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Abstract—Recently developed distributed acoustic sensing
(DAS) technologies convert fiber-optic cables into large arrays of
subsurface sensors, enabling a variety of applications including
earthquake detection and environmental characterization. How-
ever, DAS systems produce voluminous datasets sampled at high
spatial-temporal resolution and consequently, discovering useful
geophysical knowledge within these large-scale data becomes a
nearly impossible task for geophysicists. It is appealing to use su-
percomputers for DAS data analysis, as modern supercomputers
are capable of performing over a hundred quadrillion FLOPS
operations and have access to exabytes of storage space. Unfor-
tunately, the majority of geophysical data processing libraries
are not geared towards these supercomputer environments. This
paper introduces a parallel DAS Data Storage and Analysis
(DASSA) framework to enable easy-to-use and parallel DAS data
analysis on modern supercomputers. DASSA uses a hybrid (i.e.,
MPI and OpenMP) data analysis execution engine that supports
a user-defined function (UDF) interface for various operations
and automatically parallelizes them for supercomputer execution.
DASSA also provides novel data storage and access strategies,
such as communication-avoiding parallel 1/0, to reduce the cost
of retrieving large DAS data for analysis. Compared with existing
data analysis pipelines used by the geophysical community,
DASSA is 16x faster and can efficiently scale up to 1456
computing nodes with 11648 CPU cores.

I. INTRODUCTION

Cutting-edge scientific studies nowadays usually create
and analyze a large volume of data [27]. For example,
in geophysics, the monitoring of subsurface processes has
shifted from direct measurements from drilling, to non-
invasive imaging techniques, such as distributed acoustic sens-
ing (DAS) [23]], [21]. DAS can record active and ambient vi-
brations to characterize the subsurface environment with high
resolutions for both spatial and temporal scale. These high-
resolution recordings are important for a variety of geophysical
applications, such as earthquake detection and groundwater
monitoring. However, this high-resolution acquisition can eas-
ily produce massive amounts of data, usually in the order of
terabytes per day [16]. Additionally, the recorded DAS data
may contain lots of undesired noise. As a result, extracting
useful information for geophysical explorations from large-
scale DAS data has become nearly impossible task so far.

High performance computing (HPC) systems, or generally
known as supercomputers, are desirable platforms to perform
large-scale DAS data analysis because of their thousands of
computing nodes and exabytes of storage space [27], [28],

[29]]. Currently, the normal practice within the DAS commu-
nity is to use MATLAB or other digital signal processing
(DSP) systems for data analysis. Obviously, scaling these
systems to petabytes of DAS data analysis still suffers from
issues in performance and productivity on HPC systems [25]].
In this paper, we explore new methods and algorithms to
develop an efficient DAS data analysis system. Specifically, we
anticipated three major challenges associated with developing
such a new and scalable DAS data processing system:

o The overall DAS data size is extremely large, but scattered
among large numbers of small files [16], [32]]. These files
are usually recorded and stored per a small time granularity,
such as a minute. A data processing pipeline with intrinsic
parallel is needed to handle such large DAS datasets. There
is a constant overhead in accessing a file on a typical disk-
based file system. This constant overhead can become a
bottleneck for I/O operations when accessing a large number
of files. It is important to keep I/O overhead low.

« Different analysis operations are required in different DAS
data investigations. For example, one researcher may apply
time-domain analysis like local-similarity to the data [18].
But, other researchers may apply frequency domain opera-
tions, such as a fast Fourier Transform (FFT) [16]. Even for
the same operation, users may apply it to different datasets
produced per week, per month or other time interval.

o The new data analysis system should be abstract enough
to hide all data-management and parallelization tasks under
the hood while delivering optimal performance on HPC
systems [15]. Our data analysis system should allow the
application scientists to concentrate on their core analysis
operations, while hiding the details of a HPC system with
its massive number of computing nodes, complex storage
layers, and inter-communication networks.

To address these requirements and their associated chal-
lenges, we present here the DAS data storage and analysis
(DAssA) framework. DASSA provides a scalable and easy-to-
use system for geophysicists to perform DAS data analysis on
HPC systems. It supports various DAS data analysis operations
though a single user-definable interface and more importantly,
hides all underlying data management, communication and
parallelization tasks for these operations. In summary, the
technical contributions of our paper are listed below:

o We introduce the DASSA framework (Section for paral-




lel DAS data analysis. DASSA has a storage engine and
an analysis execution engine. The storage engine stores
the DAS dataset in a HPC storage system for efficient
parallel access during analysis. The analysis engine has a
high-level abstraction for users to customize domain-specific
analysis operations and also to transparently parallelize these
operations on HPC systems.

e« We propose a virtually concatenated array (VCA) data
model (Section to store DAS data and preserve DAS
related metadata for analysis. We develop a search tool,
named das_search, for users to find and merge small
DAS files together as contiguous input of the analysis code.
VCA can store the merged file without duplicating original
data but with a small amount of metadata.

e We develop a hybrid ArrayUDF execution engine (Sec-
tion [V) to execute DAS data analysis operations on mul-
ticore computing nodes efficiently. The hybrid execution
engine allows multiple threaded analysis code to share data
without duplication for multiple cores on a single computing
node. It also reduces the number of I/O calls to avoid high
IOPﬂ pressure on storage devices.

e We propose a communication-avoiding parallel I/O algo-
rithm (Section [IV-B) to reduce the cost of accessing DAS
data. This communication-avoiding parallel method reduces
the number of expensive communications for accessing the
VCA data built on thousands of small DAS files.

e We apply all of these capabilities to two state-of-the-art
geophysical data analysis problems (Section [V-C)), which
were simply impossible to address before due to challenges
posed by the large volume of DAS data and its complexities.
Our evaluations (Section[VI) manifest that DASSA is at most

16X faster than a Matlab-based system, which is currently used

by a DAS team to perform data analysis on a single node and
it is popular in geophysical community. By contrast, DASSA

shows its scalability up to 1456 computing nodes (i.e., 11648

CPU cores) with high parallel efficiency.

II. PRELIMINARIES
A. Distributed acoustic sensing (DAS)

Distributed acoustic sensing (DAS) [2] is an emerging and
rapidly developing technology that is used to record distributed
measurements of strain or strain-rate along commercial fiber-
optic cables in the subsurface. DAS has now been applied
successfully in many geophysical applications including earth-
quake detection [19], seismic imaging [16], and permafrost
condition monitoring [2]]. Compared with traditional sensing
methods, DAS enables efficient investigation of the subsurface
at high spatiotemporal resolutions. This continuous and high-
resolution monitoring, in turn, produces large amounts of
recorded data. These large-volume DAS datasets have become
an obstacle for geophysicists to find useful information for
geophysical research, as explained below.

DAS system contains large number of channels (i.e., sen-
sors). These channels can generate enormous amounts of data,

OPS: Input/output operations per second
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Fig. 1: The DAS system used in this study that runs on an
unused fiber-optic cable from West Sacramento to Woodland,
CA. (a) The dotted line shows the cable going through
highways, bridges, and other diverse environments. (b) A 6-
minute DAS data, illustrated as a 2D array indexed by channel
and time, which contains lots of noise and some signals from
moving cars and a M4.4 earthquake.

even for a short time period on a short fiber. The DAS
dataset [2] we work with comes from a 25 kilometer (km)
fiber-optic cable running between the cities of West Sacra-
mento and Woodland (California), as illustrated by Figure [Ta]
It has 11,648 channels along the cable and the sampling rate
of each channel is 500 Hz, giving around 1 terabyte per day.
These data are stored in 1440 files per day and each of them
contains a l-minute recording. As shown in the figure, the
fiber-optic cable used traverses diverse noise environments,
leading to different and complicated signals recorded along the
sensing array. An overall illustration of the signals recorded
by this DAS array is shown in Figure [Ib] which contains
a 6-minute record around the time when a magnitude M4.4
earthquake occurred in Berkeley, California. Thanks to the
high density of channels provided by DAS, seismic waves can
be easily identified travelling across the array.

B. ArrayUDF

Based on the classical idea of structural locality [20], we
developed ArrayUDF [15], a parallel framework for large
scale scientific data analysis. For specific types of calculations,
ArrayUDF can be a thousand time faster than Spark [34]],
SciDB [6], and other modern data processing frameworks.
ArrayUDF has the following abstraction:

B = Apply(A, f),

where A is an input multidimensional array and B is an
output multidimensional array. Apply is a function provided
by ArrayUDF to run the user-defined function (UDF) f from
A to B. Function f can be customized for different operations
by different users. The Apply function is executed on each
MPI process on multiple computing nodes with the cor-
responding data partition processed automatically. Meanwhile,
ArrayUDF can also build a ghost zone for each data block to
avoid communication during the execution.

To support a structural locality-aware operation on the array,
ArrayUDF introduces a data structure (or abstract) called
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Fig. 2: Overview of DASSA framework

Stencil. The Stencil data structure enables users to
express the user-defined function (f) on a logical array cell and
its neighborhood. An example of using Stencil to express
a three point moving average on a 1D time series data is:
f(Stencil S1){

Stencil S2;

S2 = (S1(-1)

return S2;

}

where S1 is the input Stencil and S2 is the output Stencil.
The S(i) refers to the value at offset ¢ from current cell.
Combining it with Apply above, users can run f on the
whole time series data in parallel. One challenge of applying
ArrayUDF to analyze DAS data is that ArrayUDF takes a
single array as input but DAS data are stored in many small
files. Also, ArrayUDF only supports MPI-based parallelization
which limits the massive data sharing across MPI processes
on the same computing nodes. As a result, DAS data may also
need to be duplicated across these MPI processes. We address
these technical challenges in this paper.

+ S1(0) + S1(1))/3;

III. OVERVIEW OF DASSA FRAMEWORK

In this section, we introduce the DASSA framework with the
goal of providing an easy-to-use and scalable system for DAS
data storage and analysis. We present a high-level overview
of DASSA in Fig. 2| The major components of DASSA are
a DAS data storage engine (DASS) and a DAS data analysis
engine (DASA). DASS provides essential functions to search,
merge (VCA) and subset (LAV) DAS data for analysis. DASS
also provides a communication-avoiding parallel I/O method
to reduce the cost of accessing DAS data stored in small
files. DASA contains a DAS data analysis library (DasLib) for
popular DAS data processing operations. DASA also provides
a hybrid ArrayUDF execution engine (HAEE) to run all these
operations in parallel. Details of these sub-components are
discussed in the following sections.

IV. DASS: DAS DATA STORAGE ENGINE

DAS data storage engine (DASS) supports efficient and
flexible DAS data storage and access operations. Based on the
Hierarchical Data Format version 5 (HDFS5) file format [30]],
DASS provides an array-data model for storing DAS data and
a key-value model for storing metadata. More details on HDF5
can be found in [30]. Our work focuses on how to define
new data structures and how to develop new algorithms for

accessing DAS data stored in a large number of HDFS5 files.
Given that DAS data is often scattered over a number of small
files, DASS provides functions to search and concatenate
the data with different criteria. DASS also contains a novel
communication-avoiding method to reduce the I/O cost when
accessing concatenated DAS data.
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Fig. 3: Example of using VCA and LAV to merge and subset
DAS data built from three small files.

DASS Array Data Model. DASS uses the multidimen-
sional array from the HDFS5 file format as the basic data model
to store the DAS data. Most DAS data can be represented by
a 2D array: [C,T] — A, where C is the channel set, T is the
set of time samples, and A is the amplitude. In certain cases,
a multidimensional array is needed to store intermediate data
during analysis. For example, during the stacking operation of
the DAS data analysis pipeline [16]], a 3D data array with a
striping size as the third dimension may be produced.

Based on the above data model, DASS provides two
advanced array extensions called the Virtually Concatenated
Array (VCA) and the Logical Array View (LAV), as shown
in Fig. 3] VCA merges DAS data files sampled at contiguous
times as a single input for data analysis operations. LAV allows
users to select a subset of a larger array as the input of DASA.
Details of the two extensions are discussed below:

« Virtually Concatenated Array (VCA). Most of DAS data
analysis operations are performed on data collected at a
contiguous period, such as a few hours, days, or months.
Usuasly, one DAS dataset only contains data of 1 minute.
Therefore, it is important for DASS to efficiently merge
different DAS datasets together to create the input for
analysis operations. To support such functionality, DASS
provides a search function (see Section to find target
small files for merging. After that, DASSA allows users to
create either a real concatenated array (RCA) or a virtually
concatenated array (VCA) from small files. As indicated
by our evaluation results and discussions in Section
there are trade-offs between RCA and VCA. Overall, in
comparison with RCA, VCA does not duplicate data during
construction but only records metadata (e.g., dataset names).
More importantly, VCA needs less construction time than
RCA because it only accesses metadata. The challenge of
using VCA is that analysis operations may have high I/O
overhead to access an VCA. Because a large request targeted
on a VCA may be broken into numerous small requests
for individual files contained within VCA. To address this
issue, DASS also provides a novel communication-avoiding
method (presented in Section to reduce the cost of
accessing VCA.

Virtually Concatenated Array

/
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« Logical Array View (LAV). LAV provides a logical subset
view of an array, which is similar to the hyperslab of HDF5
file. As shown by the example in Fig.[3] LAV can help users
to run the analysis on a subset of interested channels.

Root of DAS metadata in HDFS file

\— SamplingFrequency(HZ) : 500

\— SpatialResolution(m) : 2

N— TimeStamp(yymmddhhmmss) : 170620100545
\— Number of objects : 11648

N— ... other global metadata ...

N— Object Path: /Measurement/1
Array dimension : 1

Number of raw data values: 45
... other metadata per object ...
N— .. other objects and their metedata ...
N— Object Path: /Measurement/11648
Array dimension : 1

Number of raw data values: 45
... other metadata per object ...

\— 2D data array, channel X time or or vice versa

Fig. 4: The hierarchical metadata (w/ data) structure created by
DAssA in HDFS file to store DAS data acquired per minute.
Each item is a key-value pair with (key value) format.

DASS Metadata Model. The metadata for DAS data in-
cludes significant information about how/where/when the data
are recorded. To preserve these metadata for analysis, DASS
uses a key-value (KV) pair structure to store these metadata.
As shown by Figure [] the metadata contain two levels of KV
list. The first level of KV-list contains the global metadata that
applies to the whole dataset, such as the number of objects
(i.e, channels). For each channel, its metadata is stored as
the second level of KV-list. These metadata provides useful
information for users to query data for different purposes. One
common operation is to filer the data within a time interval,
as discussed in the following subsection.

A. DAS File Search and Merge

As mentioned in previous sections, DAS data are scattered
across many files. Users can have different operations to run
on different parts of the data. One of the more common data
operation is to search and merge files within a time interval
when events of interest (e.g., traffics or earthquakes) occur.
Based on metadata stored, DASS provides two types of search
function as the command line tool das_search. The first
one is the time-stamp based range query. It specifies a start
time (—s) and the number of samples (-c) after the start time.
This type of search is simple enough to capture most of search
requirements. The second one is a regular expression based
query interface (—e). This option is for advanced users to
define an arbitrary search criterion via regex pattern. Below
are examples demonstrating how to use das_search to find
three files after the time-stamp 170728224510:

Type 1: das_search —-s 170728224510 -c 2
Type 2: das_search —-e 170728224[567]10
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Fig. 5: A comparison of two I/O methods to read small DAS
files. This example uses four processes (PO ~ P3) and four
small files (FileO ~ File3). Each process reads a subset of
all four files, marked with different colors. For example, PO
reads all yellow subsets (i.e., the 1st subset) of four files.
a) “collective-per-file” method: all processes read a file at a
time with collective-1/O per file. b) “communication-avoiding”
method: each process reads a file and then, all processes have
a all-to-all data exchange to obtain their own data portion. We
omit arrows denoting communication from P1, P2 and P3 for
simplification.

Once these targeted files are found by DASS, users can
also use DASS to create a real concatenated array (RCA) or a
virtually concatenated array (VCA). Table |I| presents the high-
level comparison of RCA and VCA. Details are discussed in
following paragraphs:

o« RCA concatenates all necessary DAS files as a single
HDFS5 file. RCA may reduce the burden of managing small
files, but it lacks flexibility to allow a file for different
analysis operations without duplication. It also may double
the storage space requirement during the construction. Also,
concatenating the DAS files into a single files tends to be
tedious process because it accesses the whole data. But,
reading a single large file in parallel has been supported
by prior optimizations in the community [13]].

o VCA creates a logical file which only contains the metadata
(e.g., name) of all files to merge. During the read operation,
these metadata are analyzed to find the exact location of
the original file. VCA has small overhead in construction
since it only performs small metadata operation. Users can
also merge the same file into different VCAs without extra
copies. However, the issue with VCA is that it may introduce
significant I/O cost for later analysis operations because the
data of VCA are actually scattered among small files and
accessing the data in parallel may needs lots of small I/O
and communications. To mitigate this issue, we introduce a
communication-avoiding method to reduce the I/O cost of
accessing VCA, as presented in the following subsection.

TABLE I: Comparison between RCA and VCA

Construction Duplication
Extra Space  Overhead | across groups | Parallel I/O
RCA 100% High Exist Yes
VCA 0% Low No NO

B. Communication-avoiding Parallel 1/0

As discussed in the previous section, VCA is a flexible
approach for merging lots of small DAS files for analysis
without requiring substantial extra storage space and high



computational overhead during the VCA construction. How-
ever, the access performance of VCA in parallel is low because
it may break large I/O into small operations on individual
files. As shown in our experimental study in subsections
and the time for I/O operations could be a dominant
factor in the overall performance of the DAS analysis pipeline.
Based on the typical I/O access patterns of DAS data analysis
operations [18], [2l, [16], we proposed a communication-
avoiding I/O method to address this issue.

The most typical DAS data analysis operation is to apply
time series analysis methods to a single channel or a set of
neighboring channels. The I/O access pattern is to first read
the data of a (or a few) channel(s) from all small files and
then concatenate them together. Considering a parallel running
analysis code with p processes and n files and each process
access equal part (1/n) of each file, there are at most O(pxn)
I/O requests issued by the analysis code to get the data.
Dealing with large number of I/O requests is challenging for
the underlying storage system [14]], [12]. Another factor may
degrade the overall performance is the possible communication
that implicitly or explicitly happens during I/O operations.
For example, collective I/O is a normal optimization for HPC
storage system. However, its “merge-read-broadcast” pattern
may introduce lots of inter-process communication, which
we will explain with details in the following paragraph. To
address these issues, there are two I/O design considerations:
1) all processes read (i.e., share) each file one by one, called
“collective-per-file” methodEl, 2) each process first reads a file
independently and then exchanges data after the read, called
“communication-avoiding” method. Figure [3] illustrates these
two methods with their discussions in following paragraphs.

To use the “collective-per-file” method, all processes share
each small file and read them one by one, as shown by
Figure 5] (a). When all processes share the same file, it is
normal to apply the collective I/O [33]. Using collective 1I/O
can significantly reduce the cost of reading data because it
merges small reads on all processes into large ones, and
therefore reduces disk seeks. In this case, there are at least
O(n) T/O requests. However, the most popular implementation
of collective I/O follows the “merge-read-broadcast” pattern.
For p processes, their read requests are merged by certain
number (say k,k < p ) of processes at first. Then, these k
processes issue I/O requests in a larger and contiguous manner.
Once these k processes finish the read, they broadcast the
results back to all p processes. Assuming that the collective I/O
can always merge small reads into large ones, the performance
bottleneck may become the broadcast operation when p is
large. Since this method reads a file a time, each file needs
at least one broadcast. For n small files, it needs O(n)
broadcasts. When the number of DAS files is large, this
I/O strategy can significantly increase the data access time,
too. As we discussed in the background section, long-term
DAS deployments with continuous recording tend to create

2The “collective-per-file” method is different from the collective buffering
or two-phase 1/O of MPI-1I0O. The former works on multiple files and the later
on a single file.

infinitely many files for analysis operations to read.

The second I/O design method we proposed to access a
VCA file is the “communication-avoiding” method (Figure [5]
(b)). This method allows each process to read the entirety of a
single file and then it exchanges the data with other processes.
In this way, the read on each process tends to be fast because
it reads the whole data with a single I/O call, giving at least
O(n) T/O requests (same as the “collective-per-file” method).
Also, the read on a single process tends to be contiguous.
When all processes read the data at the same time, the I/O is
paralleled for high throughput. For the data exchange stage,
all processes can participate at the same time. It allow lots
of current transfers among node pairs. Based on well-proven
theory and practice about the idea of communication-avoiding
during linear algebra [[10], these concurrent data transfers can
reduce the overall time for data exchange. When we have
p processes and n files, the number of communications in
the key step is O(n/p). Comparing it with the “collective
one-by-one” method described above, with O(n) broadcasts,
our method can avoid lots of expensive communications and
therefore has better performance in accessing the VCA file
built from lots of small files.

V. DASA: DAS DATA ANALYSIS ENGINE

DAS data analysis engine (DASA) is the second major
component of the framework to enable various DAS data
analysis operations. DASA has two subcomponents: a DAS
data analysis library (DasLib) and a hybrid ArrayUDF exe-
cution engine (HAEE). DasLib provides several popular and
sequential DAS data analysis operations. To enable processing
of large-scale DAS data with hundreds or even thousands
of CPU cores on HPC systems, DASA provides HAEE to
automatically and transparently run DasLib in parallel without
the burden on geophysicists to parallelize the analysis code.

A. DasLib: DAS Data Analysis Library

MATLAB and Python have existing libraries [5S] for seismic
signal processing. Because of the scalability issues of their
native run-time environment, these libraries, however, are not
well-fitted for DAS data analysis on HPC systems. New data
analysis systems such as ArrayUDF have the capability to deal
with terabytes of scientific data efficiently on HPC systems.
However, ArrayUDF only provides a run-time system for
analysis codes that are provided by users as user-defined func-
tions. Although it is possible for ArrayUDF (in C++) to call
MATLAB/Python code, this method has a significant overhead
caused by communication, data transfer, and conversion across
different systems/languages. Hence, we developed DasLib to
enable HPC-friendly data analysis systems like ArrayUDF to
perform large-scale DAS data analysis.

DasLib contains sequential codes, and these codes are
thread-safe. DasLib can be parallelized by HAEE presented in
the following subsection to run on HPC systems efficiently. Ta-
ble [lI| summarizes the most popular operations within DasLib
functions for data analysis. We classify these functions into
two categories: time-domain operations and frequency-domain



operations. The time-domain library provides functions to
be applied on the raw DAS data. A common operation is,
for example, local similarity, which was originally used for
processing large arrays of conventional spatially-discrete elec-
tronic sensors[[18]. The frequency domain operations convert
DAS data into the frequency domain. Most commonly used
functions include a fast Fourier transform (FFT) function and
bandpass filter functions. Unless otherwise noted, the name
and semantics of these functions follow the style of the signal
processing toolbox in MATLAB ﬂ

TABLE II: List of sample functions from DasLib.

Functions Semantic

absolute correlation of ¢ and c2
defined as | cos (6(c1, c2)) |

Das_abscorr(cy, c2)

Y = Das_detrend(X) removes the best straight-line fit of x

(c1, c2) = Das_butter(n, fc) create Butterworth filter coefficients ¢y

and co with the cutoff frequency f.

Y = Das_filtfilt(cy, ca, X) apply c1 and c2 to X

Y = Das_resample(X, 1, R) samples the X with new rate R

Y = Das_interp1(Xp, Yo, X) | linearly interpolates f that
satisfies f(Xo) = Yp to obtain

the values Y at X

Y = Das_{ft(X) perform FFT on X

Y = Das_ifft(X) perform inverse FFT on X

B. HAEE: Hybrid ArrayUDF Execution Engine

The existing ArrayUDF only supports MPI (i.e., process)
based parallelization for data analysis operations. This paral-
lelization works for most operations (like local-similarity) on
DAS data. However, it may not be efficient for other DAS
data analysis operations such as FFT based cross-correlation
calculations. There are two major issues with using MPI based
ArrayUDF here: 1) Using a purely MPI based parallelization
method may cause memory footprint pressure. Being different
from the local-similarity operation on a set of neighboring
channels, the FFT based cross-correlation operation needs to
compare a master channel with all other channels. Hence, by
using MPI based parallelization, the master channel needs to
be duplicated for each process. For a computing node with &
CPU cores, the master channel needs to be replicated k times
in this approach. 2) The number of I/O requests might be
too large for the storage system to handle during purely MPI
based parallelization. Each MPI process on each CPU core
triggers their own I/O requests. Most of storage devices are
bound by input/output operations per second (IOPS). Having
large number of 1/O requests can lead to long waiting queues
and high contention frequency on storage disks [14], [12].

To address these issues, our work extends ArrayUDF to
support the hybrid OpenMP and MPI model, i.e., hybrid thread
and process model. Our goal is to have a single or fewer MPI
process on a single computing node. Within the single node,
multiple OpenMP threads are started to run the analysis code.
Hence, all the CPU cores share the same data, e.g., the master
channel. Meanwhile, each computing node only issues one 1/0O
request for all its CPU cores, and therefore reduces the number
of I/O requests. The core algorithm that enables the hybrid

3https://www.mathworks.com/products/signal htm]

ArrayUDF is the multithreaded Apply (ApplyMT) function,
shown in Algorithm [T] The hybrid ArrayUDF uses the same
functions as the original ArrayUDF for I/O operations and in-
memory data management [[15]. ApplyMT accepts a linearized
sub-block read by a single MPI process and a user-defined
function. Then, the multithreaded Apply starts multiple threads
to process the same data at the same time. To avoid conflict
in accessing the output vector, ApplyMT creates a separate
output vector per thread. Once the process has finished the
entire dataset, these separate output vectors are merged in
parallel too.

Algorithm 1 Multithreaded Apply function in Hybrid Ar-
rayUDF Execution Engine (Based on OpenMP)

Note: B is a 1D linearized sub-block (m X n) read by a single MPI process
(usually per computing node) from a 2D DAS data. f, is the user-defined
function. R is the result vector. The ¢ is the number of threads. The h
(h=0,...,t—1) is the index of thread.

function APPLYMT(B, fp, R)

#pragma omp parallel > Start the parallel block

Vector<T> R,

Vector <int> p(t)

#pragma omp for schedule(static)

fori=0:mxn—1do
s = CreateStencil(B[i])
r= fp(s)
Rp.append(r)

end for

plhl= R, .size()

#pragma omp barrier

#pragma omp single

fori=1:t+1do
prefix[i] += prefix[i - 1];

end for

R[p[h-1]: p[h]] = R,

}

end function

> Result vector per thread
> Prefix for ¢ threads

> Split work

> among threads

> Create Stencil on B[i]
> Run UDF f, on s

> Append local result

> Get local size for the hth thread

> Calculate displacement

> Insert local to R

C. Case Study: HAEE in real DAS data analysis

Most DAS data analysis algoirthms are presently imple-
mented in MATLAB or Python (e.g. ObsPy [5]). In this
subsection, we demonstrate how to use HAEE to express
two typical algorithms with our DASSA framework. Note that
HAEE only requires users to specify a sequential analysis code
as the user-defined function (UDF) and to provide some basic
parallelization parameters (e.g., the number of MPI processes
and OpenMP threads). Note that we focus on UDFs for two
recent geophysical studies with high impact.

« Earthquake detection via local similarity. The local sim-
ilarity method is a time-domain data analysis algorithm
recently developed to detect earthquakes in array seismic
datasets [18]. The user-defined function (UDF) namely
LocalSimi for the local similarity calculation is presented
in Algorithm 2] LocalSimi first extracts two time se-
ries segments (referred to as windows) at two neighboring
channels via the Stencil abstraction of ArrayUDF. The
Das_abscorr function from DasLib is then used to
calculate the absolute correlation between the two windows.
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ApplyMT in HAEE then applies LocalSimi over all the
window pairs in the DAS data in parallel.

o Traffic-noise interferometry uses a series of ambient-
noise data analysis operations to generate empirical Green’s
functions used for imaging the shallow subsurface [2], [16].
The processing approach involves a long pipeline to convert
the raw DAS data (large in size) into shear-wave velocity
profiles. Here we only build the most expensive collection
of processes, referred to as ambient-noise interferometry.
Ambient-noise interferometry converts raw data into a noise-
correlation in the frequency domain, after applying a se-
ries of pre-processing and filtering operations. Algorithm [3]
presents the user-defined function for the ambient-noise
interferometry on a single channel. App1yMT in HAEE then
applies this UDF over all channels in parallel.

Algorithm 2 Local similarity calculation within HAEE as the
user-defined function on DAS data.

Note: S is the Stencil abstraction representing an abstract cell and its
neighborhood. Each window (e.g., W, W1, and W2) has width (2M +1).
Two neighboring channels have offsets +K and — K relative to the central
channel, respectively. (2L + 1) windows are sampled on each neighboring
channel (i.e., W7 and W5).
function LOCALSIMI(S)
W =S(-M:M,0)
Cig=C_g=0
for | =—L:L do
Wy =S(I—M):(I+M),+K)
Wo =S(I—-M):(I+M),—K)
C4 x = max{C, g, Das_abscorr(W, W1)}
C_ g = max{C_ g, Das_abscorr(W, W2)}
end for
return %(C+K +C_k)
end function

> Extract current window via S
> initialization

> Local similarity.

Algorithm 3 Traffic-noise interferometry within HAEE as the
user-defined function on DAS data.

Note: S is the Stencil abstraction representing an abstract cell and its
neighborhood. Each channel has a time series of length W. Mg denotes
the FFT transformed master channel for each process.

function TRAFFICNOISEUDF(S)
Wh,o=S(0:(W-1),0)
Why,1 = Das_detrend(Wp, o)
Wh,2 = Das_filtfilt(Das_(n, fc), Wn,1)
W3 = Das_resample(Wp, 2)
Wi = DaS_fft(Wnyg)
return Das_abscorr( Wi, M)

end function

> Time series per channel

VI. EXPERIMENTAL RESULTS

We evaluate DASSA experimentally on the Cori supercom-
puter located in NERSCﬂ Cori is a Cray XC40 system with
2880 “Haswell” computing nodes. Each node has 32 CPU
cores. Our tests use a DAS dataset recorded for two days by the
experiment presented in Section [[Il The size of the whole DAS
dataset is 1.9TB and it consists of 2880 files. Each file is a 2D
array (11648 channels x 30000 time samples). We evaluated
DASSA with different numbers of files and different data sizes

4https://www.nersc.gov/users/computational-systems/cori/

to understand better how DASSA works with searching and
scaling. These files are stored in a Lustre file system. Details
of our tests are presented while we report the results. Unless
specifically mentioned, we used Algorithm [3|as the workload
driver of experiments.

A. Search and Merge

We first evaluate the search and merge function from DASSA
with a single CPU core, i.e., single process. We use the 2880
files and select parts of these files to create either a real
concatenated array (RCA) or a virtually concatenated array
(VCA). The time taken by the search and merge function is
reported in Figure[6] Both RCA and VCA contain the metadata
and they use the same das_search tool to search on
metadata. Hence, they have the same performance in finding
specific files among 2880 files. The search time is at most
0.002 seconds. After searching, creating VCA took at most
0.01 seconds. In contrast, creating the RCA can consume up to
9978 seconds for 2880 files in our tests. On average, creating
VCA is 70,000X faster than creating RCA. Searching data
and creating VCA is fast because it only works on metadata.
Creating RCA is slow because it needs to read the entire data
and also write the data into a large array. Note that our DASSA
supports both RCA and VCA but it is desirable to use VCA
as the way to merge the searched files.

M Search M Create VCA or RCA

10000.000
1000.000
100.000
10.000
1.000

Time (s)

0.100
0.010
0.001

VCA RCA|VCA RCA|VCA RCA|VCA RCA|VCA RCA|VCA RCA
90

Number of Selected Files among 2880 Files

Fig. 6: Experimental results of searching and creating a RCA
or a VCA with DASSA.

B. Read Data

As demonstrated in previous tests, it is efficient for users to
use a VCA to merge DAS files for data analysis. However,
accessing a VCA may have large overhead as it needs to
access each file individually. We proposed a “‘communication-
avoiding” method to reduce the I/O cost of accessing the
VCA. Here, we compare the performance of “communication-
avoiding” with the “collective-per-file” method. As a refer-
ence, we also include a test to access the RCA. The RCA
creates a really merged file for both smallest size and largest
size. This test uses 90 MPI processes to evenly partition and
access the data. The timing results of these processes are
reported in Figure [/} As expected, “communication-avoiding”
is much faster (on average 37X) than “collective-per-file” in
accessing data from lots of files behind the VCA. As its name
states, the “communication-avoiding” approach can avoid lots
of communications during access to the VCA, whereas the
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“collective-per-file” method needs a broadcast per file. The
“collective-per-file” method is even more time-consuming than
the RCA. But, our “communication-avoiding” is faster than the
RCA. Hence, our proposed “communication-avoiding” method
enables an efficient way of accessing data in the VCA.

m RCA

M VCA: Collective-per-file
W VCA: Communication-avoiding

20

180 360 720 1440
The number of files to read

10000

1000

=
o
o

Time (sec)
-
o

[

2880

Fig. 7: Experimental results of reading DAS data from
a VCA using “collective-per-file” and ‘“‘communication-
avoiding” methods. For reference, we also evaluate the time
of accessing RCA (i.e., creating a really merged HDFS5 file)
on both the smallest case and the largest case. As shown in
previous test, creating RCA is time consuming for all cases.

C. HAEE: Hybrid ArrayUDF Execution Engine

This section reports results of comparing the hybrid Ar-
rayUDF execution engine (HAEE) with the original Ar-
rayUDF. Our tests fix the input data size (1.9TB) and evaluate
total number of computing nodes from 91 to 728. Taking
the case using 91 computing nodes as example, the original
ArrayUDF runs 16 MPI processes per node. Our HAEE starts
1 MPI process per node and uses 16 threads per process.
Figure [§] reports our experimental results. As we discussed
before, DAS data analysis may duplicate data (i.e. the master
channel) during cross-correlation analysis. Using the original
ArrayUDF, we need to duplicate the master channel 16 times
per node. This duplication makes the original ArrayUDF
approach run out of memory in the case using 91 computing
nodes. Our HAEE, however, can finish the analysis with-
out any memory issues. As the scale increases, the original
ArrayUDF shows certain performance benefits because of
the coordination overhead of multiple threads in HAEE, as
illustrated in Algorithm [T]. Nonetheless, when 728 computing
nodes are reached, the I/O overhead (especially for the read)
increases significantly. The main reason for this is that all
11648 processes on 728 computing nodes used by ArrayUDF
issue I/O calls at the same time, and these I/O calls introduce
access contention on the storage devices, the network, and the
network interface [12]. In contrast, our HAEE issues 16X less
I/O calls. Reducing the number of I/O calls at large scale is
important to keep high performance on HPC systems [14].
HAEE and original ArrayUDF have the same performance
in writing because they write the output as a single and big
array. In summary, our hybrid ArrayUDF execution engine can
perform DAS data analysis in both large-scale and small-scale
tests cases where ArrayUDF fails or has worse performance.
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Fig. 8: Experimental results of evaluating MPI ArrayUDF
and Hybrid ArrayUDF (marked as HArrayUDF) with different
number of CPU cores.

D. Case Studies: scientific applications

Section presents two case studies of applying DASSA
to real DAS data analysis. This section reports the evaluation
of the these data analysis with DASSA and MATLAB. The
main reason behind choosing MATLAB for this comparison
is that this is the platform used by the geophysicists to develop
the DAS data analysis pipeline explored here. Because of
limitations related to MATLAB license availability in our
supercomputing center, we could only compare DASSA with
MATLAB running on a single node. To fit the memory size
of a single node, we use a single 1-minute file (=700MB) as
the input for our tests. We use the multi-thread feature (12
CPU cores) of both MATLAB and DAsSSA. Figure [9] reports
the results of these tests. This comparison clearly shows that
MATLAB is at most 16X slower than DASSA. Note that this
test is only performed on a single node with a single file. As a
result, both MATLAB and DASSA have similar performance in
reading and writing. The Matlab codes used by geophysicists
rely on its multi-thread feature to utilize multicores. It is
difficult for the whole Matlab code pipeline to be parallelized.
But, the DASSA actually parallelizes the entire code pipeline.
Thus, the DASSA is much faster than Matlab in computing. On
multiple nodes, MATLAB tends to slow down even more [25]].
DASSA, on the contrary, has multiple novel methods to enable
it to work well on hundreds of computing nodes. Results of
a scalability tests of DASSA on more computing nodes are
reported in the following subsection. Results of the application
of DASSA for the detection of seismic signals using local
similarity is shown in Figure [I0] This analysis reveals clear
signals caused by a distant earthquake and a series of vehicles
as recorded in the 6-minute DAS record shown in Figure [T

E. Scaling Evaluations of DASSA

We test DASSA in both strong scaling and weak scaling
settings. For the strong scaling case, we fixed the data size to
1.9TB. For the weak scaling case, we fixed the data size per
CPU core to 171MB. We increase the number of computing
nodes from 91 to 1456, and start 8 threads per node, i.e., using
8 CPU cores per node. Results are shown in Figure [I1} For
display purposes, we normalize the test results to be shown in
terms of parallel efficiency. The parallel efficiency for strong
scaling is defined as t1 /(N xtx) * 100%, where t; is the time
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Fig. 9: Experimental results of comparing the same real DAS
data analysis pipeline developed with DASSA and MATLAB.
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Fig. 10: Demonstration of results produced by DASSA to
detect varying events with local similarity in Algorithm [2] It
is possible to distinguish two moving vehicles and a M4.4
earthquake that occurred in Berkeley.

to finish a work unit with 1 process and ¢) is the time to
finish the same work unit with N process. For weak scaling,
its parallel efficiency is ¢1/tx * 100%. Clearly, DASSA has
perfect (~2100%) parallel efficiency in terms of computing
time. However, the parallel efficiency for I/O operations show
a downward trend. The main reason for this decay in efficiency
is that increasing the number of computing nodes triggers more
I/O requests, and these requests have more chances to have
contention at Lustre file system and the network [14]], [12]. The
Cori supercomputer used in the evaluation has a fixed number
of disk-based storage targets in its Lustre file system. Hence,
as the number of nodes continues to increase, the parallel
efficiency trends for I/O tends to decrease much further. The
Burst Buffer-based storage system [12] has high IOPS than
disk system. Hence, using the Burst Buffer addresses the down
trend of the parallel efficiency for I/O. Based on current results,
the case with 364 computing nodes gives the best efficiency.

VII. RELATED WORK

Traditional DAS data analysis are mostly performed using
Digital signal processing (DSP) methods and hand-developed
code in MATLAB [16], [18]]. Since most of these pioneer
works were dealing with small sets of data for conceptual
evaluation, MATLAB with DSP libraries provided enough
capability. Similar Python packages like ObsPy [3] also ex-
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Fig. 11: Scaling experimental results of DASSA.

ist. Recently, there are the development of more advanced
processing approaches, such as machine learning based DAS
data analysis procedures. For example, work [7] compares
classic and image based classification method for DAS events
detection. Other studies use Generative Adversarial Network
(GAN) to produce a large-scale dataset of tagged events for
training ML models [26]. Most of these works use tools such
as Theano [3] or Lasagne [11] originally designed for a single
node. As stated in the background section, DAS may produce
large amounts of data that are almost impossible to analyze
using single node approaches. In these cases, the use of HPC
systems for such large DAS data analysis is appealing, due
to its capability in high floating-point operations per second
(FLOPS). Inspired by the idea, we develop the new DASSA
framework for DAS data analysis on HPC systems.

More generic large scale data analysis systems are al-
ready available. However, most of them lack efficient support
for DAS data storage and analysis. For example, Relational
DBMS [31], [22] and array DBMS [4], [20], [6] provide
tuple and array based data model and abstract data
analysis operations, such as select and join. Obviously,
the tuple is not appropriate for DAS data, since it consists of
a multidimensional array. Although the SciDB’s array model
would be able to handle the DAS data structure, it lacks the
flexibility and efficient support needed for DAS data analysis
operations, such as local similarity [18]. The local similarity
shows high structural locality in semantic [[15], [20], [32].

MapReduce[9] and its improved generation Spark [34]]
provide a simple key-value (KV) data model and two
generic and user-definable operations, map and reduce.
SciHadoop [8]] adopts MapReduce to process data in array.
However, because the KV data model is totally different to
the array data model, MapReduce-based systems have high
overhead when dealing with scientific data such as the DAS
data in array structure. New systems, such as Cassandra [[17]]
and Prometheus [1], have adjusted MapReduce-type system
for time series data processing. Their built-in operators and
user-defined function mechanism, however, lack the support
for operators with structural locality, such as the DAS local
similarity calculation shown in Algorithm 2]

ArrayUDF [15] addresses the issues inherited within
MapReduce by supporting native array data model. It also
provides user-definable and generic operators to support data
analysis operations with structural locality. The problem with
the existing ArrayUDF is that it only supports MPI model for



parallel data analysis. In DAS data analysis, we found that this
method may create lots of duplicated data across MPI ranks.
Hence, we extended ArrayUDF to support a hybrid (MPI and
OpenMP) execution model for efficient execution. HDF5 [30]]
virtual dataset is similar to our Virtually Concatenated Array
(VCA). The HDF5 virtual dataset, however, only supports
sequential data access. Our VCA has the new communication-
avoiding method to work efficiently in parallel on multiple
computing nodes. The MPI collective I/O [33] shares certain
similarities with our method, but it only works on a single
and binary file. Our communication-avoiding method works
on Virtually Concatenated Array (VCA) with array structure.

VIII. CONCLUSIONS

We study the methods and algorithms to enable efficient
and productive DAS data analysis on HPC systems. The pro-
posed DASSA framework provides efficient storage for large-
scale DAS data. It also allows user-definable data analysis
operations and runs these defined operations transparently on
HPC in parallel. We proposed a communication-avoiding I/O
access method to reduce the cost of accessing DAS data, and a
hybrid execution model for user-defined operations with MPI
and OpenMP. Experimental results demonstrate that DASSA
can operate at most 16X faster than the existing DAS data
analysis pipeline developed in platforms such as MATLAB.
We show that the scalability of DASSA can reach up to 1456
computing nodes. Future work on DASSA includes an API in
Python or even in MATLAB to enable interactive DAS data
analysis. We also intend to study how to apply the DASSA
in other applications, such as plasma simulation, which may
store the data of each simulated domain as an individual file
and lots of domains may be grouped as the input of analysis
operations [12]. Moreover, how to automatically select system
settings, such as the number of nodes, to run the analysis code
is another topic we will explore in future.
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