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Abstract—Achieving high performance on stencil computations
poses a number of challenges on modern architectures. The opti-
mization strategy varies significantly across architectures, types
of stencils, and types of applications. The standard approach to
adapting stencil computations to different architectures, used by
both compilers and application programmers, is through the use
of iteration space tiling, whereby the data footprint of the com-
putation and its computation partitioning are adjusted to match
the memory hierarchy and available parallelism of different
platforms. In this paper, we explore an alternative performance
portability strategy for stencils, a data layout library for stencils
called bricks, that adapts data footprint and parallelism through
fine-grained data blocking. Bricks are designed to exploit the
inherent multi-dimensional spatial locality of stencils, facilitating
improved code generation that can adapt to CPUs or GPUs,
and reducing pressure on the memory system. We demonstrate
that bricks are performance-portable across CPU and GPU
architectures and afford performance advantages over various
tiling strategies, particularly for modern multi-stencil and high-
order stencil computations. For a range of stencil computations,
we achieve high performance on both the Intel Knights Landing
(Xeon Phi) and Skylake (Xeon) CPUs as well as the NVIDIA
P100 (Pascal) GPU delivering up to a 5× speedup against tiled
code.

Index Terms—stencil, performance portability, data layout,
Roofline, GPU, KNL, Skylake

I. INTRODUCTION

Stencil computations are widely used in scientific applica-
tions to solve partial differential equations using the finite
difference or finite volume methods, where the derivative
at each point in space is calculated as a weighted sum of
neighboring point values (a “stencil”).

The optimizations required to achieve high performance on
stencil computations are greatly affected by a stencil’s order of
accuracy. Low-order discretizations result in smaller stencils
that have limited data reuse, are typically bound by mem-
ory bandwidth, and thus underutilize the compute capability
afforded by manycore, wide vector, and GPU architectures.
Much of the prior work in this field has been based on
lower order stencils and has thus focused on techniques to
reduce data movement [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], and some of these even seek to optimize in
the time domain (“2.5D”) to achieve more FLOPS per byte
moved from memory. Recognizing that processor architectures
are becoming more compute-intensive [13], computational
scientists are increasingly turning to high-order schemes that

perform more computation per point (more compute intensive)
but can attain equal error with larger grid spacings (smaller
arrays and thus less total data movement). Although high-
order stencils inevitably result in higher arithmetic intensity,
they place higher pressure on the register file, cache, TLBs,
and inter-process communication. As such, optimizations that
eliminate redundant loads/stores and computation have been
developed [14], [15], [16].

The optimization strategy also varies significantly across
architectures and based on application context (e.g., multi-
stencils). In practice, a high-performance stencil must in-
corporate architecture-specific optimizations to: (1) reduce
data movement at multiple levels of the memory hierarchy
(registers, caches, TLBs); (2) exploit parallelism at multiple
levels (across domains, nested threading, and fine-grain SIMD
parallelization); and (3) avoid redundant loads/stores and com-
putation for stencils that exhibit high arithmetic intensity.

A desirable goal is to achieve performance portability
of applications that incorporate complex stencils, whereby
a source code can be expressed at a high level that rep-
resents the computation, and then automatically mapped to
architecture-specific implementations for differing target ar-
chitectures. Many previous works achieves this through the
use of a domain-specific compiler that automatically generates
architecture-specific code from a stylized stencil specification,
where a subset of these support both CPU and GPU architec-
tures [17], [18], [19], [20], [21], [22], [23].

Our work could be thought of as providing an embedded
domain-specific language (“eDSL”) implementation, but it has
two distinguishing features over prior work. First, the central
underlying abstraction for achieving performance portability of
complex stencil computations is a data layout library called
bricks that decomposes a stencil’s grid domain into small,
fixed-size multi-dimensional subdomains, an approach to fine-
grain data blocking [24], [25], [26]. Although the elements
within each brick are stored contiguously in memory, the
bricks comprising a subdomain need not be stored in the typi-
cal i-major order. Rather, physical ordering is implementation-
specific and logically neighboring bricks are represented by
an adjacency list. This flexible data layout makes it possible
for brick code to adapt automatically to different architec-
tures and application contexts simply by adjusting the data
footprint using autotuning. As compared to tiling approaches,
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Fig. 1: Different spatial tiling schemes used in the comparison on CPUs. Sizes for each dimension of the rectangular 3D region
are tuned. Appendix B contains the code with OpenMP and Intel Compiler pragmas.

the use of bricks provides a number of benefits on stencils
including improved memory hierarchy and TLB utilization,
accelerated data copies, and improved instruction-level paral-
lelism. Bricks are related to earlier fine-grained data blocking
approaches [24], [25], [26], but this is the first work that
combines support for both CPUs and GPUs.

In summary, the key contribution of this paper is the exten-
sive measurements that demonstrate brick as an abstraction
for memory hierarchy optimization, vectorization, threaded
parallelism and the role of the brick data layout in achieving
performance portability across CPUs and GPUs. Across a
broad range of stencil computations, we achieve high perfor-
mance for both the Intel Knights Landing (Xeon Phi) and
Skylake (Xeon) CPUs as well as the NVIDIA P100 (Pascal)
GPU sometimes significantly outperforming tiled code.

II. ARCHITECTURE-SPECIFIC ADJUSTMENT OF DATA
FOOTPRINT: TILING VS. BRICKS

From an architecture perspective, as stated previously, per-
formance of stencil computations is driven by a number of
factors including data movement through the memory system,
including bandwidth requirements and TLB locality, thread-
level parallelism and vectorization. Here, we examine how
loop structure and code generation can synergize with archi-
tecture to minimize the impact of each of these.

Naively, a typical 3D stencil computation walks through
memory in a unit-stride fashion (inner i−loop is unit-stride).
This code will only perform well on hardware platforms that
can cache a working set proportional to the product of stencil
diameter dia and the square of the problem dimension (i.e.,
N2). Further, the hardware must hide memory latency when
presented with a number of data streams corresponding to
the square of the stencil diameter (i.e., dia2); e.g., dia is 3,
representing +1, 0, and −1 in the case of the 27-point stencil.
The separate dia2 streams arise from the 2D projection of the
stencil onto the j-k plane (the plane normal to the streaming
axis). The hardware must also maintain at least dia2 page
entries in the TLB. Failure on any one of these aspects can
increase data movement or decrease effective bandwidth.

Regarding fine-grain parallelism, both SIMD ISAs on CPUs
and memory coalescing on GPUs inexorably lead both archi-

tectures to operate on chunks of points in the unit-stride. These
units of work are mapped to vectors on CPUs and warps on
GPUs. How these units of work stream through the global
problem determines cache locality, data movement, latency
hiding, and bandwidth.

Modern CPU architectures use hardware stream prefetchers
to hide memory latency and maximize memory bandwidth.
To make effective use of a stream prefetcher, each core must
present a few (often less than 32) unit-stride address streams
to memory, which result in sequences of cache misses. To
avoid costly TLB misses, these streams should run for at
least a TLB page (512 doubles on the Intel KNL Xeon
Phi). On GPU architectures, memory latency is hidden with
massive thread parallelism. Nevertheless, TLB locality remains
important although typical GPU page sizes are much larger
and L1 TLBs are shared among warps. On the NVIDIA Tesla
P100, the L1 TLB is shared across a Texture Processing
Cluster (TPC) that consists of two SMs, and the L2 is shared
across the all TPCs [27].

To ensure that the working set is less than cache capacity,
thereby ensuring compulsory cache misses dominate capacity
cache misses, 3D loops representing stencil computations are
typically tiled to create small working sets. For example, tiling
by N/2 in the i- and j-dimensions reduces the cache working
set size by 4× (reuse distance). Smaller tiles generally produce
smaller working sets, but there is a lower limit based on the
stencil diameter. Unfortunately, tiling in the i−dimension is
anathema to the demands of stream prefetchers on CPUs and
is thus rarely employed (with the consequence of increased
cache requirements). Instead, a more typical 2D tiling in the
j- and k-dimensions is widely used for CPUs, with the i-
dimension vectorized, as in Figure 1(a). An improvement on
this scheme is the 3D tiling scheme of Figures 1(b), due to
Rivera et al. [28]. This version improves reuse if N is large,
and supports nested parallelism, which is desirable for larger
numbers of cores. Conversely, memory coalescing and massive
thread parallelism on GPUs often incentivizes tiling in the
i−dimension as well (ignoring TLB effects); a common GPU
3D tiling strategy is shown in Figure 2(a.

Although higher stencil diameters attain high-order nu-
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Fig. 2: Tiling schemes for GPUs as used in our comparisons.
Appendix C contains the code using CUDA.

merical properties as well as high arithmetic intensity, such
stencils place immense demands on the number of stream
prefetchers and the number of TLB entries required. For
dense stencils, these structures must scale proportional to dia2.
This high pressure can lead to ineffective latency hiding or
high TLB miss rates for even moderately large stencils. To
mitigate this pressure, application developers often calculate
the forward and backward halves of the stencil in separate loop
nests. This separate calculation reduces prefetcher and TLB
requirements, but it also reduces cache locality and increases
data movement. Performance can be improved (but rarely
optimally) by balancing these contending forces.

Rather than only employing tuning to balance these forces,
in this paper, we employ a new data layout bricks that decom-
poses the stencils’ input and output grids into small, fixed-
size multidimensional subdomains that are stored contiguously
in memory. We assume that the dimensions of the brick’s
subdomain is greater than the stencil radius. As such, a stencil
application over a brick’s subdomain will only use as many
prefetch streams and TLB entries as a 27-point stencil. Bricks
are then able to exploit the multidimensional reuse inherent
in stencils to maximize memory bandwidth, minimize cache
working set sizes, and minimize TLB pressure for a range of
stencil diameters.

III. BRICKS AS AGGREGATE UNIT OF PARALLEL WORK

The previous section focused on how tiling strategies or
alternatively, bricks, adapt a stencil’s data footprint to target
architectures; this section considers how fine- and coarse-grain
parallelism is also adapted to different target architectures
using bricks. A stencil computation over a domain is composed
of separately applying the stencil to each brick of a domain.
The computation within each brick is the collection of stencil
applications over the subdomain of the brick. Parallelizing
the stencil application can thus be separated into exploiting
fine-grain parallelism within each brick, and coarse-grain
parallelism across a collection of bricks. The brick is then
a fixed-size aggregate unit of parallel work whose size can be
tailored to an architecture.

From a code generation perspective, fine-grain parallelism
on a CPU exploits single instruction, multiple data (SIMD)

Fig. 3: SIMT and SIMD on GPUs and CPUs.

vectorization and on a GPU uses CUDA’s single instruction,
multiple thread model (SIMT) for both fine- and coarse-grain
parallelism. Figure 3 shows the similarity between CPU SIMD
and GPU SIMT. In terms of fine-grain parallelism, we noticed
that a warp on a GPU is similar to a thread on CPU executing
vector instructions. GPUs can issue instructions that operate
on contiguous data and can exchange data across the vector
lanes using the CUDA shuffle command. A warp or a thread is
then the smallest parallel unit which provides vector compute
capability for the stencil computation within a brick’s domain.
It will be assigned a brick at a time and execute the stencils
using SIMT or SIMD until it finishes. In this parallelization
level, a brick as an aggregate unit of data is able to optimize for
data movement, TLB locality, and reuse in first-level cache.
Moreover, brick as an aggregate unit of parallel work with
fixed domain allows for efficient vector code generation.

Additional levels of coarse-grain parallelism are driven by
the presence of shared caches and efficient synchronization.
On a GPU, the second level of parallelism is a streaming
multiprocessor that contains a collection of warps with a
shared L1 cache. These warps are programmed using blocks
that offer flexible mapping to hardware and are scheduled as
a whole. On Intel Knights Landing, this level is a tile that
consists of 2 cores (8 threads) and shares L2 cache. The
shared cache also enables relatively more efficient OpenMP
synchronization. To capitalize on the data reuse of nearby
bricks, we may assign a rectangular subdomain to these units.

For computation using a single node, the third level of
parallelism is the whole chip that is either a collection of
streaming multiprocessors or cores. On GPUs, CUDA’s grid
and block decomposition allows mapping work to these hard-
ware units. On CPUs, OpenMP’s dynamic schedule offers
similar flexibility.

IV. BRICK LIBRARY OVERVIEW

In this paper, the brick data layout is implemented as a C++
library. When writing stencil computations with bricks, the
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1 vo id s t e n c i l ( f l o a t ∗ p t r n e x t , f l o a t ∗p t r p r e v ,
f l o a t ∗ p t r v e l , f l o a t ∗ c o e f f ) {

2 / / . . . Code t o assume a l i g n e d . . .
3 / / . . . Code c o n v e r t t o 3D a r r a y s . . .
4 omp se t num threads ( 3 2 ) ;
5 # pragma omp p a r a l l e l f o r c o l l a p s e ( 3 ) s c h e d u l e (

dynamic , 1 ) p r o c b i n d ( s p r e a d )
6 f o r ( l ong rk = GC; rk < N + GC; rk += RK)
7 f o r ( l ong r j = GC; r j < N + GC; r j += RJ )
8 f o r ( l ong r i = GC; r i < N + GC; r i += RI ){
9 omp se t num threads ( 8 ) ;

10 # pragma omp p a r a l l e l f o r s c h e d u l e ( s t a t i c , 1 )
p r o c b i n d ( c l o s e )

11 f o r ( l ong t k = rk ; t k < rk + RZ ; t k += 4)
12 f o r ( l ong t j = r j ; t j < r j + RY; t j += 4)
13 f o r ( l ong t i = r i ; t i < r i + RX; t i += 16)
14 # pragma u n r o l l a n d j a m ( 4 )
15 f o r ( l ong k = t k ; k < t k + 4 ; ++k )
16 # pragma u n r o l l a n d j a m ( 4 )
17 f o r ( l ong j = t j ; j < t j + 4 ; ++ j )
18 # pragma v e c t o r a l i g n e d n o n t e m p o r a l
19 f o r ( l ong i = t i ; i < t i + 1 6 ; ++ i ) {
20 f l o a t c = p rev [ k ] [ j ] [ i ] ∗ c o e f f [ 0 ] + (
21 p rev [ k ] [ j ] [ i +1] + p rev [ k ] [ j ] [ i−1] +
22 p rev [ k ] [ j + 1 ] [ i ] + p rev [ k ] [ j −1][ i ] +
23 p rev [ k + 1 ] [ j ] [ i ] + p rev [ k−1][ j ] [ i ] ) ∗
24 c o e f f [ 1 ] ;
25 n e x t [ k ] [ j ] [ i ] = c ∗ v e l [ k ] [ j ] [ i ] ;
26 }}}

(a) 7-point stencil baseline code expressed using arrays.

1 vo id s t e n c i l ( b r i c k d &next , b r i c k d &prev , b r i c k d &vel ,
b r i c k l i s t &b l i s t , f l o a t ∗ c o e f f ) {

2

3

4 omp se t num threads ( b l i s t . l v 1 ) ;
5 # pragma omp p a r a l l e l f o r s c h e d u l e ( dynamic , 1 ) p r o c b i n d (

s p r e a d )
6 f o r ( l ong r = 0 ; r < b l i s t . r l e n ; ++ r ) {
7

8

9 omp se t num threads ( b l i s t . l v 2 ) ;
10 # pragma omp p a r a l l e l f o r s c h e d u l e ( s t a t i c , 1 ) p r o c b i n d (

c l o s e )
11 f o r ( l ong l = b l i s t . r d a t [ r ] ; l<b l i s t . r d a t [ r + 1 ] ; ++ l )
12

13 f o r ( l ong o= b l i s t . b d a t [ l ] ; o<b l i s t . b d a t [ l +1] ;++ o ){
14 l ong b = b l i s t . d a t [ o ] ;
15 f o r ( l ong k = 0 ; k < p rev . i n f o−>dim z ; ++k )
16

17 f o r ( l ong j = 0 ; j < p rev . i n f o−>dim y ; ++ j )
18

19 f o r ( l ong i = 0 ; i < p rev . i n f o−>dim x ; ++ i ) {
20 f l o a t c = p rev . elem ( b , k , j , i )∗ c o e f f [ 0 ] + (
21 p rev . elem ( b , k , j , i +1)+ p rev . elem ( b , k , j , i−1)+
22 p rev . elem ( b , k , j +1 , i ) + p rev . elem ( b , k , j−1, i ) +
23 p rev . elem ( b , k +1 , j , i ) + p rev . elem ( b , k−1, j , i ) )∗
24 c o e f f [ 1 ] ;
25 n e x t . elem ( b , k , j , i ) =c∗ v e l . elem ( b , k , j , i ) ;
26 }}}

(b) 7-point stencil code expressed using bricks.

Fig. 4: A comparison of node-level 7-point stencil code, using 3D arrays vs. bricks. The tiled code (left) and brick code (right)
reflect the baseline and brick code, respectively, for KNL experiments in this paper. Autotuning is used to optimize the tile
sizes RK, RJ and RI for both versions of code. GPU code has the same structure, but differs in how thread-level parallelism
is expressed, its use of low-level instructions, and required more autotuning exploration to achieve high performance.

grid value reference is extended with one additional dimension
that represents the index of the brick. All references to a
point (k,j,i) are replaced by the reference to a point in a
brick b: (b,k,j,i). The brick library allows an application
developer to write stencil computations using a familiar C-style
notation with 3+1D accesses that are automatically mapped to
efficient code. For example, let us assume bricks are fixed-size
4×4×4 subdomains which are 3-dimensional to target typical
3D stencil codes. Figure 4(b) shows how a user would express
a 7-point stencil computation using bricks and is similar to
the accompanying tiled implementation using 3D arrays in
Figure 4(a). Figure 5 shows how to instantiate a brick and
invoke the stencil. When accessing an element in another
brick (e.g. vel.elem(b,0,0,4) is element (0,0,0) in
the brick following it logically in the x−dimension), the
library internals will translate the access into accessing the
corresponding element in the brick following b in the i
dimension.

This adjacency list organization may also realize non-
rectangular domains, and enables the code generator to explore
different layouts, affinities, and scheduling schemes for non-
uniform memory access (NUMA) and distributed memory
systems. Bricks from multiple grids can also be interleaved
in a manner that is transparent to the computation to further
reduce the number of discontinuous memory accesses in a
stencil computation.

We employ a source-to-source compiler to optimize the
stencil computation [29] within each brick to optimize brick

1 / / b r i c k i n f o ( B r i c k Dimens ions )
2 b r i c k i n f o b i n f o ( 4 , 4 , 4 ) ;
3 / / g e n L i s t ( Domain S i z e i n Br i cks , Ou te r P a r a l l e l

Subdomain , I n n e r P a r a l l e l Subdomain ) :
4 / / f o r 512ˆ3 and 4 wide g h o s t z o n e on each s i d e
5 b r i c k l i s t b l i s t = b i n f o . g e n L i s t (128+2 ,130 ,130 , RK, RJ ,

RI , 4 , RJ , RI ) ;
6 / / A l l o c a t i n g
7 b r i c k d p rev (& b i n f o ) , n e x t (& b i n f o ) , v e l (& b i n f o ) ;
8 / / . . . I n i t i a l i z a t i o n Code . . .
9 / / −−− Run f o r i t e r ∗ 2 t ime s t e p s −−−

10 f o r ( l ong t = 0 ; t < i t e r ; ++ t ) {
11 s t e n c i l ( nex t , prev , ve l , b l i s t , &c o e f f [ 0 ] ) ;
12 s t e n c i l ( prev , nex t , ve l , b l i s t , &c o e f f [ 0 ] ) ;
13 }

Fig. 5: Allocating bricks and invoking the stencil.

address translation and generate efficient vector code for
different architectures. The brick library thus lends itself
to autotuning of the execution schedule to adapt to differ-
ent architectures, types of stencils, and application contexts.
As such, the brick library, provides performance portability
through a single source representation, architecture-specific
code generation, and autotuning.

V. EXPERIMENTS

To demonstrate that bricks provide performance portability,
we evaluate a number of performance metrics for bricks vs.
tiling across both CPU- and GPU-based systems. Table I
describes a collection of 3D stencils explored in the exper-
iment. Six synthetic stencils for the Laplacian operator of
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varying order are used to capture the memory-compute ratio
of different kinds of stencil shapes and diameters. Two real-
world stencils have been taken from application code. The six
synthetic stencils are named according to the number of points.
The 7-point, 13-point, 19-point, and 25-point belong to stencils
for the Laplacian operator, that only operate on elements along
each of the axes (star-shaped) in each dimension. For these
stencils, the stencil diameter is equivalent to the order as there
are no off-axis points in the stencil (e.g., the 7-point stencil is
second order and also has a diameter of 3). The 27-point and
125-point are stencils for the “compact” Laplacian that touch
all points in a cube (dense), with Manhattan distance equal
to the radius. The stencil diameter (twice the radius plus 1)
is again the same as the order; in some applications these
stencils can produce more accurate solutions. The iso stencil
resembles the 25-point stencil, with diameter 9. We use the
hypterm routine from CNS which is a variable-coefficient
Poisson stencil [30] in finite volume form that is 8th-order,
and has a similar footprint as the 25-point stencil.

Stencil Description Data Movement per
point (Read:Write)

FLOPs
per point

7pt 2nd order 1:1 words 13
13pt 4th order 1:1 words 25
19pt 6th order 1:1 words 37
25pt 8th order 1:1 words 49
27pt 2nd order 1:1 words 53

125pt 4th order 1:1 words 249
iso 8th order, isotropic fi-

nite difference [31]
3:1 words 61

CNS 8th order, compress-
ible Navier Stokes [30]

8:5 words 466

TABLE I: Stencils used in our experiments. Data movement
is a lower bound assuming only compulsory cache misses and
cache bypass for write (nontemporal stores for KNL) while
FLOPs counts only those in the source code.

Compulsory data movement in Table I is a lower bound that
assumes ideal cache behavior and blocking. All the synthetic
stencils must move two elements per stencil application (read
the full input array; write the full output array). FLOP/Point
refers to how many floating-point operations each application
of the stencil requires. All synthetic stencils have a unique
weight for each of point in the stencil (but spatially constant).
Thus, a 27-point stencil has 27 weights, 27 multiplies, and 26
adds. One can calculate the theoretical arithmetic intensity for
these kernels by dividing the number of FLOPs per point with
the total number of bytes of data moved per point and observe
all but the 125-point will be ultimately bound by memory
bandwidth on KNL.

A. Intel Xeon Phi Knights Landing

We generate AVX-512 code for the Intel Xeon Phi 7250
Knights Landing (KNL) CPU. The processor has 68 physical
cores organized into a 2D on-chip mesh of 34 tiles each with
two CPU cores1 and a shared 1MB L2 cache. Each core has a

1We use 32 tiles for a total of 64 cores in all our experiments to isolate
system overhead.

private 32KB L1 data cache, implements 4-way multithread-
ing, and has two AVX-512 vector processing units (VPUs).
Although each core has a nominal frequency of 1.4GHz,
under AVX-heavy computations, the cores will downclock to
1.2GHz. With 64 cores, the theoretical peak performance is
4915 GFLOP/s for single-precision fused multiply-and-add
(half that for double, half that again for add or multiply
instructions). Each chip has both standard DDR4 DRAM
memory and high-bandwidth MCDRAM memory. MCDRAM
can be configured as either a last level cache, or as a separate
addressable memory (exposed to programmers as a second
NUMA node). We preserve our target machine’s (NERSC’s
Cori) nominal configuration of the MCDRAM as a last level
cache (quadcache) to reflect typical user models. This yields
a STREAM bandwidth of about 332 GB/s.

For the brick implementation, we used 4 × 4 × 16 bricks
for all stencils with single precision and 4× 4× 8 bricks for
double precision.

We compare the stencil computation using bricks against
three spatial tiling schemes — 2D tiling, 3D tiling from Rivera
and Tseng [28] and 6D tiling that resembles bricks without the
layout transformation. The concepts are shown in Figure 1.
Note that the 6D version resembles the brick code without a
data layout transformation. For all tiling implementations and
brick variants, we use exhaustive search on the CPUs to find
the best tiling factor. The performance is based on the average
throughput of the stencil kernel when running consecutively
for 2 seconds on a 5123 domain in GStencil/s. All the stencils
are compiled with the pragma for nontemporal stores. All
tiling code are successfully vectorized by the Intel compiler
with AVX-512.

Across different tiling implementations, the results are as
expected. Generally, 3D tiling often produces the best per-
formance except on the 27-point and 125-point stencils in
double precision and CNS in both precision due to better
cache reuse compared with the 2D version and reduced TLB
pressure compared with the 6D tiling scheme. Except for CNS,
the best tuned 3D tiling variant did not tile in the unit-stride
dimension (TILEI=512) and as such, is equivalent to 2D tiling
with nested parallelism). The 6D version produces the best
performance on CNS due to significantly improved reuse with
larger stencil diameter and cache pressure from the larger
number of simultaneous grid accesses.

We first analyze performance by noting the significant
reduction in data movement using bricks as compared against
different tiling implementations. For this purpose, we use
the Intel VTune Amplifier to collect the Read and Write
MCDRAM data movement using the frame API and the count
of hardware cache events. Assuming the write data movement
is fixed for each of the computations, the empirical read:write
ratio shows how many more reads from MCDRAM are
incurred from non-ideal caching (superfluous capacity misses).
The result is shown in Figure 6. We see almost invariably that
the brick variants require less data movement than any tiled
implementation.

Next, we examine how bricks significantly lower TLB

5



7p
t-S

P
7p

t-D
P

13
pt

-S
P

13
pt

-D
P

19
pt

-S
P

19
pt

-D
P

25
pt

-S
P

25
pt

-D
P

27
pt

-S
P

27
pt

-D
P

12
5p

t-S
P

12
5p

t-D
P

iso
-S

P

iso
-D

P
CN

S-
SP

CN
S-

D
P

0

5

10

15

Stencil

R
ea

d:
w

ri
te

ra
tio

2D 3D 6D Brick
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Stencil Overhead Blocking (Best) Bricks

125pt uTLB 2.65% 1.27%
Page-walk 6.02% 4.16%

CNS uTLB 4.54% 0.71%
Page-walk 16.75% 3.80%

TABLE II: TLB pressure (measured in percentage of clock
cycles) for single-precision stencils on KNL. Observe that
bricks dramatically reduces the time incurred from uTLB
misses and page walks — an affect that improves bandwidth
without changing arithmetic intensity.

pressure. Once again, using the Intel VTune Amplifier, we
calculated the fraction of the clock cycles spent handling TLB
misses in Table II for two of the higher-order stencils. The
uTLB overhead captures the first-level data TLB misses and
the page-walk overhead captures the second-level data TLB
misses. We observe that bricks result in a huge reduction in
both uTLB and Page Walk overhead.

Finally, we show that bricks can perform at a high frac-
tion of machine performance. Figure 7 presents an empirical
Roofline figure for our attained brick performance. As we
use uniquely weighted synthetic stencils there is no redundant
computation. The FLOP/s rates are then calculated using the-
oretical FLOPs per point from Table I and stencil throughput.
FLOP/s may be overestimated for iso and CNS. Arithmetic
intensity is the ratio of floating point performance to the
achieved bandwidth collected using Intel VTune Amplifier.
For many computations our brick library attains performance
near the machine’s capabilities. However, attaining peak per-
formance for the most compute-intensive stencils is increas-
ingly challenging as non-floating-point vector instructions e.g.
valign consume vector unit (VPU) cycles and displace
useful floating-point computations.

Table III shows that on KNL the brick code is almost always
faster and achieves up to 4.4× the performance compared
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Fig. 7: Roofline figure for the KNL 7250 where each dot
represents our optimized stencil performance. Observe that
most stencils are near the Roofline.

with the tiling version. Bricks are only slower for lower order
memory-bound stencils that don’t offer sufficient cache reuse
to make bricks profitable (7pt-SP, 7pt-DP, and 13pt-DP).

B. Intel Xeon Skylake Gold

With the AVX-512 code generation capability, we can
also run on traditional CPU architectures. To that end, we
evaluated bricks on a 2.1GHz Intel Xeon Gold 6130 which
is based on the Skylake core architecture. This Skylake has
16 cores with 32 threads and each core is equipped with
two AVX-512 units providing a theoretical (assuming no
AVX downclocking) single-precision peak performance of
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Fig. 8: Roofline figure for the Skylake Gold CPU where each
dot represents our optimized brick performance. Note, the
FLOP ceiling is theoretical and overly optimistic in that it
does not account for an lower AVX clock rate.

2150 GFLOP/s and a double-precision peak performance of
1075 GFLOP/s. Concurrently, 6 memory controllers provide
a STREAM bandwidth of 85GB/s. We used 4× 4× 16 bricks
for all stencils with single precision and 4× 4× 8 bricks for
double precision.

The target machine prevents Intel VTune Amplifier from
accessing the performance counters required to accurately
measure DRAM data movement. Nevertheless, we may es-
timate DRAM data movement (and thus arithmetic intensity)
using compulsory cache misses of Table I. Figure 8 shows our
brick library can deliver performance close to the Roofline for
both single- and double-precision implementations. Although
compulsory data movement is an underestimate for total data
movement (upperbound on arithmetic intensity), the resultant
Roofline plot proves it is very close to total data movement
(points can never be left of the bandwidth ceiling).

As with KNL, we expect non-floating-point vector instruc-
tions to have limited the available performance and thus
limited the performance of the most compute-intensive stencil
(125-point). Moreover, in this paper, we have assumed SKL
runs AVX-512 code at the nominal 2.1GHz. However, if like
KNL it underclocks when running AVX-512 heavy code, then
we have overestimated SKL peak performance and our brick
performance is much closer to the true peak.

As with KNL, we also compared our brick-based stencil
performance against the three spatial tiling schemes. Table III
shows that the brick code can deliver up to 5.0× the perfor-
mance compared with the tiled version and is only (slightly)
slower on the simplest stencils.

C. NVIDIA P100 Pascal GPU

To deliver performance portability across a wide range of
HPC platforms, the brick library can generate CUDA code
for the NVIDIA Tesla P100 GPU. The P100 GPU has 56
streaming multiprocessors. Each streaming multiprocessor has
64 single-precision and 32 double-precision CUDA cores
and has a warp size of 32. The P100 has a theoretical
peak single-precision performance of 9.3 TFLOP/s, a peak
double-precision performance of 4.7 TFLOP/s, and a GPU-
STREAM [32] bandwidth of 586 GB/s.

For GPUs, we compared the stencil computation using
bricks against two tiling schemes: 3D and 6D. 6D tiling is
representative of the parallel schedule used for the brick code.
We tune the tiling implementations exhaustively and report the
tiling factor and the number of warps in 6D. For the brick code,
we also experimented with different execution order within
the thread group domain. However, the schedule shown for
6D often yielded the best performance. With the expanded
tuning space, we tune the brick code using random forest and
search for at most 6 hours for each stencil or stops early when
the global best value didn’t change for 1000 iterations. We use
4×4×32 bricks for all stencils except CNS which uses 4×4×8
bricks for single-precision and 4 × 4 × 4 bricks for double-
precision to reduce cache pressure. The stencil performance
is based on the average stencil throughput over 100 timesteps
on a 5123 domain (3843 for CNS) in GStencil/s.

Comparing between the two tiling schemes, we find that
the 6D version actually outperforms the 3D version on all
stencils except the 13-point and 19-point stencil with double
precision. Nevertheless, as shown in Table III, our brick library
outperforms the highly-optimized 6D tiling GPU baseline by
up to 5× in double precision.

On the GPU, bricks offer comparable L2 cache reuse and
the brick code generator yields significantly better register
reuse. Figure 9(left) shows the read:write ratio computed using
NVProf. The brick version does not attain the same L2 locality
as the tiled version on the 27-point and 125-point stencils.
This is inconsequential as the tiling implementation of these
stencils is bound by the L1 cache on the GPU. When it comes
to L1 pressure, we show in Figure 9(right) that the brick code
generator reduces the L1 pressure by up to 11× by attaining
much better locality in the register file.

Our brick implementation attains a high fraction of the GPU
performance. Figure 10 shows the Roofline model plotted from
empirical FLOPs and bandwidth collected using NVProf. Our
brick code attains a high fraction of the machine bandwidth
and operates close to the HBM Roofline while relatively low
occupancy (at 12.5% for iso-SP and 125pt-DP). Although
higher occupancy is generally preferable for latency-bound
kernels, for well-optimized codes, higher occupancy may
stress certain functional units unnecessarily and increase the
latency [33].

Table III shows that our brick code CUDA generator
achieves a speedup between 1.1× and 5.0× compared with
the higly-optimized tiled version.
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Fig. 9: Read:write ratio on P100 with single precision. Double precision yields similar comparison. HBM data movement ratio
captures reuse in the L2 cache, while L1 data movement ratio captures reuse in registers. All of the tiled stencils are bound
by their L1 usage. Note that the code generator for bricks offers much better register reuse.

Double-Precision Single-Precision
Stencil KNL SKL P100 Stencil KNL SKL P100

7pt 10.96 (0.7×) 4.51 (0.9×) 24.25 (1.1×) 7pt 26.46 (0.9×) 8.86 (0.9×) 41.04 (1.4×)
13pt 10.59 (0.8×) 4.39 (0.9×) 21.06 (1.4×) 13pt 24.93 (1.0×) 8.82 (0.9×) 35.79 (1.8×)
19pt 9.98 (0.9×) 4.37 (0.9×) 18.84 (1.7×) 19pt 24.35 (1.2×) 8.78 (0.9×) 32.18 (2.1×)
25pt 9.20 (1.2×) 4.41 (1.1×) 16.94 (1.8×) 25pt 21.83 (1.3×) 8.80 (1.1×) 29.08 (2.3×)
27pt 8.59 (0.9×) 3.97 (1.2×) 19.29 (2.1×) 27pt 20.84 (1.0×) 8.05 (1.2×) 26.50 (2.0×)

125pt 4.08 (4.4×) 1.83 (4.9×) 11.44 (5.0×) 125pt 8.67 (4.1×) 3.87 (5.0×) 16.78 (4.1×)
iso 6.52 (1.0×) 2.61 (1.1×) 10.56 (1.4×) iso 14.24 (1.1×) 5.21 (1.0×) 19.93 (2.0×)

CNS 1.03 (2.9×) 0.49 (2.0×) 1.87 (1.9×) CNS 1.98 (2.3×) 0.97 (2.1×) 3.18 (2.3×)

TABLE III: Attained autotuned performance with bricks in GStencil/s and speedup (in parenthesis) over the best tuned tiled
implementation. Observe, as stencil complexity increases, so too does the benefit of bricks.
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Fig. 10: Roofline figure for benchmarks running on the P100
Pascal GPU where each dot represents our optimized brick
performance for a different stencil.

D. Performance Portability

To assess the performance portability of bricks, we adopt
the performance portability metric PP across a set of platforms
H as defined by Pennycook et al. [34], [35] as reproduced in
Equation 1. In that formalism, we define the metric’s efficiency
ei(a, p) for application a and problem p on platform i as the
fraction-of-roofline.

PP(a, p,H) =


|H|∑

i∈H
1

ei(a, p)

if i is supported,
∀i ∈H

0 otherwise

(1)

Table IV presents the resultant efficiencies (performance
relative to Roofline) for each platform, stencil, and precision.
Additionally, we show performance portability using Equa-
tion 1 for a given stencil and precsision, and again averaged
over all stencils for a given precision. We observe that the
smaller stencils are generally memory-bound and attain high
fractions of the Roofline for most platforms. Consistently
high efficiencies produce high performance portability PP.
Conversely, the consistently moderate efficiency for the 125-
point stencil produces a moderate PP. Overall, across all
platforms and stencils, we attain a performance portability PP
of 72% in double precision.
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Single-Precision Double-Precision
Stencil KNL SKL P100 PP KNL SKL P100 PP

7pt 96% 83% 64% 79% 96% 85% 82% 87%
13pt 91% 83% 59% 75% 92% 83% 78% 84%
19pt 90% 83% 54% 72% 82% 82% 77% 80%
25pt 94% 83% 51% 71% 81% 83% 73% 79%
27pt 73% 76% 49% 63% 66% 75% 69% 70%

125pt 44% 45% 45% 45% 41% 43% 62% 47%
iso 78% 98% 61% 76% 78% 98% 82% 85%
cns 74% 60% 55% 62% 78% 60% 62% 66%

66% 72%

TABLE IV: Application Efficiency (ei) and Performance
Portability of various stencils when using bricks. Numbers
below the table represent averages across all stencils.

Currently, we calculate efficiency ei based solely on the
number of useful floating-point operations. However, brick-
based stencils can require vector shuffle and alignment oper-
ations that consume cycles that would otherwise be used for
floating-point operations. As a result, although our efficiency
calculations are accurate in that they include all floating-
point operations, they may not be sufficient as they do not
incorporate all vector operations. To that end, in the future,
we will expand our efficiency metric to incorporate all vector
operations in order to better account for contended resources
as suggested by Yang et al. [36]. This will more accurately
calculate ei and thus increase our brick library’s PP.

VI. RELATED WORK

A large body of prior work on optimizing stencils has
focused on stencils applied on large grids which are usually
bound by capacity or compulsory cache misses, leading to a
variety of studies on spatial and temporal tiling [37], [28],
[38], [39], [40], [41], [5], [10], [8], [4], [1], [2], [3], [42],
[9], [7], [12], [6]. A few specifically focused on generating
GPU code [43], [44]. These tiling techniques have focused
on loop or iteration space tiling and sometimes seek to
optimize in the time domain (“2.5D”) to increase data reuse.
The applicability of 2.5D tiling is highly dependent on the
structure and complexity of the underlying numerical method
and presence of distributed memory communication. It has
been shown to be effective for the simplest operators running
on a single node, and when profitable is straightforward to
express with a 2.5D loop structure built on top of our generated
brick iteration.

In addition to loop tiling, researchers have also tiled or
blocked data. Data along with loop tiling efforts have been
addressed by [24], [45], [26], [25]. TiDA [45] uses coarse-
grained data blocking, where the entire grid is tiled into sub-
grids, each sub-grid with its own ghost zone. Fine-grained data
blocking is explored in Bricks and Briquettes [24], YASK [25]
and RTM on the Cell processor [26]. All the fine-grained
blocking techniques targeted large, compute-intensive stencils,
and the small data blocks do not have per-block ghost zones.

This paper introduces a new approach to data blocking
called bricks, which is encapsulated in a library and supports
vector code generation (for CPUs and GPUs), and hierarchical

node-level parallelism. The bricks used in our research are
similar to briquettes in [24], but there is significant difference
in our approaches. Briquettes were designed to perform 3D
stencils split into 1D stencils, thus requiring multiple sweeps
to compute the output. Furthermore, a data transpose was
required between each 1D stencil sweep to ensure good
SIMDization. Their code generation required data staging
tailored for 1D stencils. In contrast to Briquettes, we optimize
3D stencils without dimensional splitting in addition to fine-
grained data blocking to improve computation by reducing
reads cache or DRAM and improving SIMDization.

Considering other fine-grained data blocking, YASK is a
C++ template-based approach to generating code for large
stencils with fine-grained data blocks. YASK autotuned their
data block size, and, used vector-length data blocks which
are smaller than our method, such as 2×2×4 with AVX-512
instead of 4×4×16. YASK targets x86 based architectures and
thus lacks portability. Our approach addresses this challenge
by generating code for both CPUs and GPUs. RTM was
optimized on the Cell processor in [26] using fine-grained data
blocking. The code was manually optimized, and focused on
a single stencil.

A common approach to deriving high-performance stencil
computations is to use a domain-specific compiler that au-
tomatically generates architecture-specific code from a styl-
ized stencil specification [21], [17], [18], [19], [20], [22],
[23]. Among these, only MODESTO, PATUS, ExaSten-
cil, and Halide can generate both CPU and GPU code.
MODESTO [20] is focused on scheduling the computation
and data movement of multiple stencil computations. PA-
TUS [21] uses both a stencil description and a machine
mapping description to generate architecture-specific code.
The ExaStencil project [22], [46], [47] uses layered DSLs to
map from one high-level stencil description to different target
architectures. Halide separates computation specification from
architecture-specific schedule, which can be automatically-
generated or written by a programmer, and applies a limited
set of optimizations [23]. While bricks could be the target
of a DSL and use the brick code generator, our work is
distinguished from all of these systems in its use of the brick
data layout to tackle the memory system and parallelism for
both CPU and GPU architectures.

Perhaps the closest work is the QCD Grid library [48], [49]
wherein the 4-lattice used in QCD is folded into small arrays
of virtual nodes stored contiguously in memory. Although Grid
provides a QCD-specific code generator, it lacks the compiler
infrastructure required for broad applicability and performance
portability.

Although there are many stencil benchmarks, very few
include 3D stencils, and in general they are limited to simple
examples and lack comparison to Roofline models [50], [51],
[52], [53], [54].

In summary, the stencil optimization approach based on
the brick data layout in this paper offers a new abstrac-
tion for memory hierarchy optimization, vectorization, thread
parallelism and is the centerpiece for achieving performance
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portability of stencil computations across CPUs and GPUs.

VII. CONCLUSIONS AND FUTURE WORK

In order to attain performance portability across different
modern architectures including SIMD CPUs and SIMT GPUs,
this paper introduced a brick data layout. Bricks provide an
abstraction for code generation and optimization that allow an
implementation to be adapted to different stencil computations
and different target architectures.

Ultimately, we show we can consistently attain high per-
formance on compute-intensive stencils and high-bandwidth
on memory-intensive stencils close to the Roofline bound
of the respective architecture. Additionally, we demonstrate
that our brick library delivers much better performance as
stencil complexity grows — a key imperative as applied
mathemeticans reorganize computation to avoid the memory
wall. Moreover, we demonstrate and quantify performance
portaiblity across both the AVX-512 based Knights Landing
and Skylake CPUs as well as the P100 GPU.

Although other stencil optimizations such as temporal
blocking and wavefront parallelism are beyond the scope
of this paper, they are complementary and we will explore
combining them with bricks at the source code level where
applicable.
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APPENDIX
TILING IMPLEMENTATIONS

A. Kernel example

A 7-point stencil kernel of tiled code is implemented as
follows.

1 j s t r i d e = (N + 2∗SH) ; k s t r i d e = (N + 2∗SH) ∗(N + 2∗SH) ;
2 o u t [ k∗ k s t r i d e + j∗ j s t r i d e + i ] = c o e f f [ 0 ]∗ i n [ k∗ k s t r i d e +

j∗ j s t r i d e + i ] +
3 c o e f f [ 0 ]∗ i n [ k∗ k s t r i d e + j∗ j s t r i d e + ( i +1) ]+ c o e f f [ 0 ]∗ i n

[ k∗ k s t r i d e + j∗ j s t r i d e + ( i−1) ] +
4 c o e f f [ 0 ]∗ i n [ k∗ k s t r i d e + ( j +1)∗ j s t r i d e + i ]+ c o e f f [ 0 ]∗ i n

[ k∗ k s t r i d e + ( j−1)∗ j s t r i d e + i ] +
5 c o e f f [ 0 ]∗ i n [ ( k +1)∗ k s t r i d e + j∗ j s t r i d e + i ]+ c o e f f [ 0 ]∗ i n

[ ( k−1)∗ k s t r i d e + j∗ j s t r i d e + i ] ;

Following are tiling implementations for different architec-
tures. SH is the width of the ghost zone and is set to be the
length of a cacheline. REG* and TILE* are tuning parameters.

B. KNL & Xeon implementations

2D

1 # pragma omp p a r a l l e l f o r c o l l a p s e ( 2 ) s c h e d u l e ( dynamic ,
1 )

2 f o r ( l ong t k = SH ; t k < N + SH ; t k += TILEK )
3 f o r ( l ong t j = SH ; t j < N + SH ; t j += TILEJ )
4 f o r ( l ong k = t k ; k < t k + TILEK ; ++k )
5 f o r ( l ong j = t j ; j < t j + TILEJ ; ++ j )
6 # pragma v e c t o r n o n t e m p o r a l
7 # pragma omp simd
8 f o r ( l ong i = SH ; i < N + SH ; ++ i )
9 / / K e r ne l

3D

1 # pragma omp p a r a l l e l f o r s c h e d u l e ( dynamic , 1 ) c o l l a p s e
( 3 ) p r o c b i n d ( s p r e a d )

2 f o r ( l ong t k = SH ; t k < N + SH ; t k += TILEK )
3 f o r ( l ong t j = SH ; t j < N + SH ; t j += TILEJ )
4 f o r ( l ong t i = SH ; t i < N + SH ; t i += TILEI ) {
5 omp se t num threads ( 8 ) ;
6 # pragma omp p a r a l l e l f o r s c h e d u l e ( s t a t i c , 1 ) p r o c b i n d

( c l o s e )
7 f o r ( l ong k = t k ; k < t k + TILEK ; ++k )
8 f o r ( l ong j = t j ; j < t j + TILEJ ; ++ j )
9 # pragma v e c t o r n o n t e m p o r a l

10 # pragma omp simd
11 f o r ( l ong i = t i ; i < t i + TILEI ; ++ i )
12 / / K e r ne l
13 }

6D

1 # pragma omp p a r a l l e l f o r c o l l a p s e ( 3 ) s c h e d u l e ( dynamic ,
1 ) p r o c b i n d ( s p r e a d )

2 f o r ( l ong rk = SH ; rk < N + SH ; rk += REG)
3 f o r ( l ong r j = SH ; r j < N + SH ; r j += REG)
4 f o r ( l ong r i = SH ; r i < N + SH ; r i += REGI ) {
5 omp se t num threads ( 8 ) ;
6 # pragma omp p a r a l l e l f o r c o l l a p s e ( 2 ) s c h e d u l e ( s t a t i c ,

1 ) p r o c b i n d ( c l o s e )
7 f o r ( l ong t k = rk ; t k < rk + REG; t k += TILE )
8 f o r ( l ong t j = r j ; t j < r j + REG; t j += TILE )
9 f o r ( l ong t i = r i ; t i < r i + REGI ; t i += TILEI )

10 f o r ( l ong k = t k ; k < t k + TILE ; ++k )
11 f o r ( l ong j = t j ; j < t j + TILE ; ++ j )
12 # pragma v e c t o r n o n t e m p o r a l
13 # pragma omp simd
14 f o r ( l ong i = t i ; i < t i + TILEI ; ++ i )
15 / / K e r ne l
16 }

C. GPU implementations

3D
1 g l o b a l vo id
2 k e r n e l ( . . . ) {
3 l ong t k = b l o c k I d x . z ∗ REG + SH ;
4 l ong j = b l o c k I d x . y ∗ TILEJ + SH + t h r e a d I d x . y ;
5 l ong i = b l o c k I d x . x ∗ TILEI + SH + t h r e a d I d x . x ;
6 f o r ( l ong k = t k ; k < t k + TILEK ; ++k )
7 / / K e r ne l
8 }
9 vo id c a l l k e r n e l ( . . . ) {

10 dim3 b l o c k (N/ TILEI , N/ TILEJ , N/ TILEK ) ;
11 dim3 t h r e a d ( TILEI , TILEJ ) ;
12 k e r n e l<<<block , t h r e a d >>>(...) ;
13 }

6D
1 g l o b a l vo id
2 l aunch bounds (32∗TWARP, NBLOCK)
3 k e r n e l ( . . . ) {
4 l ong rk = b l o c k I d x . z ∗ REG + SH ;
5 l ong r j = b l o c k I d x . y ∗ REG + SH ;
6 l ong r i = b l o c k I d x . x ∗ REGI + SH ;
7 l ong l i n e = REG / TILE ;
8 l ong i l i n e = REGI ;
9 l ong t o t = l i n e ∗ l i n e ∗ x l i n e ;

10 i f ( t h r e a d I d x . y < NWARP)
11 f o r ( l ong n= t h r e a d I d x . y∗TILEI ;
12 n<t o t ; n+=NWARP∗TILEI ) {
13 l ong t i = r i + n % REGI ;
14 l ong r = n / REGI ;
15 l ong t j = r j + r % l i n e ∗ TILE ;
16 l ong t k = rk + r / l i n e ∗ TILE ;
17 f o r ( l ong i = t i + t h r e a d I d x . x ;
18 i < i + TILEI ; i += 32)
19 f o r ( l ong k = t k ; k < t k + TILE ; ++k )
20 f o r ( l ong j = t j ; j < t j + TILE ; ++ j )
21 / / K e r ne l
22 }
23 }
24 vo id c a l l k e r n e l ( . . . ) {
25 dim3 b l o c k (N/ REGI ,N/REG, N/REG) ;
26 dim3 t h r e a d ( 3 2 , TWARP) ;
27 k e r n e l<<<block , t h r e a d >>>(...) ;
28 }
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