
Real-time and Post-hoc Compression for Data from Distributed1

Acoustic Sensing2

Bin Donga, Alex Popescub, Verónica Rodríguez Tribaldosa, Suren Bynaa,3

Jonathan Ajo-Franklina,c, Kesheng Wua and the Imperial Valley Dark Fiber Team4

aLawrence Berkeley National Laboratory, Berkeley, CA, USA.5

bUniversity of California, Berkeley, CA, USA.6

cRice University, Houston, TX, USA7

8

ART ICLE INFO
Keywords:
Distributed Acoustic Sensing
DAS
Data Compression
Lossless
Real-time
Post-hoc
Parallel
HDF5
ZSTD
TurboPFOR
ZigZag

9 ABSTRACT10
11

Distributed Acoustic Sensing (DAS) is an emerging sensing technology that records the strain-12

rate along fiber optic cables at high spatial and temporal resolution. This technique is becoming a13

popular tool in seismology, hydrology, and other subsurface monitoring applications. However,14

due to the large coverage (10’s of km) and high density of measurements (1 m spacing at 100’s of15

Hz), a DAS installation could produce terabytes of data records per day. Because many of DAS16

devices are deployed in remote locations, this large data size poses significant challenges to its17

transfer and storage. In this paper, we explore lossless compression methods to reduce the stor-18

age requirement in both real-time and post-hoc scenarios. We propose a two-stage compression19

method to improve the compression ratio and the compression speed. This two-stage compres-20

sion method could reduce the storage requirement by 40%, which is 20%more than other lossless21

methods, such as ZSTD. We demonstrate that the compression method could complete its oper-22

ation well before the DAS device needs to output the next file, making it suitable for real-time23

DAS acquisition. We also implement a parallel compression method for a post-hoc scenario and24

demonstrate that our method could effectively utilize a parallel computer. With 256 CPU cores,25

our parallel compression method achieves the speed of 26GB/seconds.26

27

CRediT authorship contribution statement28

Bin Dong: Conceptualization, Data curation, Methodology, Software, Writing-original draft. Alex Popescu:29

Investigation, Writing-review & editing. Verónica Rodríguez Tribaldos: Data curation, Validation, Writing-review30

& editing. Suren Byna: Methodology, Writing-review & editing. Jonathan Ajo-Franklin: Conceptualization,31

Data curation, Validation, Funding acquisition,Writing-review & editing, Project administration. Kesheng Wu:32

Conceptualization, Validation, Funding acquisition, Writing-review & editing, Project administration. the Imperial33

Valley Dark Fiber Team: Validation, Project administration.34

1. Introduction35

Distributed Acoustic Sensing (DAS) systems record strain-rate caused by ground motion along optical-fiber cables36

that are deployed in surface trenches, boreholes, or the seafloor (Hartog, 2017; Ajo-Franklin et al., 2017; Lindsey et al.,37

2020). These DAS data records can be used to detect earthquakes, image subsurface structures, and enable a range38

of geophysical applications (Xing et al., 2018; Shiloh et al., 2018). DAS systems can record strain-rate on optical-39

fibers up to 10s of kilometers in length and sample strain-rate at high spatial (e.g., 1 m) and temporal (up to 10s of40

kHz) resolution, generating dataset of significant size (> 1TB per day) (Paitz et al., 2021; Ajo-Franklin et al., 2017).41

Because DAS deployments are often at remote locations with limited network accesses, this large size poses significant42

challenges for both local and archival storage as well as telemetry and data distribution.43

ORCID(s): 0000-0002-0725-0833 (B. Dong)

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to Elsevier Page 1
of 22

DAS Data Compression

As an illustration of these challenges, here we describe a DAS deployment, currently operating in the Imperial44

Valley in Southern California (Verónica and Jonathan, 2021). The DAS Interrogator Unit (IU) used in the experiment45

is deployed at an isolated telecommunication in-line amplification (ILA) hut near Calipatria, CA. The geoscience46

project team, however, is entirely remote, distributed among Berkeley (CA), Houston (TX), Livermore (CA), and San47

Diego (CA). The IU produces a datastream of approximately 597 GB/day or 4.2 TB/week, which is locally recorded48

on a RAID array connected to the IU. The RAID array has a capacity for about 5 months of recording and requires49

three annual trips for data exchange followed by a laborious multi-institution transfer. These visits are expensive and50

this setting and delays the analysis of the data. Additionally, acquisition parameters had to be chosen to reduce the51

number of field trips thus the team could not exploit the IUs optimal performance.52

This particular deployment and many other DAS efforts share a common challenge in data acquisition, that is their53

data acquisition rates significantly exceed their network connection speed, which requires the data to be stored on54

local disks that have to be periodically replaced. In this work, we explore compression methods to reduce the storage55

requirements for DAS data and therefore reduce field visits and potentially offer opportunities to optimize both local56

storage and telemetry (Foukas et al., 2017). In particular, this paper considers two scenarios for DAS data compression:57

• a real-time “edge compression” scenario, where the DAS data is continuously produced from DAS interrogator58

units and saved in an attached computer disk in a field deployment (Rodríguez Tribaldos et al., 2020). In this59

scenario, the compression time is bounded by the cycle of DAS sampling.60

• a post-hoc scenario, where terabytes or even exabytes of DAS data have been acquired in previous experiments61

and can be compressed to reduce storage space (Zhan, 2019; Verdon et al., 2020; Feigl, 2016; Ajo-Franklin et al.,62

2017). Although there is no time limit in this case, finishing compression quickly is still beneficial, for example63

to reduce the time period where both compressed and uncompressed data files are needed.64

DAS is still a relatively new technology for geophysical applications, and the community has not yet achieved65

a consensus on what data elements are valuable and which ones can be discarded. Thus, we will consider lossless66

compression methods in this work. Our study targets the raw optical phase data recorded as short integers. The datasets67

used here were recorded using a Silixa iDAS V.2 interrogator unit, a system in wide academic and commercial use.68

Scaling raw optical phase recorded in integer formats to floating point representation is a common operation in data69

analysis (Feigl, 1969, 2016). This scaled version can be compressed too (Zhao et al., 2020; Diffenderfer et al., 2019),70

but we will focus on the integer version of the raw data as we explore compression approaches without the need for data71

pre-processing. To the best of the authors knowledge, this is the first work to explore a lossless compression method72

for raw DAS data. We have identified the following challenges towards this goal:73

• DAS data has several unusual features. First, the raw data recorded by DAS interrogator units is stored as74

short integers, which is already relatively compact. Second, the DAS data exhibits normal distribution with75

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to Elsevier Page 2

of 22

DAS Data Compression

both negative and positive values. However, many lossless integer compression methods only work on positive76

values (Powturbo, 2021). This is because the commonly used binary representation of a negative integer sets the77

leading bits to 1, and most encoding schemes require more space to represent 1s than 0s (Lemire and Boytsov,78

2015; Trotman, 2014).79

• Geoscientists have established software tools, such as DASSA (Dong et al., 2020), MATLAB (Higham and80

Higham, 2016), and HDF5 (The HDF Group, 2010), to analyze and store the DAS data. However, most com-81

pression methods have their own software stack (Lemire and Boytsov, 2015; Trotman, 2014). Thus, it is critical82

to seamlessly integrate compression methods into these existing DAS software without significant modification.83

• Existing DAS data accumulated from past experiments are large. Most existing compression methods only84

support thread based parallelization, which uses only a single computing node (Trotman, 2014). To compress85

large-scale DAS data quickly in a post-hoc scenario, a parallel compression method across nodes is needed.86

To address these challenges, we have studied the characteristics of DAS data and used them to develop a lossless87

DAS data compression method. Our goal is to find a generic data compression method that could compress DAS data88

with high compression ratio and fast compression speed. We then develop algorithms to customize this generic data89

compression method to work in a real-time scenario and a post-hoc scenario. In summary, our contributions include:90

• We propose a two-stage DAS data compression method, consisting of a pre-processing stage and an encoding91

stage. The pre-processing stage transforms the raw DAS data to better fit the encoding method, and the encoding92

stage finds a compact representation for the pre-processed data.93

• Through extensive experimentation, we find a combination of ZigZag as pre-processor (Google, 2021) and94

TurboPFOR (Powturbo, 2021) as the encoder producing the highest compression ratios.95

• For the real-time scenario, we developed a new filter using the HDF5 library (Dong et al., 2020) so that DAS96

data could be seamlessly outputted as compressed HDF5 files.97

• For parallel use cases, we develop a parallel implementation that supports different parallelization strategies.98

We demonstrate the effectiveness of our methods on three real DAS data sets from the Imperial Valley Dark Fiber99

Experiment (Ajo-Franklin et al., in press), the Fiber Optic Sacramento Seismic Experiment (FOSSA) (Ajo-Franklin100

et al., 2019) and the Monterey Bay Experiment (Lindsey et al., 2019a). Our method reduce the DAS data size by up101

to 40%. Comparing with state-of-the-art compression method ZSTD (Collet and Kucherawy, 2021), our method saves102

as much as 21% extra space. The real-time DAS data compression takes around two seconds on a single CPU core to103

process a data file representing 1 minute of DAS recording, which means the compression method finishes before the104

IU produces the next data file, thus allowing real-time compression. Tests with our parallel implementation show that105

it scales nearly linearly up to 256 CPU cores and achieves 26GB∕second with 256 cores.106

The paper is organized as follows. Section 2 introduces related work. Section 3 describes our DAS data compres-107

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to Elsevier Page 3

of 22

DAS Data Compression

sion method. Section 4 reports performance evaluation. Section 5 concludes the paper with future work.108

2. Related Work109

Data compression methods are extensively documented in the literature (Jayasankar et al., 2021; Smith, 2010;110

Holtz, 1993; Mittal and Vetter, 2016). DAS data has its unique characteristics, such as short integer type. Thus, here111

we use data type to classify existing compression methods into three categories: universal compression method, integer112

compression method, and DAS-specific compression method.113

Universal compression method: LZ77 (Ziv and Lempel, 1977) is a universal and lossless method for data com-114

pression. The general idea for LZ77 is to find repeated items in the data and let all these items refer to the first one115

with a length-offset pair encoding. A sliding window is maintained to track how far in the data the repeated items are116

looked for. LZ77 has inspired many data compression methods, such as LZ78, LZW, LZSS, LZMA, GIF in PNG,117

and DEFLATE in ZIP (Kinsner and Greenfield, 1991; Pylak, 1990; Liaw, 1995; Deutsch, 1996). Huffman code is118

another lossless compression method (Huffman, 1952) which uses optimal prefix code based on a frequency-sorted119

binary tree. Similarly, the information theory based compression method, entropy coding, can encode data items by120

using the number of bits that is inversely proportional to its probability (MacKay, 2002). Zstandard (or ZSTD) (Collet121

and Kucherawy, 2021) is one of the latest lossless compression methods with advantages from LZ77, entropy encod-122

ing, and Huffman coding. Thus, we take ZSTD as a representative method of universal compression methods in our123

performance evaluation to compress DAS data.124

Integer compression method: There are a number of techniques optimized for compressing integer data with125

higher compression ratio or speed. For example, differential coding could convert a series of integers to have more126

repeated data items to compress. Also, considering the type of data provides the opportunity to view data with large127

granularity (e.g., 4-byte integers or 2-byte short integers) rather than one byte. The latest compression methods for128

integer compression methods include TurboPFor (Powturbo, 2021) and FastPFor (Lemire and Boytsov, 2015). FastP-129

For does not support compressing 2-byte short integers. TurboPFor supports 2-byte short integers, but it only accepts130

unsigned short integers. As mentioned before, most raw DAS data are stored as short integers with both negative and131

positive values. In this work, we extend the TurboPFor to work on DAS data and also to improve its compression ratio.132

DAS-specific compression method: Convolutional neural networks (CNN)(Liehr et al., 2020), principal compo-133

nent analysis (PCA)(Ibrahim et al., 2020), Curvelet (Qin et al., 2017), and other methods (Meng et al., 2019; Soto134

et al., 2016) have been applied to reduce noise in DAS datasets (Liehr et al., 2020). These de-noising methods can be135

regarded as lossy compression methods designed to reduce the cost or improve quality of specific analysis procedures.136

In this paper, we explore a lossless compression method that would benefit all types of analyses.137

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to Elsevier Page 4

of 22

DAS Data Compression

Table 1
A summary of the DAS datasets used in this paper. The "Measure Length" is the length of the optical-fiber cable and
the "Spatial Resolution" defines the length of the optical fiber which can be treated as one channel (sensor). Hence,
Measure Lengtℎ
Spatial Resolution

defines how many channels (sensors) per experiment. The “one minute” within the “Output Interval” column
specifies that the DAS system outputs a data file per minute. Each output from the one minute interval is a separate file.
Our compression method treats each file as the smallest granularity in compression. Each file consists of a 2D array whose
size is [Frequency × 60 , Measure Lengtℎ

Spatial Resolution
](i.e., [rows, columns]). The total number of files and the total size of the data

are listed in the column “File Count/Total Size”. These files are collected between the “Start Time” and the “End Time”
(UTC). The format for the time is “month/day/year hour:minute:second”.

Measure
Length(m)

Spatial Res-
olution (m)

Frequency
(Hz)

Output
Interval

File Count /
Total Size

Start
Time

End Time

Sacramento 23296 2 500 One
Minute

7200/4.6T 01/02/18
16:17:29

01/07/18
16:16:29

ImpValley 27648 4 500 One
Minute

7200/2.7T 11/10/20
23:18:85

11/15/20
23:46:31

MBARI 39168 4 500 One
Minute

2859/0.8TB 06/22/19
00:10:34

06/22/19
23:59:34

3. Two-stage DAS Data Compression Method138

In this section, we introduce the characteristics of the raw DAS data, the two-stage compression method, and its139

implementation for both real-time and post-hoc scenarios.140

3.1. Characteristics of DAS Data141

Three DAS datasets are used in our work and their basic information is summarized in Table 1. The first dataset,142

referred to as “Sacramento”, is from an experiment conducted in the Sacramento Valley, CA (Ajo-Franklin et al., 2019).143

The second one referred as “ImpValley”, comes from an ongoing experiment in the Imperial Valley, CA (Ajo-Franklin144

et al., in press) . The third one (referred as “MBARI”) comes from theMonterey Accelerated Research System (MARS)145

in Monterey Bay, California (Lindsey et al., 2019a). The statistical properties of these datasets are shown in red in146

Fig. 1 (“Original” legend). From the large number of data files, only two randomly selected files from “Sacramento”147

dataset and “ImpValley” dataset are shown here. The “MBARI” dataset and other files “Sacramento” and “ImpValley”148

in have similar statistical properties. From these figures, we can draw the following conclusions:149

• Density describes the histogram of values in the data. For the original data, both the Sacramento data and150

Imperial Valley data show a normal distribution with both negative and positive values.151

• Most significant bit (MSB) of a value refers to the left-most bit that is 1 in its binary representation1. An152

example of the MSB is presented in Fig. 2. About 50% of the original data have the MSB at index 16. Except153

these negative values, the MSB of positive values shows normal distribution with center at 9 and 7 for Imperial154

Valley and Sacramento, respectively.155

.156

1Two’s complement: https://en.wikipedia.org/wiki/Two%27s_complement

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to Elsevier Page 5

of 22

https://en.wikipedia.org/wiki/Two%27s_complement

DAS Data Compression

0.0000

0.0005

0.0010

0.0015

0.0020

−2000 0 2000 4000 6000
Amplitude Values

D
en

si
ty

Data
Original
Abs
ZigZag

(a) ImpValley Data: Density

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Most Significant Bit Index

0

10

20

30

40

50

P
er

ce
nt

ag
e

(%
)

Original
Abs
ZigZag

(b) ImpValley Data: Most Significant Bit

0.000

0.002

0.004

0.006

0.008

−500 0 500 1000 1500
Amplitude Values

D
en

si
ty

Data
Original
Abs
ZigZag

(c) Sacramento Data : Density

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Most Significant Bit Index

0

10

20

30

40

50

P
er

ce
nt

ag
e

(%
)

Original
Abs
ZigZag

(d) Sacramento Data: Most Significant Bit
Figure 1: Statistical properties of the DAS data from the Sacramento and Imperial Valley experiments. The data file from
the Sacramento dataset is 01/04/2018 23:35:31 and from the Imperial Valley dataset is 11/12/2020 18:41:32. To easily
compare the density plots shown in the figure, we drop the long tail parts of the distribution but only focus on the majority
parts of the data (See Appendix 3 for the full plot of the density). We observe the same distribution in the MBARI data.

3.2. Two-stage DAS Data Compression Method157

The two-stage DAS compression method includes a pre-processing stage and an encoding stage, as shown in Fig. 3.158

The pre-processing stage converts DAS values into proper shapes to fit the subsequent encoding better. The encoding159

stage uses short data representation to store the converted DAS data and therefore reduces its size. We will present160

how to find proper methods for the pre-processing and the encoding of DAS data.161

3.2.1. DAS Data Pre-processing Methods162

Since the DAS data examined has around 50% negative values and most integer specific compression methods only163

work on positive values, our specific goal for the pre-processing is to convert negative values into positive ones without164

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to Elsevier Page 6

of 22

DAS Data Compression

Binary Representation of 101: 0 000 0000 0110 010 1

Binary Representation of -101: 1 111 1111 1001 101 1

Sign bit

Most significant bit

Figure 2: Binary representation and most significant bit of a 101 and -101 with the signed magnitude method. Note that
two’s complement format is used here to present the -101.

Raw DAS Data Preprocessing Encoding Compressed DAS Data

DAS Compression

Figure 3: Overview of the two-stage compression method for the DAS data

loss of information. In our pre-processing stage, we consider two methods:165

• Abs method converts negative values into positive ones by obtaining their absolute values. During this con-166

version, the sign of negative values is lost. Thus, a separate bitmap is created to record the sign of each value.167

After applying theAbsmethod on DAS data, the normal distribution of DAS datasets is converted into a skewed168

distribution, which gives the compression method more chance to find repeated values. This is shown by the169

plot marked in the blue color in Fig 1a and Fig.1c. For the most significant (MSB) bit after applying the Abs,170

the negative values with 16 MSB bit index (as the highest red bar in Fig. 1b and Fig. 1d) are transformed into171

positive ones with small MSB bit index. Therefore, this transform can help the encoding stage to find shorter172

representation to compress DAS data.173

• ZigZag method converts negative values to positives and also appends the sign bit to the beginning of binary174

representation (Google, 2021). For the short typedDAS data, the ZigZag can be expressed as (v ≪ 1)∧(v ≫ 15),175

where v is the value and the ≪, ≫ and ∧ are all bit operators. The v ≪ 1 shifts the value to the left by 1 bit176

to get the magnitude of the value2. The v ≫ 15 shifts the value to the right by 15 bits to get the sign bit. The177

∧ is the bitwise exclusive “OR” operator to merge the magnitude and the sign bit. To convert the value back,178

the operator is (v ≫ 1) ∧ (−(v&1)), where & is the bitwise “AND” operator. After applying the ZigZag method179

on the DAS data, the results have the similar distribution as the one from the Abs method above, as shown in180

Fig. 1b and Fig. 1d. Compared to the centers from the Abs method (9 for ImpValley and 7 for Sacramento), the181

centers of the ZigZag method are larger (10 for ImpValley and 9 for Sacramento). This is because ZigZag stores182

the sign bit at the least significant bit but the Abs method stores the sign bit with an extra bitmap.183

2Also, note that v ≪ 1 is removing the sign bit and in most language standards, For negative value, the behavior of ≪ may be undefined or
implementation-dependent, even though most compilers are doing arithmetic shifts. Details can be found https://en.cppreference.com/w/
cpp/language/operator_arithmetic

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to Elsevier Page 7

of 22

https://en.cppreference.com/w/cpp/language/operator_arithmetic
https://en.cppreference.com/w/cpp/language/operator_arithmetic

DAS Data Compression

3.2.2. DAS Data Encoding Methods184

In our two-stage DAS data compression method, most existing algorithms can be used to encode the pre-processed185

DAS data. Here, we only consider TurboPFor (Powturbo, 2021) as an example to introduce how the encoding works.186

TurboPFor gives the highest encoding efficiency and the fastest compression speed for the DAS data in our experiments,187

as shown later in Section 4. The general idea behind TurboPFor is the bit-packing technology, which selects as few188

bits as possible to store a group of data. In TurboPFor, data series are split into small groups, i.e., 256 short integers189

per group. Then, the minimum number of bits for each group is determined to store all its integers inside. TurboPFor190

records the minimum number of bits and the type of a group at the beginning of each block. To work on data with191

various inputs, TurboPFor may support two types of groups: the constant group and the bit-packing group. The192

constant group stores the data with the same values. The bit-packing group may use bitmap and variable-type to store193

non-constant values. Theoretically, TurboPFor only scans data once and it can finish the encoding quickly. Further194

details of the bit-packing can be found in the paper (Powturbo, 2021). Fig. 4 gives an example of how bit-packing195

encoding works for a few example data points. When applied to real DAS data, as shown in the previous Fig. 1, the196

bit-packing method can drop the zero, which are converted from 1 from during ZigZag, after the MSB. With the help197

the pre-processing stage, the sign bit of negative values is removed from the left-most bit and therefore can improve198

the chances to find zero after the MSB.199

Before encoding: 0000 0000 1110 0101, 0000 0000 1110 0110, 0000 0000 1110 0111, 0000 0000 1110 1000

After encoding: 1110 0101, 1110 0110, 1110 0111, 1110 1000

229, 230, 231, 232

Figure 4: An example of encoding of 229, 230, 231, 232 with bit-packing. Before the encoding, each value is stored as a
16-bit short integer type. After the encoding, each value is stored as 8 bits, saving 50% of storage space. In TurboPFor,
the type of group and number of integers are stored too. The commas are just added for visualization purposes.

3.3. Real-time DAS Data Compression200

Based on the two-stage DAS data compression method above, we develop an in-situ implementation to support201

real-time DAS data compression. Most DAS systems are already using or transitioning to use the HDF5 format for202

storage (Feigl, 1969, 2016; The HDF Group, 2010). Our implementation uses the HDF5 filter plugin mechanism,203

which allows for DAS compression to happen on the data write path from memory to disk, as shown in Fig. 5. Most204

compression methods have their own file formats for the compressed data (Powturbo, 2021), but our implementation205

can avoid significant changes to the existing software stack used to store DAS data in the field and read back for analysis.206

Also, it avoids generating an extra copy of the data during compression.207

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to Elsevier Page 8

of 22

DAS Data Compression

HDF5 filter plugin mechanism requires the chunk size as a whole unit to apply compression. However, our ex-208

periments find chunk size has negligible impact on compression of DAS data (see Appendix 1). Therefore, we set209

the chunk size to be the whole array size. After compression, the whole HDF5 file can be transferred as a single unit210

without decompression. If users want to read back for analysis, they can reuse the same DAS data analysis software211

which already uses H5Dread to read the data. The HDF5 library can automatically find the decompression library and212

decompress the data. The implementation of the HDF5 filter plugin can be found in the code availability section.213

iDAS
interrogator

H5Dwrite DAS Compression

HDF5 FileComputer Memory

DAS Array

Attached Disk Array

HDF5 Filter • Analyze (read
via H5Dread)
with Matlab,
DASSA, etc.

• Transfer,
• etc.

Figure 5: Overview of the real-time DAS Compression with the HDF5 filter. It receives each data, an Array, from iDAS
interrogator and stores the data in computer memory. Then, it calls H5Dwrite function from HDF5 library to writes data
to disk. Before the actually data is written, the DAS compression method is applied to reduce the size of data. Once
data is written to the disk, it is stored as HDF5 file too. The compressed HDF5 file can be read back in the same way as
before compression for analysis via H5Dread, transfer or other operations. When the compressed data in HDF5 are read
via H5Dread for analysis, the HDF5 library can automatically find proper decompression library to extract data (assumed
that the decompression library are set correctly in the system.).

3.4. Post-hoc DAS Data Compression214

In this section, we present the method to parallelize the two-stage DAS data compression method to repack the215

DAS data. We use the DASSA framework (Dong et al., 2020) as the driver during the parallelization. Specifically,216

the DASSA framework supports various user-defined function(UDF)s with the help of FasTensor (Dong et al., 2021).217

We use the UDF to read the DAS data. When the data is written to disk, the compression occurs. The UDF from218

FasTensor can run in parallel, and therefore the compression implementation on top of it can function in parallel.219

During the compression, different H5Dwrite calls associated with their DAS compression method are assigned to220

different computing processes on the same compute node or striped across multiple nodes. This utilizes their aggregate221

computing power and I/O bandwidth. Based on this general idea, we support three different parallelization patterns:222

• N:N pattern (shown in Fig. 6 (a)) compresses each input DAS data file separately, where N (N ∈ ℤ) is the223

number of DAS files to compress. Each computing process compresses a file and multiple processes work224

concurrently. At mostN computing processes can be used to archive maximum performance. When the number225

of computing processes is smaller than N , each process can compress multiple files one by one.226

• N:M pattern (0 < M < N,M ∈ ℤ) concatenates the data first and compresses each concatenated data as a single227

file. In the example by Fig. 6 (b), two DAS arrays are concatenated; it then calls H5Dwrite function and the228

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to Elsevier Page 9

of 22

DAS Data Compression

DAS compression method. Different concatenated files can be compressed concurrently.229

• S:E pattern specifies a start file index (i.e., S) and an end file index (i.e., E) to compress a subset of the whole230

dataset. (0 ≤ S < E < N, S and E are zero-based). In the example in Fig. 6 (c), two files (S=1, E= 2) are selected231

to be compressed separately. These selected files can be merged too before compression.232

Array 1

Array 2

Array 3

Array 4

W&C

W&C

W&C

W&C

Array 1

Array 2

Array 3

Array 4

CompressedOrginal

(a) N:N (b) N:M (c) S:E

Array 1

Array 2

Array 3

Array 4

W&C

W&C

Array 1 - 2

Array 3 - 4

Compressed
Orginal

Array 1

Array 2

Array 3

Array 4

W&C

W&C

Array 2

Array 3

Compressed

Orginal

Figure 6: Overview of different supported patterns in the parallel DAS data compression. We demonstrate it with four
example files, which are denoted with Array 1, Array 2, Array 3, and Array 4. The W&C in the cylinder refers to H5Dwrite
call and Compressing, which can be concurrently executed on the path of writing data from memory to disk.

4. Experimental Results233

Our experiments utilized the Cori HPC system at NERSC3. Details of the DAS data are presented in the previous234

Table 1. The metric to measure the efficiency of the compression is the compression ratio R: R = Soriginal
Scompressed

, where235

Soriginal is the size of the original data andScompressed the size of the compressed data. Larger values ofR correspond to236

better compression methods. The 1− 1
R gives the percentage of data size reduced by the compression. We also measure237

and report the compute overhead (i.e., seconds) to compress the data. Although the overhead of decompression could238

be another factor to consider, the DAS data are more sensitive to the compression overhead, especially in the real-time239

scenario where limited computing power is available. Our experiments find that this set of compression methods have240

very similar overheads during compression and decompression (see Appendix 2).241

4.1. Comparison of Different Compression Methods242

In this experiment, we compress our DAS data with TurboPFor, Abs+TurboPFor, ZigZag+TurboPFor, ZSTD4 and243

GZIP5. TurboPFor means that we compress the DAS data directly with TurboPFor by treating the negative values as244

positive values. Abs+TurboPFor and ZigZag+TurboPFor are our two-stage compression methods, which pre-process245

the data with theAbs andZigZagmethod, respectively, and then use TurboPFor to encode the data. ZSTD has different246

compression levels. Lower levels give fast compression speed and higher levels give best compression ratio. Our tests247

3https://www.nersc.gov/
4ZSTD is obtained at http://facebook.github.io/zstd/ and it can be used as a HDF5 plugin via HDF5Plugin-Zstandard https://

github.com/aparamon/HDF5Plugin-Zstandard
5GZIP is the H5Z_FILTER_DEFLATE filter avaiable in HDF5

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 10

of 22

https://www.nersc.gov/
http://facebook.github.io/zstd/
https://github.com/aparamon/HDF5Plugin-Zstandard
https://github.com/aparamon/HDF5Plugin-Zstandard

DAS Data Compression

1.40

1.24

1.2

1.38

1.23

1.23

1.34

1.20

1.2

1.36

1.23

1.2

1.19

1.13

1.1

1.61

1.54

1.35

1.65

1.38

1.3

1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

Sacramento

ImpValley

MBARI

COMPRESSION RATIO (THE LARGER, THE BETTER)

ZigZag+TurboPfor
Abs+TurboPfor
TurboPfor
GZIP(level=9)
ZSTD (level=1)
ZSTD (level=9)
ZSTD (level=20)

D
at

as
et

s

(a)

466.00

166.70

130.11

15.41

14.52

12.18

1.66

1.20

1.11

35.00

15.00

16

1.70

1.12

0.9

2.40

1.62

1.01

1.86

1.28

0.95

0.10 1.00 10.00 100.00 1000.00 10000.00

Sacramento

ImpValley

MBARI

TIME (S) (THE SMALLER, THE BETTER)

ZigZag+TurboPfor

Abs+TurboPfor

TurboPfor

GZIP(level=9)

ZSTD (level=1)

ZSTD (level=9)

ZSTD (level=20)

D
at

as
et

s

(b)
Figure 7: Evaluation of Different Compression Methods

choose level 1, level 9 and level 20 for ZSTD. GZIP has multiple levels too, but our tests find similar results among248

these levels. Therefore, we only report level 9 for GZIP. We compress each file separately and report the average249

compression ratio and time here. Details of compression ratio for each file can be found in the following subsection.250

As shown by Fig. 7a, TurboPFor yields the lowest compression ratio by compressing the DAS data directly. DAS251

data has both negative values and positive values. The negative values have a sign-bit as the left-most bit. This sign-bit252

reduces the chance for TurboPFor to find short bit-packing encoding to reduce its size. By contrast, by pre-processing253

the DAS data with either Abs or ZigZag, the compression ratio improves significantly, giving the best compression.254

Our results suggest that these two methods can reduce the DAS data size by at most 40%. This is consistent with255

our previous analysis which showed that Abs and ZigZag can store the sign-bit in separate bitmap or in lower bit256

and therefore can increase the chance to find small bit-packing representation. The performance of GZIP is very257

close the ZSTD, which has small variance among different compression levels. These universal compression methods258

perform better than TurboPFor but still have lower compression ratios than Abs+TurboPFor and ZigZag+TurboPFor.259

Compared with GZIP and ZSTD, Abs+TurboPFor and ZigZag+TurboPFor can save at least 21% extra space for the260

Sacramento data and at least 14% extra space for the Imperial Valley data on average.261

The time to compress DAS data has high variance, as shown by Fig. 7b. ZSTD (level=20) takes the longest time262

to compress a single file: 566 seconds for the Sacramento data, 166 seconds for the the Imperial Valley data and 130263

seconds for the MBARI data. As we stated before, the DAS compression method may work online to process data from264

the interrogator unit. Given the output interval of the DAS data, there is a one minute upper bound for compression265

time. ZSTD (level=20) takes more than one minute and therefore cannot be used for real-time DAS data compression.266

In our tests, the average cost for writing the data is around 2 seconds. Theoretically, all other compression methods267

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 11

of 22

DAS Data Compression

can be used to perform online DAS compression. Amongst them, ZSTD (level=1), TurboPFor, Abs+TurboPFor and268

ZigZag+TurboPFor have very close overhead. Combined with the analysis of the compression ratio presented before,269

ZigZag+TurboPFor is the best candidate for online DAS compression because of its high compression ratio and low270

overhead. As a result, we will focus on ZigZag+TurboPFor in following sections.271

1.32

1.36

1.40

20
−1

1−
10

 1
5:

18

20
−1

1−
10

 2
1:

58

20
−1

1−
11

 0
4:

38

20
−1

1−
11

 1
1:

47

20
−1

1−
11

 1
8:

27

20
−1

1−
12

 0
1:

07

20
−1

1−
12

 0
7:

47

20
−1

1−
12

 1
4:

27

20
−1

1−
12

 2
1:

07

20
−1

1−
13

 0
3:

47

20
−1

1−
13

 1
0:

27

20
−1

1−
13

 1
7:

07

20
−1

1−
13

 2
3:

47

20
−1

1−
14

 0
6:

27

20
−1

1−
14

 1
3:

07

20
−1

1−
14

 1
9:

47

20
−1

1−
15

 0
2:

27

20
−1

1−
15

 0
9:

07

C
om

pr
es

si
on

 R
at

io

(a) ImpValley Data

1.600

1.625

1.650

1.675

1.700

18
−0

1−
02

 0
8:

17

18
−0

1−
02

 1
4:

57

18
−0

1−
02

 2
1:

37

18
−0

1−
03

 0
4:

17

18
−0

1−
03

 1
0:

57

18
−0

1−
03

 1
7:

37

18
−0

1−
04

 0
0:

17

18
−0

1−
04

 0
6:

57

18
−0

1−
04

 1
3:

37

18
−0

1−
04

 2
0:

17

18
−0

1−
05

 0
2:

57

18
−0

1−
05

 0
9:

37

18
−0

1−
05

 1
6:

17

18
−0

1−
05

 2
2:

57

18
−0

1−
06

 0
5:

37

18
−0

1−
06

 1
2:

17

18
−0

1−
06

 1
8:

57

18
−0

1−
07

 0
1:

37

C
om

pr
es

si
on

 R
at

io

(b) Sacramento Data

1.29

1.30

1.31

1.32

1.33

1.34

19
−0

6−
21

 17
:10

19
−0

6−
21

 18
:50

19
−0

6−
21

 20
:30

19
−0

6−
21

 22
:10

19
−0

6−
21

 23
:50

19
−0

6−
22

 01
:30

19
−0

6−
22

 03
:10

19
−0

6−
22

 04
:50

19
−0

6−
22

 06
:30

19
−0

6−
22

 08
:10

19
−0

6−
22

 09
:50

19
−0

6−
22

 11
:30

19
−0

6−
22

 13
:10

19
−0

6−
22

 14
:50

19
−0

6−
22

 16
:30

C
om

pr
es

si
on

 R
at

io

(c) MBARI Data

3.75

3.01

4.51

-0.05

3.83

-1

0

1

2

3

4

5

19-06-21 16:36

19-06-21 19:49

19-06-22 01:26

19-06-22 08:55

19-06-22 16:21

Ti
de

 H
ei

gh
t i

n
Fe

et

(d) Tide height for the period of the MBARI Data

Figure 8: Compression ratio for the ImpValley data (a), the Sacramento data (b) and the MBARI data (c) with
ZigZag+TurboPFor. The horizontal axis is the local time (Pacific Standard Time), which is converted from the UTC time
zone. We also include tide height in (d) to explain the possible cause for the compression variance in the MBARI data.

4.2. Compression Ratio for the Whole Dataset272

The compression ratio for the whole DAS data is reported in Fig. 8, where each point represents compression ratio273

for a file and the x-axis is timestamp (Pacific Standard time). The Sacramento data has a higher compression ratio than274

the ImpValley data. One possible reason is that the Sacramento data is collected from rural area with less activities275

around the optical fiber cable and hence less broadband ambient noise. Also, the Sacramento data has a smaller absolute276

magnitude than the ImpValley data. Both the Sacramento data and the ImpValley data have clear day-night patterns:277

the data collected at the nighttime has higher compression ratio than the data collected at the daytime. This is likely278

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 12

of 22

DAS Data Compression

1 1.2 1.4 1.6 1.8 2

Earthquake

Night(0:00am)

Day (9:00am)

Compression Ratio

(a) Sacramento data on the date 01/04/2018. The one minute data at day time is sampled at 9:00am local time with traffic noises.
The one minute data at night time is obtained at 0:00am with only only noise. The bottom one minute data contains a earthquake
M 4.4 - 2km SE of Berkeley, 01/04/2018 10:39:37 (UTC).

1 1.2 1.4 1.6 1.8 2

Earthquake

Night(1:00am)

Day (10:00am)

Compression Ratio

(b) ImpValley Data on the date 11/13/2020. The one minute data at day time is sampled at 10:00am local time with traffic noises.
The one minute data at night time is obtained at 1:00am with only only noise. The bottom one minute data contains a earthquake
M 5.3 - 33 km SE of Mina, Nevada, 11/13/2020 09:13:51 (UTC).
Figure 9: Raw data (left), spectrum plot (middle) and compression ratio (right) for the Sacramento and ImpValley. Each
row data on the right. The top row is the one minute data at day time with traffic noises. The middle row is the one
minute data at night time with only only noise. The bottom row is the one minute data with earthquake wave.

due to higher levels of seismic noise during the daytime, linked to anthropogenic activity. Peak compression ratios279

are achieved at midnight when only low levels of anthropogenic noise are present. In Fig. 9, we present the raw data,280

spectrum component, and compression ratio for the Sacramento data and the ImpValley data, which are consistent281

with our analysis. For the summary histogram on the right margin, there is no clear distribution observed in the plot.282

The compression ratio has long tails towards the smaller values, which represents the low compression ratio during283

the daytime. Compression ratio for the MBARI is presented and analyzed in Fig. 8c. Clearly, the MBARI data has284

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 13

of 22

DAS Data Compression

different pattens from the previous two data sets. One major reason is the MBARI is collected from fiber under the285

seawater. The noise from MBARI are impacted by water depth and water movement. There seems to be a correlation286

between lower compression ratio and low tide, as shown in Fig. 8d. At low tide, the spread of the values seems slightly287

larger (see Fig. 14 in Appendix 4). Previous analysis (Lindsey et al., 2019b) show small differences in the frequency288

content of the data at high tide, compared with low tide. These differences could be an explanation for this very small289

difference in compression ratio. A further analysis are needed to confirm the correlation between the compression ratio290

and tide or other factors.291

4.3. Scalability of DAS Compression Methods292

0

10

20

816 32 64 128 256
Number of CPU Processes

S
pe

ed
(G

B
/S

ec
)

Dataset
Sacramento
ImpValley
MBARI

Figure 10: Scalability of Compression Method

Fig 10 reports test results from compressing our DAS293

data with the ZigZag+TurboPFor using different number294

of computing processes. The performance measurement295

is the speed: T otal Data Size (GB)
T ime to read, compress and write tℎe data (Sec) .296

Each process is equal to a physical CPU core. Take the297

256 CPU processes and Sacramento data (/w 7200 files)298

as an example. We run these tests with N:N pattern,299

where 256 files are compressed concurrently and each300

file is compressed by oneCPUprocess. For all 2880 files,301

each CPU process compresses at most 29 files. These experimental results clearly show that our compression method302

can scale linearly from 8 CPU processes to 256 CPU processes. For the 256 CPU processes, the speed is 20GB/second303

for the Sacramento data and 26GB/second for the ImpValley data. The I/O cost to access the Sacramento data, whose304

size is larger than that of the ImpValley data, make the scaling test results show high variance.305

5. Conclusions306

The volumes of Distributed Acoustic Sensing (DAS) data are very large (TB/day). Efficient compression of DAS307

data can significantly reduce the cost of storage and transfer. This paper focuses on compressing raw DAS data as308

directly acquired by the DAS interrogator unit, where optical phase is represented as short integer and has both negative309

and positive values. We develop a two-stage compression method to convert negative values into positive ones and use310

a bit-packing method to encode them. We also develop an in-situ method for HDF5 file format and a parallelization311

method to compress DAS data in a real-time and post-hoc manner, respectively. Experimental results show that the312

two-stage compression method can save 40% of the size of the DAS dataset, which is considerable given the 0.5 PB/yr313

acquisition streams generated by single DAS arrays. For an installation that require disk retrieval every fivemonths, this314

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 14

of 22

DAS Data Compression

compression could extend the retrieval time to seven months. Our method also scales linearly as we use more compute315

nodes, delivering 26GB∕seconds peak compression performance. Future work includes research and development of316

float point and lossy compression methods such as SZ and ZFP (Zhao et al., 2020; Diffenderfer et al., 2019; Kingma317

et al., 2019) for DAS data.318

6. Acknowledgments319

The Imperial Valley Dark Fiber Team includes Avinash Nayak, Patrick Dobson, Feng Cheng, Michelle Robertson,320

Inder Monga, Cody Rotermund, Robert Mellors, Yucheng Shang, Benxin Chi, Emily Maher, Todd Wood, Christina321

Morency, Eric Matzel, Elisabet Metcalfe, Lindsay Morse, and Dennise Templeton. We thank anonymous reviewers,322

the Associate Editor, and Editor for carefully reviewing this study and for their comments and suggestions.323

This effort was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scien-324

tific Computing Research (ASCR) and Office of Energy Efficiency and Renewable Energy (EERE), Office of Technol-325

ogy Development, Geothermal Technologies Office, under contract number DE-AC02-05CH11231 with LBNL. This326

research used resources of the National Energy Research Scientific Computing Center (NERSC).327

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 15

of 22

DAS Data Compression

Computer Code Availability328

• The source code used in this paper has two parts and both are open-sourced under a modified BSD license:329

– H5TuorbPFOR: The two-stage DAS data compression method is implemented as a HDF5 plugin. The330

H5TuorbPFOR source code and installation steps can be accessed at the public repository:331

https://github.com/dbinlbl/H5TurboPFor.332

Within the repository, we provide example Jupyter Notebook and C/C++ code to demonstrate how to use333

the compression method.334

– DASSA: The parallel DAS data compression method is implemented in DASSA. The DASSA source code335

can be accessed at the public repository:336

https://bitbucket.org/dbin_sdm/dassa/337

• Program language: C/C++338

• Operating System: Linux/MacOS/Unix339

• Software required: H5TuorbPFOR needs TuorbPFOR and HDF5; DASSA needs H5TuorbPFOR.340

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 16

of 22

https://github.com/dbinlbl/H5TurboPFor
https://bitbucket.org/dbin_sdm/dassa/

DAS Data Compression

Appendix 1: Impact of the subset size and merge size on compression ratio.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

[30
00

0,
1]

[30
00

0,
10

]

[30
00

0,
59

24
]

[30
00

0,
11

64
8]

[1,
 11

64
8]

[15
00

0,
11

64
8]

[30
00

0,
11

64
8]

[25
0,6

4]

[50
0,6

4]

[10
00

,64
]

[32
,8]

1 m
inu

tes

2 m
inu

tes

4 m
inu

tes

8 m
inu

tes

16
 m

inu
tes

C
om

pr
es

si
on

 R
at

io

Subset Size [rows, columns]

Subsets of a 1 minute file Merges of many minutes

Minutes

Figure 11: Measuring the impact of different subset sizes (left) amd merging sizes (right) on compression ratio for the
Sacramento data. We measured the compression ratio for the ZigZag+TurboPFor method. The subset sizes tested include
wide variations, from compressing 1 time series per time, i.e., [30000, 1], to compressing all channels at one time, [1,
11648]. It suggests that compressing along time series yields a small performance advantage. We also test the size by
merging different 1 minutes files together as input of compression. But, in call cases, the chunk size have almost ignorable
impact on the compression ratio. The same pattern is found on the ImpValley data.

341

Appendix 2: Time for DAS data compression and decompression342

Ti
m

e
(s

ec
on

d)

0.00

0.50

1.00

1.50

2.00

2.50

Compression Decompression

Figure 12: The average overhead of compressing and decompressing a file from the Sacramento data. We measured the
compression and decompression time for the ZigZag+TurboPFor method. The compression and decompression have very
close performance. The same pattern is found on the ImpValley data and other compression methods.

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 17

of 22

DAS Data Compression

Appendix 3: Full density plot for the DAS data from Sacramento and ImpValley.343

0.0000

0.0005

0.0010

0.0015

0.0020

−20000 0 20000 40000
Amplitude Values

D
en

si
ty

Data
Original
Abs
ZigZag

(a) ImpValley Data: Density

0.000

0.002

0.004

0.006

0.008

−5000 0 5000 10000
Amplitude Values

D
en

si
ty

Data
Original
Abs
ZigZag

(b) Sacramento Data : Density
Figure 13: Full statistical density plot of DAS data from Sacramento and ImpValley. The data file from Sacramento
dataset is 01/04/2018 23:35:31 and from the ImpValley data set is 11/12/2020 18:41:32.

Appendix 4: Spectral and compression ratio for MBARI data.344

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 18

of 22

DAS Data Compression

1 1.2 1.4 1.6 1.8 2

Low Tide (9:00 AM)

High Tide (1:30 AM)

Compression Ratio

(a) Raw data, spectrum and compression ratio for data at high tide and low tide.

 low tide's value range: [−10623, 10088]

high tide's value range: [−9945, 10369]

0e+00

2e−04

4e−04

6e−04

8e−04

−10000 −5000 0 5000 10000
Amplitude Values

D
en

si
ty

Data
low−tide
high−tide

(b) Density of amplitude values for data at low tide and high tide.
Figure 14: Raw, spectrum, compression ratio, and density of amplitude for two files from MBARI datasets. The low tide
file is the one minute data at local 9:00am (UTC time is: 06/22/2019 16:00:04); the high tide file is the one minute data
at local 1:30am (UTC time is: 06/22/2019 08:30:04).

References345

Ajo-Franklin, J., Dou, S., Daley, T., Freifeld, B., Robertson, M., Ulrich, C., Wood, T., Eckblaw, I., Lindsey, N., Martin, E., et al., 2017. Time-lapse346

surface wave monitoring of permafrost thaw using distributed acoustic sensing and a permanent automated seismic source, in: SEG Technical347

Program Expanded Abstracts 2017. Society of Exploration Geophysicists.348

Ajo-Franklin, J.B., , Rodríguez Tribaldos, V., Nayak, A., Cheng, F., Mellors, R., Chi, B., Wood, T., Robertson, M., Rotermund, C., Matzel, E.,349

Templeton, D.C., Morency, C., Wu, K., Dong, B., Dobson, P., in press. The Imperial Valley Dark Fiber Project: Towards Seismic Studies Using350

DAS and Telecom Infrastructure for Geothermal Applications. Seismological Research Letters Data Mine .351

Ajo-Franklin, J.B., Dou, S., Lindsey, N.J., Monga, I., Tracy, C., Robertson, M., Rodriguez Tribaldos, V., Ulrich, C., Freifeld, B., Daley, T., Li, X.,352

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 19

of 22

DAS Data Compression

2019. Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Scientific353

Reports 9. doi:|https://doi.org/10.1038/s41598-018-36675-8.354

Collet, Y., Kucherawy, M.S., 2021. Zstandard compression and the ’application/zstd’ media type. RFC 8878, 1–45. URL: https://doi.org/355

10.17487/RFC8878, doi:10.17487/RFC8878.356

Deutsch, L.P., 1996. RFC 1951: DEFLATE compressed data format specification version 1.3. URL: ftp://ftp.internic.net/rfc/rfc1951.357

txt;http://www.ietf.org/rfc/rfc1951;http://www.math.utah.edu/pub/rfc/rfc1951.txt. status: INFORMATIONAL.358

Diffenderfer, J.D., Fox, A.L., Hittinger, J.A., Sanders, G.D., Lindstrom, P.G., 2019. Error analysis of zfp compression for floating-point data. SIAM359

Journal on Scientific Computing 41. doi:10.1137/18M1168832.360

Dong, B., Tribaldos, V.R., Xing, X., Byna, S., Ajo-Franklin, J., Wu, K., 2020. Dassa: Parallel das data storage and analysis for subsurface event361

detection, in: 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 254–263. doi:10.1109/IPDPS47924.362

2020.00035.363

Dong, B., Wu, K., Byna, S., 2021. User-Defined Tensor Data Analysis, 2. Springer Briefs in Computer Science, Springer.364

Feigl, K., 1969. Porotomo natural laboratory horizontal and vertical distributed acoustic sensing data doi:10.15121/1721671.365

Feigl, K., 2016. Brady’s geothermal field das earthquake data doi:10.15121/1334285.366

Foukas, X., Patounas, G., Elmokashfi, A., Marina, M.K., 2017. Network slicing in 5g: Survey and challenges. Comm. Mag. 55, 94–100. URL:367

https://doi.org/10.1109/MCOM.2017.1600951, doi:10.1109/MCOM.2017.1600951.368

Google, 2021. Encoding in Protocol-buffers. https://developers.google.com/protocol-buffers/docs/encoding. [Online; accessed369

7-Nov-2021].370

Hartog, A.H., 2017. An introduction to distributed optical fibre sensors. CRC press.371

Higham, D.J., Higham, N.J., 2016. MATLAB guide. volume 150. Siam.372

Holtz, K., 1993. The evolution of lossless data compression techniques, in: Proceedings of WESCON ’93, pp. 140–145. doi:10.1109/WESCON.373

1993.488424.374

Huffman, D.A., 1952. A method for the construction of minimum-redundancy codes. Proceedings of the IRE 40, 1098–1101. doi:10.1109/375

JRPROC.1952.273898.376

Ibrahim, A.D.A., Lin, S., Xiong, J., Jiang, J., Fu, Y., Wang, Z., 2020. Integrated principal component analysis denoising technique for phase-sensitive377

optical time domain reflectometry vibration detection. Appl. Opt. 59, 669–675. URL: http://www.osapublishing.org/ao/abstract.378

cfm?URI=ao-59-3-669, doi:10.1364/AO.59.000669.379

Jayasankar, U., Thirumal, V., Ponnurangam, D., 2021. A survey on data compression techniques: From the perspective of data quality, coding380

schemes, data type and applications. Journal of King Saud University - Computer and Information Sciences 33, 119–140. URL: https://www.381

sciencedirect.com/science/article/pii/S1319157818301101, doi:https://doi.org/10.1016/j.jksuci.2018.05.006.382

Kingma, F.H., Abbeel, P., Ho, J., 2019. Bit-swap: Recursive bits-back coding for lossless compression with hierarchical latent variables, in:383

International Conference on Machine Learning.384

Kinsner, W., Greenfield, R., 1991. The lempel-ziv-welch (lzw) data compression algorithm for packet radio, in: [Proceedings] WESCANEX ’91,385

pp. 225–229. doi:10.1109/WESCAN.1991.160551.386

Lemire, D., Boytsov, L., 2015. Decoding billions of integers per second through vectorization. Software: Practice and Experience387

45, 1–29. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2203, doi:https://doi.org/10.1002/spe.2203,388

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2203.389

Liaw, W.M., 1995. Reading GIF files. Dr. Dobb’s Journal 20, 56, 58, 60, 103, 106–107.390

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 20

of 22

http://dx.doi.org/| https://doi.org/10.1038/s41598-018-36675-8
https://doi.org/10.17487/RFC8878
https://doi.org/10.17487/RFC8878
https://doi.org/10.17487/RFC8878
http://dx.doi.org/10.17487/RFC8878
ftp://ftp.internic.net/rfc/rfc1951.txt; http://www.ietf.org/rfc/rfc1951; http://www.math.utah.edu/pub/rfc/rfc1951.txt
ftp://ftp.internic.net/rfc/rfc1951.txt; http://www.ietf.org/rfc/rfc1951; http://www.math.utah.edu/pub/rfc/rfc1951.txt
ftp://ftp.internic.net/rfc/rfc1951.txt; http://www.ietf.org/rfc/rfc1951; http://www.math.utah.edu/pub/rfc/rfc1951.txt
http://dx.doi.org/10.1137/18M1168832
http://dx.doi.org/10.1109/IPDPS47924.2020.00035
http://dx.doi.org/10.1109/IPDPS47924.2020.00035
http://dx.doi.org/10.1109/IPDPS47924.2020.00035
http://dx.doi.org/10.15121/1721671
http://dx.doi.org/10.15121/1334285
https://doi.org/10.1109/MCOM.2017.1600951
http://dx.doi.org/10.1109/MCOM.2017.1600951
https://developers.google.com/protocol-buffers/docs/encoding
http://dx.doi.org/10.1109/WESCON.1993.488424
http://dx.doi.org/10.1109/WESCON.1993.488424
http://dx.doi.org/10.1109/WESCON.1993.488424
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://www.osapublishing.org/ao/abstract.cfm?URI=ao-59-3-669
http://www.osapublishing.org/ao/abstract.cfm?URI=ao-59-3-669
http://www.osapublishing.org/ao/abstract.cfm?URI=ao-59-3-669
http://dx.doi.org/10.1364/AO.59.000669
https://www.sciencedirect.com/science/article/pii/S1319157818301101
https://www.sciencedirect.com/science/article/pii/S1319157818301101
https://www.sciencedirect.com/science/article/pii/S1319157818301101
http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2018.05.006
http://dx.doi.org/10.1109/WESCAN.1991.160551
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2203
http://dx.doi.org/https://doi.org/10.1002/spe.2203
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2203

DAS Data Compression

Liehr, S., Borchardt, C., Münzenberger, S., 2020. Long-distance fiber optic vibration sensing using convolutional neural networks as real-time391

denoisers. Opt. Express 28, 39311–39325. URL: http://www.osapublishing.org/oe/abstract.cfm?URI=oe-28-26-39311, doi:10.392

1364/OE.402789.393

Lindsey, N., Dawe, C., Ajo-Franklin, J., 2019a. Photonic seismology in monterey bay: Dark fiber DAS illuminates offshore faults and coastal ocean394

dynamics URL: https://doi.org/10.31223%2Fosf.io%2F7bf92, doi:10.31223/osf.io/7bf92.395

Lindsey, N.J., Dawe, T.C., Ajo-Franklin, J.B., 2019b. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing.396

Science 366, 1103–1107. URL: https://www.science.org/doi/abs/10.1126/science.aay5881, doi:10.1126/science.aay5881,397

arXiv:https://www.science.org/doi/pdf/10.1126/science.aay5881.398

Lindsey, N.J., Rademacher, H., Ajo-Franklin, J.B., 2020. On the broadband instrument response of fiber-optic DAS arrays. Journal of Geophysical399

Research: Solid Earth 125, e2019JB018145.400

MacKay, D.J.C., 2002. Information Theory, Inference; Learning Algorithms. Cambridge University Press, USA.401

Meng, Y., Zha, J., Liu, Y., 2019. Intensifying the SNR of BOTDA using adaptive constrained least squares filtering. Optics Communications 437,402

219–225. doi:10.1016/j.optcom.2018.12.073.403

Mittal, S., Vetter, J.S., 2016. A survey of architectural approaches for data compression in cache and main memory systems. IEEE Trans. Parallel404

Distributed Syst. 27, 1524–1536.405

Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., Schmelzbach, C., Fichtner, A., 2021. Empirical investigations of the instrument406

response for distributed acoustic sensing (DAS) across 17 octaves. Bulletin of the Seismological Society of America 111, 1–10.407

Powturbo, 2021. Turbopfor-integer-compression. https://github.com/powturbo/TurboPFor-Integer-Compression.408

Pylak, P., 1990. Efficient modification of LZSS compression algorithm. Annales UMCS Informatica, section AI , 61–72URL: http://www.409

annales.umcs.lublin.pl/AI/2003/07.pdf.410

Qin, Z., Chen, H., Chang, J., 2017. Detection performance improvement of distributed vibration sensor based on curvelet denoising method. Sensors411

17. URL: https://www.mdpi.com/1424-8220/17/6/1380, doi:10.3390/s17061380.412

Rodríguez Tribaldos, V., Lindsey, N.J., Dou, S., Ulrich, C., Robertson, M., Dong, B., Dumont, V., Wu, K., Monga, I., Tracy, C., Ajo-Franklin, J.B.,413

2020. Combining Ambient Noise and Distributed Acoustic Sensing (DAS) Deployed on Dark Fiber Networks for High-resolution Imaging at414

the Basin Scale, in: AGU Fall Meeting Abstracts, pp. S023–04.415

Shiloh, L., Eyal, A., Giryes, R., 2018. Deep learning approach for processing fiber-optic das seismic data, in: 26th International Conference on Opti-416

cal Fiber Sensors, Optical Society of America. p. ThE22. URL: http://www.osapublishing.org/abstract.cfm?URI=OFS-2018-ThE22,417

doi:10.1364/OFS.2018.ThE22.418

Smith, C.A., 2010. A survey of various data compression techniques.419

Soto, M.A., Ramírez, J.A., Thévenaz, L., 2016. Intensifying the response of distributed optical fibre sensors using 2d and 3d image restoration. Nature420

Communications 7, 1–11. URL: https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10870.421

The HDF Group, 2010. HDF5 User Guide.422

Trotman, A., 2014. Compression, simd, and postings lists, in: Proceedings of the 2014 Australasian Document Computing Symposium, Association423

for Computing Machinery, New York, NY, USA. p. 50–57. URL: https://doi.org/10.1145/2682862.2682870, doi:10.1145/2682862.424

2682870.425

Verdon, J.P., Horne, S.A., Clarke, A., Stork, A.L., Baird, A.F., Kendall, J.M., 2020. Microseismic monitoring using a fiber-optic distributed acoustic426

sensor array. GEOPHYSICS 85, KS89–KS99. URL: https://doi.org/10.1190/geo2019-0752.1, doi:10.1190/geo2019-0752.1,427

arXiv:https://doi.org/10.1190/geo2019-0752.1.428

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 21

of 22

http://www.osapublishing.org/oe/abstract.cfm?URI=oe-28-26-39311
http://dx.doi.org/10.1364/OE.402789
http://dx.doi.org/10.1364/OE.402789
http://dx.doi.org/10.1364/OE.402789
https://doi.org/10.31223%2Fosf.io%2F7bf92
http://dx.doi.org/10.31223/osf.io/7bf92
https://www.science.org/doi/abs/10.1126/science.aay5881
http://dx.doi.org/10.1126/science.aay5881
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aay5881
http://dx.doi.org/10.1016/j.optcom.2018.12.073
https://github.com/powturbo/TurboPFor-Integer-Compression
http://www.annales.umcs.lublin.pl/AI/2003/07.pdf
http://www.annales.umcs.lublin.pl/AI/2003/07.pdf
http://www.annales.umcs.lublin.pl/AI/2003/07.pdf
https://www.mdpi.com/1424-8220/17/6/1380
http://dx.doi.org/10.3390/s17061380
http://www.osapublishing.org/abstract.cfm?URI=OFS-2018-ThE22
http://dx.doi.org/10.1364/OFS.2018.ThE22
https://EconPapers.repec.org/RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10870
https://doi.org/10.1145/2682862.2682870
http://dx.doi.org/10.1145/2682862.2682870
http://dx.doi.org/10.1145/2682862.2682870
http://dx.doi.org/10.1145/2682862.2682870
https://doi.org/10.1190/geo2019-0752.1
http://dx.doi.org/10.1190/geo2019-0752.1
http://arxiv.org/abs/https://doi.org/10.1190/geo2019-0752.1

DAS Data Compression

Verónica, R.T., Jonathan, A.F., 2021. Aquifer monitoring using ambient seismic noise recorded with distributed acoustic sens-429

ing (das) deployed on dark fiber. Journal of Geophysical Research: Solid Earth 126, e2020JB021004. URL: https:430

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JB021004, doi:https://doi.org/10.1029/2020JB021004,431

arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020JB021004. e2020JB021004 2020JB021004.432

Xing, X., Dong, B., Ajo-Franklin, J., Wu, K., 2018. Automated parallel data processing engine with application to large-scale feature extraction,433

in: MLHPC 2018, pp. 37–46. doi:10.1109/MLHPC.2018.8638638.434

Zhan, Z., 2019. Distributed Acoustic Sensing Turns Fiber-Optic Cables into Sensitive Seismic Antennas. Seismo-435

logical Research Letters 91, 1–15. URL: https://doi.org/10.1785/0220190112, doi:10.1785/0220190112,436

arXiv:https://pubs.geoscienceworld.org/ssa/srl/article-pdf/91/1/1/4912248/srl-2019112.1.pdf.437

Zhao, K., Di, S., Liang, X., Li, S., Tao, D., Chen, Z., Cappello, F., 2020. Significantly improving lossy compression for hpc datasets with second-438

order prediction and parameter optimization, in: Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed439

Computing, Association for ComputingMachinery, NewYork, NY, USA. p. 89–100. URL: https://doi.org/10.1145/3369583.3392688,440

doi:10.1145/3369583.3392688.441

Ziv, J., Lempel, A., 1977. A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 23, 337–343. doi:10.442

1109/TIT.1977.1055714.443

B. Dong, A. Popescu, V. Rodríguez Tribaldos, S. Byna, J. Ajo-Franklin and K. Wu: Preprint submitted to ElsevierPage 22

of 22

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JB021004
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JB021004
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JB021004
http://dx.doi.org/https://doi.org/10.1029/2020JB021004
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020JB021004
http://dx.doi.org/10.1109/MLHPC.2018.8638638
https://doi.org/10.1785/0220190112
http://dx.doi.org/10.1785/0220190112
http://arxiv.org/abs/https://pubs.geoscienceworld.org/ssa/srl/article-pdf/91/1/1/4912248/srl-2019112.1.pdf
https://doi.org/10.1145/3369583.3392688
http://dx.doi.org/10.1145/3369583.3392688
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1977.1055714

