Baseline”)
delivers the worst performance. When 8 processes are used
(all inside a single socket), the natural version is about
1.44× slower than the bulk version, and when 64 processes
are used (4 nodes), the performance gap increases to 2.2×.
Nevertheless, at 32K processes, the performance gap only
increases to 2.4×. Since a gap exists even on a single node,
both on-node and intra-node performance issues must be
addressed.

When shared-memory support is enabled in UPC++ (la-
beled as “+SHM”), performance improves substantially.
Figure 7 illustrates the effect of enabling shared-memory
support by comparing performance with and without such
support in a microbenchmark that consists solely of one-
sided put operations between two processes on the same
node. As expected, there is a significant performance gap
between the two versions.

Moreover, we distinguish the local data movements and
remote ones explicitly in our code. This not only helps us
to avoid the overhead of going through the UPC++ runtime
but also enables us to perform special optimization for local
operations, such as eliminating short loops. The improved
performance is labeled as ”+Local Opt”, which maintains
parity with the bulk version up to 64 processes. However,
for higher concurrency, its performance stills falls far behind
the bulk version.

C. Scalability

To further improve performance at scale, we make use of
the non-contiguous transfer function async_copy_vis,
which can aggregate fine-grained (doubleword-sized) mes-
sages targeted at the same destination process into a small
number of large messages. Due to the linear data organi-
zation of the 3D box data, the ghost zone communicated
in the ±i directions are highly strided in memory, requir-
ing many 8-byte messages if VIS is not used. As one
scales (using lexicographical ordering), communication in
±i direction progresses from entirely zero-overhead, on-
socket communication, to requiring communication over the
PCIe bus, to communicating over the Aries NIC. Similarly,
communication in ±j progresses from zero-overhead, on-
node communication to requiring communication on rank-1
of the Aries Dragonfly. By using GASNet VIS to coalesce
these small messages, the performance improves greatly at
scale as shown by the “+VIS” line in Figure 6.

Table II illustrates the communication requirements by
highlighting the on-node and network communication links
exercised as a function of concurrency (assuming ideal
job scheduling). The inflection points in Figure 6 are well
explained by this model. The flood of small messages at low
concurrencies map entirely to on-node links and thus do not
substantially impede performance. Conversely, at 32K, PCIe
overheads are exercised, resulting in degraded performance.

Table II
MAPPING OF HPGMG-FV COMMUNICATION PATTERNS (FINEST GRID
SPACING ONLY) TO NETWORK TOPOLOGY AS A FUNCTION OF SCALE.

HERE, “RANK” REFERS TO THE RANK OF THE ARIES DRAGONFLY
ASSUMING IDEAL JOB SCHEDULING.

messages 8 64 512 4K 32K
±i 1282×8B on-socket on-socket on-socket on-node PCIe
±j 128×1KB on-socket on-node PCIe rank-1 rank-1
±k 128×1KB on-socket PCIe rank-1 rank-2 rank-3
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operations on the Cray XC30 platform using 2 processes inside one node.
The lower blue curve represents the baseline where shared-memory support
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represents the benefit of enabling shared memory in both the UPC++ and
GASNet runtimes.

Our final optimization is to use group synchronization
rather than the naı̈ve global barriers in the previous shared-
memory implementations. The communication pattern for
HPGMG is primarily nearest-neighbor (either intra-level or
inter-level), so it is only necessary to synchronize with
neighboring ranks. While global barriers can simplify the
implementation, they can cause performance to suffer as a
result of interference or load imbalance. In order to minimize
changes to the source code, we replaced barriers with

the sync_neighbor(neighbors) function described
in §IV-D, which uses point-to-point communication under
the hood to synchronize with the ranks in the neighbor list.
This further improves performance as shown by the “+Group
Sync” line in Figure 6, resulting in a final performance
that is comparable to the highly tuned bulk UPC++ and MPI
implementations. Further performance improvement may be
possible by overlapping communication and computation,
but that is beyond the scope of this paper.

VII. CONCLUSIONS

In this paper, using High-Performance Geometric Multi-
grid (HPGMG-FV) as our driving application, we studied the
runtime support needed for UPC++ to enable codes developed
with naturally grained message sizes to obtain performance
comparable to highly tuned MPI and UPC++ codes. Compared
to the latter, which often require complex packing and un-
packing operations, the natural versions provide substantial
programming ease and productivity. However, their perfor-
mance may suffer from a large number of small messages.
To improve their performance, the runtime library needs
to take advantage of hardware-supported shared memory,
non-contiguous data transfers, and efficient group synchro-
nization. With support for these features, the natural version
of HPGMG-FV can deliver performance comparable to the
version with manual packing and unpacking, showing that
it is possible to obtain good performance with the lower
programming effort of naturally grained message sizes.

To support non-contiguous data transfer, UPC++ provides
a multidimensional domain and array library [11] that can



automatically compute the intersection of two boxes and fill
in the ghost regions. A version of HPGMG-FV that uses this
domain and array library is currently under development.

In addition, we believe that many parallel applications
with non-contiguous data-access patterns will gain in both
productivity and performance if future network hardware
supports: 1) scatter and gather operations for multiple
memory locations; 2) remote completion notification of
one-sided data transfers; 3) lower overheads and higher
throughputs for small messages.
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