Delivering Performance-Portable Stencil
Computations on CPUs and GPUs Using Bricks

Tuowen Zhao*, Samuel Williams?, Mary Hall*, Hans Johansen'
*School of Computing, University of Utah
Email: {ztuowen,mhall}@cs.utah.edu
TComputational Research Division, Lawrence Berkeley National Laboratory
Email: {swwilliams,hjohansen} @Ibl.gov

Abstract—A chieving high performance on stencil computations
poses a number of challenges on modern architectures. The opti-
mization strategy varies significantly across architectures, types
of stencils, and types of applications. The standard approach to
adapting stencil computations to different architectures, used by
both compilers and application programmers, is through the use
of iteration space tiling, whereby the data footprint of the com-
putation and its computation partitioning are adjusted to match
the memory hierarchy and available parallelism of different
platforms. In this paper, we explore an alternative performance
portability strategy for stencils, a data layout library for stencils
called bricks, that adapts data footprint and parallelism through
fine-grained data blocking. Bricks are designed to exploit the
inherent multi-dimensional spatial locality of stencils, facilitating
improved code generation that can adapt to CPUs or GPUs,
and reducing pressure on the memory system. We demonstrate
that bricks are performance-portable across CPU and GPU
architectures and afford performance advantages over various
tiling strategies, particularly for modern multi-stencil and high-
order stencil computations. For a range of stencil computations,
we achieve high performance on both the Intel Knights Landing
(Xeon Phi) and Skylake (Xeon) CPUs as well as the NVIDIA
P100 (Pascal) GPU delivering up to a 5x speedup against tiled
code.

Index Terms—stencil, performance portability, data layout,
Roofline, GPU, KNL, Skylake

I. INTRODUCTION

Stencil computations are widely used in scientific applica-
tions to solve partial differential equations using the finite
difference or finite volume methods, where the derivative
at each point in space is calculated as a weighted sum of
neighboring point values (a “stencil”).

The optimizations required to achieve high performance on
stencil computations are greatly affected by a stencil’s order of
accuracy. Low-order discretizations result in smaller stencils
that have limited data reuse, are typically bound by mem-
ory bandwidth, and thus underutilize the compute capability
afforded by manycore, wide vector, and GPU architectures.
Much of the prior work in this field has been based on
lower order stencils and has thus focused on techniques to
reduce data movement [1I], [2], [3], [4], [5], (6, [Z], (8], [9],
[LO], [1], [12], and some of these even seek to optimize in
the time domain (‘“2.5D”) to achieve more FLOPS per byte
moved from memory. Recognizing that processor architectures
are becoming more compute-intensive [13]], computational
scientists are increasingly turning to high-order schemes that

perform more computation per point (more compute intensive)
but can attain equal error with larger grid spacings (smaller
arrays and thus less total data movement). Although high-
order stencils inevitably result in higher arithmetic intensity,
they place higher pressure on the register file, cache, TLBs,
and inter-process communication. As such, optimizations that
eliminate redundant loads/stores and computation have been
developed [14]], [L5], [16].

The optimization strategy also varies significantly across
architectures and based on application context (e.g., multi-
stencils). In practice, a high-performance stencil must in-
corporate architecture-specific optimizations to: (1) reduce
data movement at multiple levels of the memory hierarchy
(registers, caches, TLBs); (2) exploit parallelism at multiple
levels (across domains, nested threading, and fine-grain SIMD
parallelization); and (3) avoid redundant loads/stores and com-
putation for stencils that exhibit high arithmetic intensity.

A desirable goal is to achieve performance portability
of applications that incorporate complex stencils, whereby
a source code can be expressed at a high level that rep-
resents the computation, and then automatically mapped to
architecture-specific implementations for differing target ar-
chitectures. Many previous works achieves this through the
use of a domain-specific compiler that automatically generates
architecture-specific code from a stylized stencil specification,
where a subset of these support both CPU and GPU architec-
tures [17]], (18], [190, [20], [21], [22], [23].

Our work could be thought of as providing an embedded
domain-specific language (“eDSL”) implementation, but it has
two distinguishing features over prior work. First, the central
underlying abstraction for achieving performance portability of
complex stencil computations is a data layout library called
bricks that decomposes a stencil’s grid domain into small,
fixed-size multi-dimensional subdomains, an approach to fine-
grain data blocking [24], [25]], [26]. Although the elements
within each brick are stored contiguously in memory, the
bricks comprising a subdomain need not be stored in the typi-
cal 7-major order. Rather, physical ordering is implementation-
specific and logically neighboring bricks are represented by
an adjacency list. This flexible data layout makes it possible
for brick code to adapt automatically to different architec-
tures and application contexts simply by adjusting the data
footprint using autotuning. As compared to tiling approaches,

A\ 4

(a) 2D

. | 0
. 1 .
| |
! ! {Thread i+1
| Thread group | |
K| i V/
| V)
f v/
Vv

(b) 3D

| Thread i-1
| Thread i

(c) 6D

Fig. 1: Different spatial tiling schemes used in the comparison on CPUs. Sizes for each dimension of the rectangular 3D region
are tuned. Appendix E] contains the code with OpenMP and Intel Compiler pragmas.

the use of bricks provides a number of benefits on stencils
including improved memory hierarchy and TLB utilization,
accelerated data copies, and improved instruction-level paral-
lelism. Bricks are related to earlier fine-grained data blocking
approaches [24], [25], [26], but this is the first work that
combines support for both CPUs and GPUs.

In summary, the key contribution of this paper is the exten-
sive measurements that demonstrate brick as an abstraction
for memory hierarchy optimization, vectorization, threaded
parallelism and the role of the brick data layout in achieving
performance portability across CPUs and GPUs. Across a
broad range of stencil computations, we achieve high perfor-
mance for both the Intel Knights Landing (Xeon Phi) and
Skylake (Xeon) CPUs as well as the NVIDIA P100 (Pascal)
GPU sometimes significantly outperforming tiled code.

II. ARCHITECTURE-SPECIFIC ADJUSTMENT OF DATA
FOOTPRINT: TILING VS. BRICKS

From an architecture perspective, as stated previously, per-
formance of stencil computations is driven by a number of
factors including data movement through the memory system,
including bandwidth requirements and TLB locality, thread-
level parallelism and vectorization. Here, we examine how
loop structure and code generation can synergize with archi-
tecture to minimize the impact of each of these.

Naively, a typical 3D stencil computation walks through
memory in a unit-stride fashion (inner :—loop is unit-stride).
This code will only perform well on hardware platforms that
can cache a working set proportional to the product of stencil
diameter dia and the square of the problem dimension (i.e.,
N?). Further, the hardware must hide memory latency when
presented with a number of data streams corresponding to
the square of the stencil diameter (i.e., dia®); e.g., dia is 3,
representing +1, 0, and —1 in the case of the 27-point stencil.
The separate dia? streams arise from the 2D projection of the
stencil onto the j-k plane (the plane normal to the streaming
axis). The hardware must also maintain at least dia? page
entries in the TLB. Failure on any one of these aspects can
increase data movement or decrease effective bandwidth.

Regarding fine-grain parallelism, both SIMD ISAs on CPUs
and memory coalescing on GPUs inexorably lead both archi-

tectures to operate on chunks of points in the unit-stride. These
units of work are mapped to vectors on CPUs and warps on
GPUs. How these units of work stream through the global
problem determines cache locality, data movement, latency
hiding, and bandwidth.

Modern CPU architectures use hardware stream prefetchers
to hide memory latency and maximize memory bandwidth.
To make effective use of a stream prefetcher, each core must
present a few (often less than 32) unit-stride address streams
to memory, which result in sequences of cache misses. To
avoid costly TLB misses, these streams should run for at
least a TLB page (512 doubles on the Intel KNL Xeon
Phi). On GPU architectures, memory latency is hidden with
massive thread parallelism. Nevertheless, TLB locality remains
important although typical GPU page sizes are much larger
and L1 TLBs are shared among warps. On the NVIDIA Tesla
P100, the L1 TLB is shared across a Texture Processing
Cluster (TPC) that consists of two SMs, and the L2 is shared
across the all TPCs [27]].

To ensure that the working set is less than cache capacity,
thereby ensuring compulsory cache misses dominate capacity
cache misses, 3D loops representing stencil computations are
typically tiled to create small working sets. For example, tiling
by N/2 in the i- and j-dimensions reduces the cache working
set size by 4x (reuse distance). Smaller tiles generally produce
smaller working sets, but there is a lower limit based on the
stencil diameter. Unfortunately, tiling in the ¢—dimension is
anathema to the demands of stream prefetchers on CPUs and
is thus rarely employed (with the consequence of increased
cache requirements). Instead, a more typical 2D tiling in the
j- and k-dimensions is widely used for CPUs, with the i-
dimension vectorized, as in Figure [[(a). An improvement on
this scheme is the 3D tiling scheme of Figures [I(b), due to
Rivera et al. [28]]. This version improves reuse if N is large,
and supports nested parallelism, which is desirable for larger
numbers of cores. Conversely, memory coalescing and massive
thread parallelism on GPUs often incentivizes tiling in the
i—dimension as well (ignoring TLB effects); a common GPU
3D tiling strategy is shown in Figure [2[a.

Although higher stencil diameters attain high-order nu-

-
S ; v i
" i Iteration

| Thread block | 1

K i |
V |
b |
¥ H
| |
-)

(a) 3D

] 4
Thread block i
|

i ; Iteration
Kl | v/
/"

Fig. 2: Tiling schemes for GPUs as used in our comparisons.
Appendix E] contains the code using CUDA.

(b) 6D

merical properties as well as high arithmetic intensity, such
stencils place immense demands on the number of stream
prefetchers and the number of TLB entries required. For
dense stencils, these structures must scale proportional to dia?.
This high pressure can lead to ineffective latency hiding or
high TLB miss rates for even moderately large stencils. To
mitigate this pressure, application developers often calculate
the forward and backward halves of the stencil in separate loop
nests. This separate calculation reduces prefetcher and TLB
requirements, but it also reduces cache locality and increases
data movement. Performance can be improved (but rarely
optimally) by balancing these contending forces.

Rather than only employing tuning to balance these forces,
in this paper, we employ a new data layout bricks that decom-
poses the stencils’ input and output grids into small, fixed-
size multidimensional subdomains that are stored contiguously
in memory. We assume that the dimensions of the brick’s
subdomain is greater than the stencil radius. As such, a stencil
application over a brick’s subdomain will only use as many
prefetch streams and TLB entries as a 27-point stencil. Bricks
are then able to exploit the multidimensional reuse inherent
in stencils to maximize memory bandwidth, minimize cache
working set sizes, and minimize TLB pressure for a range of
stencil diameters.

ITII. BRICKS AS AGGREGATE UNIT OF PARALLEL WORK

The previous section focused on how tiling strategies or
alternatively, bricks, adapt a stencil’s data footprint to target
architectures; this section considers how fine- and coarse-grain
parallelism is also adapted to different target architectures
using bricks. A stencil computation over a domain is composed
of separately applying the stencil to each brick of a domain.
The computation within each brick is the collection of stencil
applications over the subdomain of the brick. Parallelizing
the stencil application can thus be separated into exploiting
fine-grain parallelism within each brick, and coarse-grain
parallelism across a collection of bricks. The brick is then
a fixed-size aggregate unit of parallel work whose size can be
tailored to an architecture.

From a code generation perspective, fine-grain parallelism
on a CPU exploits single instruction, multiple data (SIMD)

CUDA GPU CPU

‘Sireaming multiprocessor #0 ‘ ‘Core #0 ‘

‘Streaming multiprocessor #1 ‘ ‘Core #1 ‘

Streaming multiprocessor Core
Warp #0 Thread #0
Warp #1 Thread #1
Warp Thread

32 threads

AVX512 16 lane floats

Input ‘

registers ‘ l . ‘ nput

vector

Thread
Compute

Output
registers

vector
Compute

Output
vector

Fig. 3: SIMT and SIMD on GPUs and CPUs.

vectorization and on a GPU uses CUDA’s single instruction,
multiple thread model (SIMT) for both fine- and coarse-grain
parallelism. Figure [3|shows the similarity between CPU SIMD
and GPU SIMT. In terms of fine-grain parallelism, we noticed
that a warp on a GPU is similar to a thread on CPU executing
vector instructions. GPUs can issue instructions that operate
on contiguous data and can exchange data across the vector
lanes using the CUDA shuffle command. A warp or a thread is
then the smallest parallel unit which provides vector compute
capability for the stencil computation within a brick’s domain.
It will be assigned a brick at a time and execute the stencils
using SIMT or SIMD until it finishes. In this parallelization
level, a brick as an aggregate unit of data is able to optimize for
data movement, TLB locality, and reuse in first-level cache.
Moreover, brick as an aggregate unit of parallel work with
fixed domain allows for efficient vector code generation.

Additional levels of coarse-grain parallelism are driven by
the presence of shared caches and efficient synchronization.
On a GPU, the second level of parallelism is a streaming
multiprocessor that contains a collection of warps with a
shared L1 cache. These warps are programmed using blocks
that offer flexible mapping to hardware and are scheduled as
a whole. On Intel Knights Landing, this level is a tile that
consists of 2 cores (8 threads) and shares L2 cache. The
shared cache also enables relatively more efficient OpenMP
synchronization. To capitalize on the data reuse of nearby
bricks, we may assign a rectangular subdomain to these units.

For computation using a single node, the third level of
parallelism is the whole chip that is either a collection of
streaming multiprocessors or cores. On GPUs, CUDA’s grid
and block decomposition allows mapping work to these hard-
ware units. On CPUs, OpenMP’s dynamic schedule offers
similar flexibility.

IV. BRICK LIBRARY OVERVIEW

In this paper, the brick data layout is implemented as a C++
library. When writing stencil computations with bricks, the

void

stencil (float =ptr_next, float sptr_prev,
float xptr_vel, float xcoeff) {

2 1/ Code to assume aligned

s /] Code convert to 3D arrays

4 omp_set_num_threads (32);

5 #pragma omp parallel for collapse(3) schedule(
dynamic, 1) proc_bind(spread)

6 for (long rk = GC; rk < N + GC; rk += RK)

7 for (long rj = GC; rj <N + GC; rj += RJ)

s for (long ri = GC; ri < N + GC; ri += RI){

9 omp_set_num_threads (8);
#pragma omp parallel for schedule(static ,
proc_bind (close)

1)

11 for (long tk = rk; tk < rk + RZ; tk += 4)
2 for (long tj = rj; tj < rj + RY; tj += 4)
13 for (long ti = ri; ti < ri + RX; ti += 16)
14 #pragma unroll_and_jam (4)

15 for (long k = tk; k < tk + 4; ++k)

16 #pragma unroll_and_jam (4)

17 for (long j tjy j o< tj + 4; ++j)
#pragma vector aligned nontemporal

for (long i ti; i< ti + 16; ++i) {

20 float ¢ = prev[k][jI[i] * coeff[0] + (
prevkI[jI[i+1] + prev[k1[jI[i—1] +
2 prevk][j+11[i] + prev[kl[j—11[i] +
2 prev[k+11[j1[i] + prev[k—11[j1[i]) =
24 coeff[1];
25 next[kI[jI[i]
20 31}

c * vel[k]J[jI[il;

(a) 7-point stencil baseline code expressed using arrays.

void stencil (brickd &next, brickd &prev, brickd &vel,

brick_list &blist, float xcoeff) {

omp_set_num_threads(blist.lvl);

#pragma omp parallel for schedule(dynamic,
spread)

for (long r = 0; r < blist.rlen; ++r) {

1) proc_bind(

omp_set_num_threads(blist.1v2);

#pragma omp parallel for schedule(static ,
close)

for (long l=blist.rdat[r];

1) proc_bind(
I<blist.rdat[r+1]; ++1)

for (long o=blist.bdat[1]; 0<blist.bdat[1+1];++0){

long b = blist.dat[o];
for (long k = 0; k < prev.info—>dim_z; ++k)
for (long j = 0; j < prev.info—>dim_y; ++j)

for (long i 0; i < prev.info—>dim_x; ++i) {
float ¢ prev.elem(b.,k,j,i)*coeff[0]+(
prev.elem(b,k,j,i+1)+prev.elem(b,k,j,i—1)+
prev.elem(b,k,j+1,i)+prev.elem(b,k,j—1,i)+
prev.elem(b,k+1,j,i)+prev.elem(b,k—1,j,i))=*
coeff[1];
next.elem(b,k,j,i)=cxvel.elem(b,k,j,i);

1

(b) 7-point stencil code expressed using bricks.

Fig. 4: A comparison of node-level 7-point stencil code, using 3D arrays vs. bricks. The tiled code (left) and brick code (right)
reflect the baseline and brick code, respectively, for KNL experiments in this paper. Autotuning is used to optimize the tile
sizes RK, RJ and RI for both versions of code. GPU code has the same structure, but differs in how thread-level parallelism
is expressed, its use of low-level instructions, and required more autotuning exploration to achieve high performance.

grid value reference is extended with one additional dimension
that represents the index of the brick. All references to a
point (k, j, 1) are replaced by the reference to a point in a
brick b: (b, k, j, 1) . The brick library allows an application
developer to write stencil computations using a familiar C-style
notation with 3+1D accesses that are automatically mapped to
efficient code. For example, let us assume bricks are fixed-size
4 x4 x4 subdomains which are 3-dimensional to target typical
3D stencil codes. Figure @{b) shows how a user would express
a 7-point stencil computation using bricks and is similar to
the accompanying tiled implementation using 3D arrays in
Figure fa). Figure [5] shows how to instantiate a brick and
invoke the stencil. When accessing an element in another
brick (e.g. vel.elem(b,0,0,4) is element (0,0,0) in
the brick following it logically in the z—dimension), the
library internals will translate the access into accessing the
corresponding element in the brick following b in the i
dimension.

This adjacency list organization may also realize non-
rectangular domains, and enables the code generator to explore
different layouts, affinities, and scheduling schemes for non-
uniform memory access (NUMA) and distributed memory
systems. Bricks from multiple grids can also be interleaved
in a manner that is transparent to the computation to further
reduce the number of discontinuous memory accesses in a
stencil computation.

We employ a source-to-source compiler to optimize the
stencil computation [29] within each brick to optimize brick

/1 brick_info (Brick Dimensions)

> brick_info binfo(4, 4, 4);

3 // genList(Domain Size in Bricks, Outer Parallel
Subdomain, Inner Parallel Subdomain):

. // for 512”3 and 4 wide ghostzone on each side
5 brick_list blist = binfo.genList(128+2,130,130, RK, RIJ,
RI, 4, RJ, RI);

6 // Allocating
brickd prev(&binfo),next(&binfo),vel(&binfo);
s 1/ Initialization Code
9 // —— Run for iter = 2 time
for (long t = 0; t < iter;
11 stencil (next, prev, vel,
12 stencil (prev, next, vel,

5}

steps
++t) {
blist , &coeff[0]);
blist , &coeff[0]);

Fig. 5: Allocating bricks and invoking the stencil.

address translation and generate efficient vector code for
different architectures. The brick library thus lends itself
to autotuning of the execution schedule to adapt to differ-
ent architectures, types of stencils, and application contexts.
As such, the brick library, provides performance portability
through a single source representation, architecture-specific
code generation, and autotuning.

V. EXPERIMENTS

To demonstrate that bricks provide performance portability,
we evaluate a number of performance metrics for bricks vs.
tiling across both CPU- and GPU-based systems. Table [
describes a collection of 3D stencils explored in the exper-
iment. Six synthetic stencils for the Laplacian operator of

varying order are used to capture the memory-compute ratio
of different kinds of stencil shapes and diameters. Two real-
world stencils have been taken from application code. The six
synthetic stencils are named according to the number of points.
The 7-point, 13-point, 19-point, and 25-point belong to stencils
for the Laplacian operator, that only operate on elements along
each of the axes (star-shaped) in each dimension. For these
stencils, the stencil diameter is equivalent to the order as there
are no off-axis points in the stencil (e.g., the 7-point stencil is
second order and also has a diameter of 3). The 27-point and
125-point are stencils for the “compact” Laplacian that touch
all points in a cube (dense), with Manhattan distance equal
to the radius. The stencil diameter (twice the radius plus 1)
is again the same as the order; in some applications these
stencils can produce more accurate solutions. The iso stencil
resembles the 25-point stencil, with diameter 9. We use the
hypterm routine from CNS which is a variable-coefficient

Poisson stencil [30] in finite volume form that is 8**-order,
and has a similar footprint as the 25-point stencil.
Stencil | Description Data Movement per | FLOPs
point (Read:Write) per point
Tpt | 279 order 1:1 words 13
13pt | 4" order 1:1 words 25
19pt | 6" order 1:1 words 37
25pt | 8% order 1:1 words 49
27pt | 29 order 1:1 words 53
125pt | 4*P order 1:1 words 249
iso | 8" order, isotropic fi- 3:1 words 61
nite difference [31]
CNS gth order, compress- 8:5 words 466
ible Navier Stokes [30]

TABLE I: Stencils used in our experiments. Data movement
is a lower bound assuming only compulsory cache misses and
cache bypass for write (nontemporal stores for KNL) while
FLOPs counts only those in the source code.

Compulsory data movement in Table[l]is a lower bound that
assumes ideal cache behavior and blocking. All the synthetic
stencils must move two elements per stencil application (read
the full input array; write the full output array). FLOP/Point
refers to how many floating-point operations each application
of the stencil requires. All synthetic stencils have a unique
weight for each of point in the stencil (but spatially constant).
Thus, a 27-point stencil has 27 weights, 27 multiplies, and 26
adds. One can calculate the theoretical arithmetic intensity for
these kernels by dividing the number of FLOPs per point with
the total number of bytes of data moved per point and observe
all but the 125-point will be ultimately bound by memory
bandwidth on KNL.

A. Intel Xeon Phi Knights Landing
We generate AVX-512 code for the Intel Xeon Phi 7250
Knights Landing (KNL) CPU. The processor has 68 physical

cores organized into a 2D on-chip mesh of 34 tiles each with
two CPU coreql] and a shared IMB L2 cache. Each core has a

'We use 32 tiles for a total of 64 cores in all our experiments to isolate
system overhead.

private 32KB L1 data cache, implements 4-way multithread-
ing, and has two AVX-512 vector processing units (VPUs).
Although each core has a nominal frequency of 1.4GHz,
under AVX-heavy computations, the cores will downclock to
1.2GHz. With 64 cores, the theoretical peak performance is
4915 GFLOP/s for single-precision fused multiply-and-add
(half that for double, half that again for add or multiply
instructions). Each chip has both standard DDR4 DRAM
memory and high-bandwidth MCDRAM memory. MCDRAM
can be configured as either a last level cache, or as a separate
addressable memory (exposed to programmers as a second
NUMA node). We preserve our target machine’s (NERSC’s
Cori) nominal configuration of the MCDRAM as a last level
cache (quadcache) to reflect typical user models. This yields
a STREAM bandwidth of about 332 GB/s.

For the brick implementation, we used 4 x 4 x 16 bricks
for all stencils with single precision and 4 x 4 x 8 bricks for
double precision.

We compare the stencil computation using bricks against
three spatial tiling schemes — 2D tiling, 3D tiling from Rivera
and Tseng [28]] and 6D tiling that resembles bricks without the
layout transformation. The concepts are shown in Figure [I]
Note that the 6D version resembles the brick code without a
data layout transformation. For all tiling implementations and
brick variants, we use exhaustive search on the CPUs to find
the best tiling factor. The performance is based on the average
throughput of the stencil kernel when running consecutively
for 2 seconds on a 5123 domain in GStencil/s. All the stencils
are compiled with the pragma for nontemporal stores. All
tiling code are successfully vectorized by the Intel compiler
with AVX-512.

Across different tiling implementations, the results are as
expected. Generally, 3D tiling often produces the best per-
formance except on the 27-point and 125-point stencils in
double precision and CNS in both precision due to better
cache reuse compared with the 2D version and reduced TLB
pressure compared with the 6D tiling scheme. Except for CNS,
the best tuned 3D tiling variant did not tile in the unit-stride
dimension (TILEI=512) and as such, is equivalent to 2D tiling
with nested parallelism). The 6D version produces the best
performance on CNS due to significantly improved reuse with
larger stencil diameter and cache pressure from the larger
number of simultaneous grid accesses.

We first analyze performance by noting the significant
reduction in data movement using bricks as compared against
different tiling implementations. For this purpose, we use
the Intel VTune Amplifier to collect the Read and Write
MCDRAM data movement using the frame API and the count
of hardware cache events. Assuming the write data movement
is fixed for each of the computations, the empirical read:write
ratio shows how many more reads from MCDRAM are
incurred from non-ideal caching (superfluous capacity misses).
The result is shown in Figure[6] We see almost invariably that
the brick variants require less data movement than any tiled
implementation.

Next, we examine how bricks significantly lower TLB

lo2plo3plUoeDlEBrick

o 1 1| |
g)
210]] n s 1
..HH.HI_. IO ATAT AL WAL | T LAV ol RATIRRL | i !
0 ! H‘Hl H‘l H‘l ‘l ‘l ‘l ‘ H‘l H‘Hl H‘Hl H‘Hl ‘ ‘ ‘ ‘
ISy Sy Sy : .
SRS FF TSI F TS
Stencil

Fig. 6: Intel KNL MCDRAM Read:write ratio with different tiling schemes. Capacity misses induce superfluous reads and
inflate the read:write ratio (lower is better). Dotted lines represent the ratio for the compulsory (ideal) case with nontemporal
stores. Bricks generally offer much better cache locality than any 2D, 3D, or 6D tiled implementation.

Stencil | Overhead | Blocking (Best) | Bricks
125pt uTLB 2.65% 1.27%
Page-walk 6.02% | 4.16%
CNS uTLB 4.54% 0.71%
Page-walk 16.75% 3.80%

TABLE II: TLB pressure (measured in percentage of clock
cycles) for single-precision stencils on KNL. Observe that
bricks dramatically reduces the time incurred from uTLB
misses and page walks — an affect that improves bandwidth
without changing arithmetic intensity.

pressure. Once again, using the Intel VTune Amplifier, we
calculated the fraction of the clock cycles spent handling TLB
misses in Table [[I] for two of the higher-order stencils. The
uTLB overhead captures the first-level data TLB misses and
the page-walk overhead captures the second-level data TLB
misses. We observe that bricks result in a huge reduction in
both uTLB and Page Walk overhead.

Finally, we show that bricks can perform at a high frac-
tion of machine performance. Figure [7] presents an empirical
Roofline figure for our attained brick performance. As we
use uniquely weighted synthetic stencils there is no redundant
computation. The FLOP/s rates are then calculated using the-
oretical FLOPs per point from Table [[| and stencil throughput.
FLOP/s may be overestimated for iso and CNS. Arithmetic
intensity is the ratio of floating point performance to the
achieved bandwidth collected using Intel VTune Amplifier.
For many computations our brick library attains performance
near the machine’s capabilities. However, attaining peak per-
formance for the most compute-intensive stencils is increas-
ingly challenging as non-floating-point vector instructions e.g.
valign consume vector unit (VPU) cycles and displace
useful floating-point computations.

Table [T shows that on KNL the brick code is almost always
faster and achieves up to 4.4x the performance compared

O SP Stencils @ DP Stencils
12,800

IBEEERE T T T T 17717 T T

6,400 | 4915 GFLOP/s (SP)|
3,200 |
1,600

800

GFLOP/s

400

200

100

1 10
FLOP/MCDRAM Byte

Fig. 7: Roofline figure for the KNL 7250 where each dot
represents our optimized stencil performance. Observe that
most stencils are near the Roofline.

with the tiling version. Bricks are only slower for lower order
memory-bound stencils that don’t offer sufficient cache reuse
to make bricks profitable (7pt-SP, 7pt-DP, and 13pt-DP).

B. Intel Xeon Skylake Gold

With the AVX-512 code generation capability, we can
also run on traditional CPU architectures. To that end, we
evaluated bricks on a 2.1GHz Intel Xeon Gold 6130 which
is based on the Skylake core architecture. This Skylake has
16 cores with 32 threads and each core is equipped with
two AVX-512 units providing a theoretical (assuming no
AVX downclocking) single-precision peak performance of

O SP Stencils @ DP Stencils

6,400

T T T 117171 T T T T 1777 T T 7T

3,200

2150 GFLOP/s (SP)
1,600 |-

800 -

400 -

GFLOP/s

200 -

100 |-

Ll iiil ||

1 10
FLOP/DDR Byte

Fig. 8: Roofline figure for the Skylake Gold CPU where each
dot represents our optimized brick performance. Note, the
FLOP ceiling is theoretical and overly optimistic in that it
does not account for an lower AVX clock rate.

2150 GFLOP/s and a double-precision peak performance of
1075 GFLOP/s. Concurrently, 6 memory controllers provide
a STREAM bandwidth of 85GB/s. We used 4 x 4 x 16 bricks
for all stencils with single precision and 4 x 4 x 8 bricks for
double precision.

The target machine prevents Intel VTune Amplifier from
accessing the performance counters required to accurately
measure DRAM data movement. Nevertheless, we may es-
timate DRAM data movement (and thus arithmetic intensity)
using compulsory cache misses of Table[l] Figure [§] shows our
brick library can deliver performance close to the Roofline for
both single- and double-precision implementations. Although
compulsory data movement is an underestimate for total data
movement (upperbound on arithmetic intensity), the resultant
Roofline plot proves it is very close to total data movement
(points can never be left of the bandwidth ceiling).

As with KNL, we expect non-floating-point vector instruc-
tions to have limited the available performance and thus
limited the performance of the most compute-intensive stencil
(125-point). Moreover, in this paper, we have assumed SKL
runs AVX-512 code at the nominal 2.1GHz. However, if like
KNL it underclocks when running AVX-512 heavy code, then
we have overestimated SKL peak performance and our brick
performance is much closer to the true peak.

As with KNL, we also compared our brick-based stencil
performance against the three spatial tiling schemes. Table
shows that the brick code can deliver up to 5.0x the perfor-
mance compared with the tiled version and is only (slightly)
slower on the simplest stencils.

C. NVIDIA P100 Pascal GPU

To deliver performance portability across a wide range of
HPC platforms, the brick library can generate CUDA code
for the NVIDIA Tesla P100 GPU. The P100 GPU has 56
streaming multiprocessors. Each streaming multiprocessor has
64 single-precision and 32 double-precision CUDA cores
and has a warp size of 32. The P100 has a theoretical
peak single-precision performance of 9.3 TFLOP/s, a peak
double-precision performance of 4.7 TFLOP/s, and a GPU-
STREAM [32] bandwidth of 586 GB/s.

For GPUs, we compared the stencil computation using
bricks against two tiling schemes: 3D and 6D. 6D tiling is
representative of the parallel schedule used for the brick code.
We tune the tiling implementations exhaustively and report the
tiling factor and the number of warps in 6D. For the brick code,
we also experimented with different execution order within
the thread group domain. However, the schedule shown for
6D often yielded the best performance. With the expanded
tuning space, we tune the brick code using random forest and
search for at most 6 hours for each stencil or stops early when
the global best value didn’t change for 1000 iterations. We use
4x4x 32 bricks for all stencils except CNS which uses 4x4 x8
bricks for single-precision and 4 x 4 x 4 bricks for double-
precision to reduce cache pressure. The stencil performance
is based on the average stencil throughput over 100 timesteps
on a 5123 domain (3843 for CNS) in GStencil/s.

Comparing between the two tiling schemes, we find that
the 6D version actually outperforms the 3D version on all
stencils except the 13-point and 19-point stencil with double
precision. Nevertheless, as shown in Table [[II} our brick library
outperforms the highly-optimized 6D tiling GPU baseline by
up to 5x in double precision.

On the GPU, bricks offer comparable L2 cache reuse and
the brick code generator yields significantly better register
reuse. Figure [Ofleft) shows the read:write ratio computed using
NVProf. The brick version does not attain the same L2 locality
as the tiled version on the 27-point and 125-point stencils.
This is inconsequential as the tiling implementation of these
stencils is bound by the L1 cache on the GPU. When it comes
to L1 pressure, we show in Figure [Q[right) that the brick code
generator reduces the L1 pressure by up to 11x by attaining
much better locality in the register file.

Our brick implementation attains a high fraction of the GPU
performance. Figure [I0|shows the Roofline model plotted from
empirical FLOPs and bandwidth collected using NVProf. Our
brick code attains a high fraction of the machine bandwidth
and operates close to the HBM Roofline while relatively low
occupancy (at 12.5% for iso-SP and 125pt-DP). Although
higher occupancy is generally preferable for latency-bound
kernels, for well-optimized codes, higher occupancy may
stress certain functional units unnecessarily and increase the
latency [33].

Table shows that our brick code CUDA generator
achieves a speedup between 1.1x and 5.0x compared with
the higly-optimized tiled version.

Oo3ploeD BEBrick
| | | | |
8 _— Q
'8 I
] 3
(9]
=2 1E
0 \I \I \I \I I \I I I
*~ *~ *~ X *~ x~ o)
L .
AN I A v
Stencil

Fig. 9: Read:write ratio on P100 with single precision. Double

lo3p0oeDBEBrick

300 - il 1

200 - 1

100 |- 1

ol nna Mfla HH- H‘l HH- i HHI filn

S EFFFFEE
Stencil

precision yields similar comparison. HBM data movement ratio

captures reuse in the L2 cache, while L1 data movement ratio captures reuse in registers. All of the tiled stencils are bound
by their L1 usage. Note that the code generator for bricks offers much better register reuse.

Double-Precision

Single-Precision

Stencil KNL SKL P100 Stencil KNL SKL P100

7pt 10.96 (0.7x) 751 (09%) 2425 (1.IX) 7pt 26.46 (0.9%) 3.86 (0.9%) I1.04 (14%)
13pt 10.59 (0.8x) 4.39 (0.9x) 21.06 (1.4x) 13pt 24.93 (1.0%) 8.82 (0.9%) 35.79 (1.8%)
19pt 9.98 (0.9%) 437 (0.9%) 18.84 (1.7x) 19pt 24.35 (1.2%) 8.78 (0.9%) 32.18 (2.1x)
25pt 9.20 (1.2x) 4.41 (1.1x) 16.94 (1.8%) 25pt 21.83 (1.3x) 8.80 (1.1x) 29.08 (2.3x)
27pt 8.59 (0.9x) 3.97 (1.2%) 19.29 (2.1x) 27pt 20.84 (1.0%) 8.05 (1.2x) 26.50 (2.0%)
125pt 4.08 (4.4%) 1.83 (4.9%) 11.44 (5.0%) 125pt 8.67 (4.1x) 3.87 (5.0%) 16.78 (4.1x)
iso 6.52 (1.0x) 2.61 (1.1x) 10.56 (1.4x) iso 14.24 (1.1x) 5.21 (1.0x) 19.93 (2.0x)
CNS 1.03 (2.9%) 0.49 (2.0%) 1.87 (1.9%) CNS 1.98 (2.3x) 0.97 (2.1x) 3.18 (2.3%)

TABLE III: Attained autotuned performance with bricks in GStencil/s and speedup (in parenthesis) over the best tuned tiled
implementation. Observe, as stencil complexity increases, so too does the benefit of bricks.

O SP Stencils @ DP Stencils

12’800 T 11 [T T T9'3 TFEOP/S (SP) T T
6,400 |- 4.7 TFLQP/s (DP) 8
o)
3,200 125pt SP N

125pt DP
1,600 |-

GFLOP/s

800

400

L

1 10
FLOP/HBM Byte

Fig. 10: Roofline figure for benchmarks running on the P100
Pascal GPU where each dot represents our optimized brick
performance for a different stencil.

D. Performance Portability

To assess the performance portability of bricks, we adopt
the performance portability metric P across a set of platforms
H as defined by Pennycook et al. [34], [35] as reproduced in
Equation[T] In that formalism, we define the metric’s efficiency
e;(a,p) for application a and problem p on platform i as the
fraction-of-roofline.

H
|H] if ¢ is supported,
P(a,p, H) = Xicn e p) Vie H (1)
0 otherwise

Table presents the resultant efficiencies (performance
relative to Roofline) for each platform, stencil, and precision.
Additionally, we show performance portability using Equa-
tion [I] for a given stencil and precsision, and again averaged
over all stencils for a given precision. We observe that the
smaller stencils are generally memory-bound and attain high
fractions of the Roofline for most platforms. Consistently
high efficiencies produce high performance portability P.
Conversely, the consistently moderate efficiency for the 125-
point stencil produces a moderate . Overall, across all
platforms and stencils, we attain a performance portability P
of 72% in double precision.

Single-Precision Double-Precision

Stencil KNL SKL P100 P KNL SKL P100 Pr
Tpt 96% 83% 64% T9% 9% 85% 82% 87%
13pt 91% 83% 59% 75% 2% 83% 8% 84%
19pt 90% 83% 54% 72% 82% 82% 17% 80%
25pt 94% 83% 51% T1% 81% 83% 3% 79%
27pt 73% 76% 49% 63% 66% 5% 69% 10%
125pt 44% 45% 45% 45% 41% 43% 62% 47%
iso 78% 98% 61% 76% 8% 98% 82% 85%
cns 74% 60% 55% 62% 78% 60% 62% 66%
66% 72%

TABLE IV: Application Efficiency (e;) and Performance
Portability of various stencils when using bricks. Numbers
below the table represent averages across all stencils.

Currently, we calculate efficiency e; based solely on the
number of useful floating-point operations. However, brick-
based stencils can require vector shuffle and alignment oper-
ations that consume cycles that would otherwise be used for
floating-point operations. As a result, although our efficiency
calculations are accurate in that they include all floating-
point operations, they may not be sufficient as they do not
incorporate all vector operations. To that end, in the future,
we will expand our efficiency metric to incorporate all vector
operations in order to better account for contended resources
as suggested by Yang et al. [36]]. This will more accurately
calculate e; and thus increase our brick library’s P.

VI. RELATED WORK

A large body of prior work on optimizing stencils has
focused on stencils applied on large grids which are usually
bound by capacity or compulsory cache misses, leading to a
variety of studies on spatial and temporal tiling [37], [28],
(331, (391, (401, (411, (51, (100, 031, (4], (10, €21, (30, 421,
(91, 71, [12], [6]. A few specifically focused on generating
GPU code [43]], [44]. These tiling techniques have focused
on loop or iteration space tiling and sometimes seek to
optimize in the time domain (“2.5D”) to increase data reuse.
The applicability of 2.5D tiling is highly dependent on the
structure and complexity of the underlying numerical method
and presence of distributed memory communication. It has
been shown to be effective for the simplest operators running
on a single node, and when profitable is straightforward to
express with a 2.5D loop structure built on top of our generated
brick iteration.

In addition to loop tiling, researchers have also tiled or
blocked data. Data along with loop tiling efforts have been
addressed by [24]], [45], [26], [25]. TiDA [45] uses coarse-
grained data blocking, where the entire grid is tiled into sub-
grids, each sub-grid with its own ghost zone. Fine-grained data
blocking is explored in Bricks and Briquettes [24]], YASK [235]]
and RTM on the Cell processor [26]. All the fine-grained
blocking techniques targeted large, compute-intensive stencils,
and the small data blocks do not have per-block ghost zones.

This paper introduces a new approach to data blocking
called bricks, which is encapsulated in a library and supports
vector code generation (for CPUs and GPUs), and hierarchical

node-level parallelism. The bricks used in our research are
similar to briquettes in [24], but there is significant difference
in our approaches. Briquettes were designed to perform 3D
stencils split into 1D stencils, thus requiring multiple sweeps
to compute the output. Furthermore, a data transpose was
required between each 1D stencil sweep to ensure good
SIMDization. Their code generation required data staging
tailored for 1D stencils. In contrast to Briquettes, we optimize
3D stencils without dimensional splitting in addition to fine-
grained data blocking to improve computation by reducing
reads cache or DRAM and improving SIMDization.

Considering other fine-grained data blocking, YASK is a
C++ template-based approach to generating code for large
stencils with fine-grained data blocks. YASK autotuned their
data block size, and, used vector-length data blocks which
are smaller than our method, such as 2x2x4 with AVX-512
instead of 4x4x16. YASK targets x86 based architectures and
thus lacks portability. Our approach addresses this challenge
by generating code for both CPUs and GPUs. RTM was
optimized on the Cell processor in [26] using fine-grained data
blocking. The code was manually optimized, and focused on
a single stencil.

A common approach to deriving high-performance stencil
computations is to use a domain-specific compiler that au-
tomatically generates architecture-specific code from a styl-
ized stencil specification [21l], [17], [18], [19], [20], [22],
[23]. Among these, only MODESTO, PATUS, ExaSten-
cil, and Halide can generate both CPU and GPU code.
MODESTO [20] is focused on scheduling the computation
and data movement of multiple stencil computations. PA-
TUS [21] uses both a stencil description and a machine
mapping description to generate architecture-specific code.
The ExaStencil project [22]], [46], [47] uses layered DSLs to
map from one high-level stencil description to different target
architectures. Halide separates computation specification from
architecture-specific schedule, which can be automatically-
generated or written by a programmer, and applies a limited
set of optimizations [23]. While bricks could be the target
of a DSL and use the brick code generator, our work is
distinguished from all of these systems in its use of the brick
data layout to tackle the memory system and parallelism for
both CPU and GPU architectures.

Perhaps the closest work is the QCD Grid library [48]], [49]
wherein the 4-lattice used in QCD is folded into small arrays
of virtual nodes stored contiguously in memory. Although Grid
provides a QCD-specific code generator, it lacks the compiler
infrastructure required for broad applicability and performance
portability.

Although there are many stencil benchmarks, very few
include 3D stencils, and in general they are limited to simple
examples and lack comparison to Roofline models [S0], [S1],
(520, (530, [54].

In summary, the stencil optimization approach based on
the brick data layout in this paper offers a new abstrac-
tion for memory hierarchy optimization, vectorization, thread
parallelism and is the centerpiece for achieving performance

portability of stencil computations across CPUs and GPUs.

VII. CONCLUSIONS AND FUTURE WORK

In order to attain performance portability across different
modern architectures including SIMD CPUs and SIMT GPUs,
this paper introduced a brick data layout. Bricks provide an
abstraction for code generation and optimization that allow an
implementation to be adapted to different stencil computations
and different target architectures.

Ultimately, we show we can consistently attain high per-
formance on compute-intensive stencils and high-bandwidth
on memory-intensive stencils close to the Roofline bound
of the respective architecture. Additionally, we demonstrate
that our brick library delivers much better performance as
stencil complexity grows — a key imperative as applied
mathemeticans reorganize computation to avoid the memory
wall. Moreover, we demonstrate and quantify performance
portaiblity across both the AVX-512 based Knights Landing
and Skylake CPUs as well as the P100 GPU.

Although other stencil optimizations such as temporal
blocking and wavefront parallelism are beyond the scope
of this paper, they are complementary and we will explore
combining them with bricks at the source code level where
applicable.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a joint project of the U.S. Department
of Energy’s Office of Science and National Nuclear Security
Administration. This research used resources in Lawrence
Berkeley National Laboratory and the National Energy Re-
search Scientific Computing Center, which are supported by
the U.S. Department of Energy Office of Sciences Advanced
Scientific Computing Research program under contract num-
ber DE-AC02-05CH11231.

REFERENCES

[1] Y. Song and Z. Li, “New tiling techniques to improve cache temporal lo-
cality,” in Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 1999.

D. Wonnacott, “Using time skewing to eliminate idle time due to
memory bandwidth and network limitations,” in Proc. Interational
Conference on Parallel and Distributed Computing Systems, 2000.

J. McCalpin and D. Wonnacott, “Time skewing: A value-based approach
to optimizing for memory locality,” Department of Computer Science,
Rutgers University, Tech. Rep. DCS-TR-379, 1999.

M. Frigo and V. Strumpen, “Evaluation of cache-based superscalar and
cacheless vector architectures for scientific computations,” in Proc. ACM
International Conference on Supercomputing (ICS), 2005.

S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick,
“The potential of the Cell processor for scientific computing,” in Proc.
Conference on Computing Frontiers, 2006.

S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective automatic parallelization of
stencil computations,” in Proc. ACM SIGPLAN conference on Program-
ming language design and implementation (PLDI), 2007.

T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger, U. Rude, and G. Hager,
“Introducing a parallel cache oblivious blocking approach for the lattice
Boltzmann method,” Progress in Computational Fluid Dynamics, vol. 8,
2008.

[2]

[3]

[4]

[5]

[7]

10

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick,
“Optimization and performance modeling of stencil computations on
modern microprocessors,” SIAM Review, vol. 51, no. 1, pp. 129-159,
2009.

G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske, “Effi-
cient temporal blocking for stencil computations by multicore-aware
wavefront parallelization,” in [International Computer Software and
Applications Conference, 2009.

A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-
D blocking optimization for stencil computations on modern CPUs
and GPUs,” in Proc. ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2010.
P. Ghysels, P. Kosiewicz, and W. Vanroose, “Improving the arithmetic
intensity of multigrid with the help of polynomial smoothers,” Numerical
Linear Algebra with Applications, vol. 19, no. 2, pp. 253-267, 2012.
X. Zhou, J.-P. Giacalone, M. J. Garzaran, R. H. Kuhn, Y. Ni, and
D. Padua, “Hierarchical overlapped tiling,” in Proc. International Sym-
posium on Code Generation and Optimization (CGO), 2012.

S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65-76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

P. Basu, M. Hall, S. Williams, B. Van Straalen, L. Oliker, and P. Colella,
“Compiler-directed transformation for higher-order stencils,” in Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE Interna-
tional. 1EEE, 2015, pp. 313-323.

S. J. Deitz, B. L. Chamberlain, and L. Snyder, “Eliminating redundancies
in sum-of-product array computations,” in Proceedings of the 15th
international conference on Supercomputing. ACM, 2001, pp. 65-77.
K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ramanu-
jam, and P. Sadayappan, “A framework for enhancing data reuse via
associative reordering,” in ACM SIGPLAN Notices, vol. 49, no. 6. ACM,
2014, pp. 65-76.

Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson, “The pochoir stencil compiler,” in ACM symposium on
Parallelism in algorithms and architectures, 2011.

Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3d stencil
codes on gpu clusters,” in International Symposium on Code Generation
and Optimization (CGO), 2012.

N. Zhang, M. Driscoll, C. Markley, S. Williams, P. Basu, and A. Fox,
“Snowflake: A lightweight portable stencil dsl,” in 2017 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2017, pp. 795-804.

T. Gysi, T. Grosser, and T. Hoefler, “Modesto: Data-centric
analytic optimization of complex stencil programs on heterogeneous
architectures,” in Proceedings of the 29th ACM on International
Conference on Supercomputing, ser. ICS *15. New York, NY, USA:
ACM, 2015, pp. 177-186. [Online]. Available: http://doi.acm.org/10.
1145/27751205.2751223

M. Christen, O. Schenk, and H. Burkhart, “Patus: A code generation
and autotuning framework for parallel iterative stencil computations
on modern microarchitectures,” in Proceedings of the 2011 IEEE
International Parallel & Distributed Processing Symposium, ser. IPDPS
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
676—687. [Online]. Available: http://dx.doi.org/10.1109/IPDPS.2011.70
C. Lengauer, S. Apel, M. Bolten, A. GroBlinger, F. Hannig, H. Kostler,
U. Riide, J. Teich, A. Grebhahn, S. Kronawitter et al., “Exastencils:
advanced stencil-code engineering,” in European Conference On Parallel
Processing. Springer, 2014, pp. 553-564.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image processing
pipelines,” in Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 13.
New York, NY, USA: ACM, 2013, pp. 519-530. [Online]. Available:
http://doi.acm.org/10.1145/2491956.2462176

J. Jayaraj, “A strategy for high performance in computational fluid
dynamics,” Ph.D. dissertation, University of Minnesota, 2013.

C. Yount, J. Tobin, A. Breuer, and A. Duran, “Yask-yet another stencil
kernel: A framework for hpc stencil code-generation and tuning,” in
Proceedings of the Sixth International Workshop on Domain-Specific
Languages and High-Level Frameworks for HPC, ser. WOLFHPC 16,
2016.

http://doi.acm.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/2751205.2751223
http://doi.acm.org/10.1145/2751205.2751223
http://dx.doi.org/10.1109/IPDPS.2011.70
http://doi.acm.org/10.1145/2491956.2462176

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Araya-Polo, F. Rubio, R. de la Cruz, M. Hanzich, J. M. Cela,
and D. P. Scarpazza, “3d seismic imaging through reverse-time
migration on homogeneous and heterogeneous multi-core processors,”
Sci. Program., vol. 17, no. 1-2, pp. 185-198, Jan. 2009. [Online].
Available: http://dx.doi.org/10.1155/2009/382638

T. Karnagel, T. Ben-Nun, M. Werner, D. Habich, and W. Lehner, “Big
data causing big (tlb) problems: Taming random memory accesses
on the gpu,” in Proceedings of the 13th International Workshop
on Data Management on New Hardware, ser. DAMON ’17. New
York, NY, USA: ACM, 2017, pp. 6:1-6:10. [Online]. Available:
http://doi.acm.org/10.1145/3076113.3076115

G. Rivera and C. Tseng, “Tiling optimizations for 3D scientific compu-
tations,” in Supercomputing (SC), 2000.

T. Zhao, M. Hall, P. Basu, S. Williams, and H. Johansen,
“Simd code generation for stencils on brick decompositions,” in
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’18. New
York, NY, USA: ACM, 2018, pp. 423-424. [Online]. Available:
http://doi.acm.org/10.1145/3178487.3178537

M. Emmett, W. Zhang, and J. B. Bell, “High-order algorithms for com-
pressible reacting flow with complex chemistry,” Combustion Theory
and Modelling, vol. 18, no. 3, pp. 361-387, 2014.

C. Andreolli, P. Thierry, L. Borges, G. Skinner, and C. Yount, “Char-
acterization and optimization methodology applied to stencil computa-
tions,” in High Performance Parallelism Pearls, 1st ed., J. Jeffers and
J. Reinders, Eds. Morgan Kaufmann, 2015, ch. 23, pp. 377-396.

T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Gpu-stream
v2. 0: benchmarking the achievable memory bandwidth of many-core
processors across diverse parallel programming models,” in International
Conference on High Performance Computing. Springer, 2016, pp. 489—
507.

V. Volkov, “Understanding latency hiding on gpus,” Ph.D.
dissertation, EECS Department, University of California, Berkeley,
Aug 2016. [Online]. Available: http://www?2.eecs.berkeley.edu/Pubs/
TechRpts/2016/EECS-2016-143.html

S. J. Pennycook, J. D. Sewall, and V. Lee, “A metric for performance
portability,” arXiv:1611.07409, 2016.

S. Pennycook, J. Sewall, and V. Lee, “Implications of a metric for
performance portability,” Future Generation Computer Systems, 2017.
C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo,
B. Friesen, B. Cook, D. Doerfler, L. Oliker, J. Deslippe, and S. Williams,
“An empirical roofline methodology for quantitatively assessing perfor-
mance portability,” in International Workshop on Performance, Porta-
bility and Productivity in HPC P3HPC, 2018.

S. Sellappa and S. Chatterjee, “Cache-efficient multigrid algorithms,”
International Journal of High Performance Computing Applications,
vol. 18, no. 1, pp. 115-133, 2004.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures,” in Super-
computing (SC), 2008.

S. Williams, L. Oliker, J. Carter, and J. Shalf, “Extracting ultra-scale
lattice Boltzmann performance via hierarchical and distributed auto-
tuning,” in Supercomputing (SC), 2011.

M. Kowarschik and C. Wei, “Dimepack - a cache-optimized multigrid
library,” in International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA), volume I, 2001.

C. C. Douglas, J. Hu, M. Kowarschik, U. Rde, and C. Weiss, “Cache
optimization for structured and unstructured grid multigrid,” Elect.
Trans. Numer. Anal, vol. 10, pp. 21-40, 2000.

P. Micikevicius, “3d finite difference computation on gpus using cuda,”
in Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units, ser. GPGPU-2, 2009.

J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance
code generation for stencil computations on gpu architectures,”
in Proceedings of the 26th ACM International Conference on
Supercomputing, ser. ICS *12. New York, NY, USA: ACM, 2012,
pp. 311-320. [Online]. Available: http://doi.acm.org/10.1145/2304576.
2304619

T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, and S. Verdoolaege,
“Hybrid hexagonal/classical tiling for gpus,” in Proceedings of
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO *14. New York, NY, USA: ACM, 2014, pp.

11

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

[53]

[54]

66:66-66:75. [Online]. Available: http://doi.acm.org/10.1145/2544137.
2544160

D. Unat, T. Nguyen, W. Zhang, M. N. Farooqi, B. Bastem, G. Michel-
ogiannakis, A. Almgren, and J. Shalf, TiDA: High-Level Programming
Abstractions for Data Locality Management. Cham: Springer Interna-
tional Publishing, 2016, pp. 116-135.

S. Kronawitter and C. Lengauer, “Optimizations applied by the exasten-
cils code generator,” 2015.

S. Kuckuk, G. Haase, D. A. Vasco, and H. Kostler, “Towards generating
efficient flow solvers with the exastencils approach,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 17, 2017.

P. Boyle, “Data parallel c++ mathematical object library.” [Online].
Available: https://github.com/paboyle/Grid:

R. Li, C. Detar, D. W. Doerfler, S. Gottlieb, A. Jha, D. Kalamkar, and
D. Toussaint, “Milc staggered conjugate gradient performance on intel
knl,” Proceedings of Science (POS), 2016.

T. Denniston, S. Kamil, and S. Amarasinghe, “Distributed halide,”
SIGPLAN Not., vol. 51, no. 8, pp. 5:1-5:12, Feb. 2016. [Online].
Available: http://doi.acm.org/10.1145/3016078.2851157

A. Schafer and D. Fey, “High performance stencil code algorithms for
gpgpus,” Procedia Computer Science, vol. 4, pp. 2027 — 2036, 2011,
proceedings of the International Conference on Computational Science,
ICCS 2011. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1877050911002791

A. D. Pereira, L. Ramos, and L. F. W. Goes, “Pskel: A stencil program-
ming framework for cpugpu systems,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 17, pp. 4938-4953.

A. Lopes, F. Pratas, L. Sousa, and A. Ilic, “Exploring gpu performance,
power and energy-efficiency bounds with cache-aware roofline model-
ing,” in 2017 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), April 2017, pp. 259-268.

N. Maruyama and T. Aoki, “Optimizing stencil computations for nvidia
kepler GPUs,” 2014. [Online]. Available: http://www.exastencils.org/
histencils/2014/histencils2014.pdf

http://dx.doi.org/10.1155/2009/382638
http://doi.acm.org/10.1145/3076113.3076115
http://doi.acm.org/10.1145/3178487.3178537
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://doi.acm.org/10.1145/2304576.2304619
http://doi.acm.org/10.1145/2304576.2304619
http://doi.acm.org/10.1145/2544137.2544160
http://doi.acm.org/10.1145/2544137.2544160
https://github.com/paboyle/Grid
http://doi.acm.org/10.1145/3016078.2851157
http://www.sciencedirect.com/science/article/pii/S1877050911002791
http://www.sciencedirect.com/science/article/pii/S1877050911002791
http://www.exastencils.org/histencils/2014/histencils2014.pdf
http://www.exastencils.org/histencils/2014/histencils2014.pdf

APPENDIX C. GPU implementations

TILING IMPLEMENTATIONS 3D
A. Kernel example] ;;frllzlf?l“) Vgid
. . . - 3 long tk = blockldx.z % REG + SH;
A 7-point stencil kernel of tiled code is implemented as , long j = blockldx.y % TILEJ + SH + threadldx.y;

5 long i = blockldx.x * TILEI + SH + threadIdx .x;
6 for (long k = tk; k < tk + TILEK; ++k)
7 // Kernel

follows.

I jstride = (N + 2%SH); kstride
> out[kxkstride + jxjstride + i]

(N + 2xSH) *(N + 2%SH) ;
coeff[O]*in[kxkstride + o void call_kernel (...)

jxjstride + i] + X
. o A . . 10 dim3 block (N/TILEI, N/TILEJ, N/TILEK);
coeff[O]*in[kxkstride + j*jstride + (i+1)]+coeff[0]=*in dim3 thread (TILEI,TILEJ)

[kxkstride + j*jstride + (i—1)] + .
4 coeff[0]*in[k+kstride + (j+1)xjstride + i]+coeff[0]x*in 2 kernel<<<block . thread >>>(...):
[kxkstride + (j—D=jstride + i] +
5 coeff[O]*in[(k+1)*kstride + jxjstride + i]+coeff[0]*in
[(k—Dsxkstride + jrjstride + i]: 6D

I __global__ void

Following are tiling implementations for different architec- > __launch_bounds__(32+TWARP, NBLOCK)
tures. SH is the width of the ghost zone and is set to be the . ke,r;:gl (r'l;')_ élockldx .z % REG + SH:

length of a cacheline. REG* and TILE* are tuning parameters. 5 long rj = blockIdx.y * REG + SH;
6 long ri = blockldx.x % REGI + SH;
7 long line = REG / TILE;
8 long iline = REGI;

B. KNL & Xeon implementations s long tot = line % line * xline:
10 if (threadldx.y < NWARP)
2D 1 for (long n=threadldx .y=*TILEI;
12 n<tot; n+=NWARP+TILEI) {
| #pragma omp parallel for collapse(2) schedule(dynamic, 13 long ti = ri + n % REGI;
1 14 long r = n / REGI;
> for (long tk = SH; tk < N + SH; tk += TILEK) 15 long tj = rj + r % line % TILE;
for (long tj = SH; tj < N + SH; tj += TILEJ) 16 long tk = rk + r / line % TILE;
4 for (long k = tk; k < tk + TILEK; ++k) 17 for (long i = ti + threadldx.x;
5 for (long j = tj; j < tj + TILEJ; ++j) 18 i < i + TILEI; i += 32)
6 #pragma vector nontemporal 19 for (long k = tk; k < tk + TILE; ++k)
7 #pragma omp simd 20 for (long j = tj; j < tj + TILE; ++j)
8 for (long i = SH; i < N + SH; ++i) 21 /!l Kernel
9 /1 Kernel 2 }
24 void call_kernel (...)
3D 25 dim3 block (N/REGI,N/REG, N/REG);
26 dim3 thread (32, TWARP) ;
| #pragma omp parallel for schedule(dynamic, 1) collapse 27 kernel <<<block , thread > > >(...);
(3) proc_bind(spread) % }

> for (long tk SH; tk < N + SH; tk += TILEK)
for (long tj SH; tj < N + SH; tj += TILEJ)
4 for (long ti = SH; ti < N + SH; ti += TILEI) {

5 omp_set_num_threads (8);

6 #pragma omp parallel for schedule(static, 1) proc_bind
(close)

7 for (long k = tk; k < tk + TILEK; ++k)

8 for (long j = tj; j < tj + TILEJ; ++j)

9 #pragma vector nontemporal

10 #pragma omp simd

1 for (long i = ti; i < ti + TILEI; ++i)
12 /! Kernel

13}
6D

| #pragma omp parallel for collapse(3) schedule(dynamic,
1) proc_bind(spread)

> for (long rk SH; rk < N + SH; rk += REG)

for (long rj SH; rj < N + SH; rj += REG)

4 for (long ri = SH; ri < N + SH; ri += REGI) {

5 omp_set_num_threads (8);

6 #pragma omp parallel for collapse(2) schedule(static ,
1) proc_bind(close)

7 for (long tk = rk; tk < rk + REG; tk += TILE)

8 for (long tj = rj; tj < rj + REG; tj += TILE)

9 for (long ti = ri; ti < ri + REGI; ti += TILEI)

10 for (long k = tk; k < tk + TILE; ++k)

1 for (long j = tj: j < tj + TILE; ++j)

12 #pragma vector nontemporal

13 #pragma omp simd

14 for (long i = ti; i < ti + TILEIL; ++i)

15 /!l Kernel

12

	Introduction
	Architecture-Specific Adjustment of Data Footprint: Tiling vs. Bricks
	Bricks as Aggregate Unit of Parallel Work
	Brick Library Overview
	Experiments
	Intel Xeon Phi Knights Landing
	Intel Xeon Skylake Gold
	NVIDIA P100 Pascal GPU
	Performance Portability

	Related Work
	Conclusions and Future Work
	References
	Appendix: Tiling implementations
	Kernel example
	KNL & Xeon implementations
	GPU implementations

