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§ Demand for ever finer-resolution problems

§ Can not always fit into a single GPU's memory 

§ GPUs have become a first-class compute citizen
• 110/147 system use NVIDIA Volta chips in 2020, Top500 list[1]

Bigger problems + not enough GPU memory -> multiple GPUs

[1] https://www.top500.org/ 1



§ Multi-GPU SpTRSV using CUDA streams
• Up to 6x obtained for multi-GPU SpTRSV
• kernel specialization on GPUs for DAG-based computations
• Critical path model to explain/predict the performance 

• One-sided communications enabled distributed tasking on GPUs
• One-sided messaging libraries can vary substantially

Ø Cray's one-sided implementation is 2.7x slower than Cray's two-sided yet ETH's foMPI
is 3x faster than Cray's two-sided 

Ø NVSHMEM is 2.3x slower than IBM Spectrum On the Summit InfiniBand network 
• Need inter-node network performance improvement 

• Future work
• Port to other accelerators, e.g., AMD GPU with ROC_SHMEM
• Use critical path model to identify potentially superior process mappings

Highlights
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Sparse Direct Solvers

§ Sparse direct solvers 
§ Block Jacobi preconditioning

§ LU factorization (a simplified/approximate system)
§ Factor once and use as a preconditioner across multiple solves

§ L- and U- solve (SpTRSV)
§ Shifts the focus to SpTRSV performance

§ Challenging:
§ Low arithmetic intensity
§ Complex data dependencies
§ High inter-node communication 
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Naïve BSP SpTRSV

§ Naive approach: 
§ solve the system one equation (row) at a time, 
§ can be optimized to (selectively) parallelize over column updates or row reductions

§ Compute solution vector x from a sparse linear system, Lx=b

L
(8x8)  sparse known

x
(8x1)  dense unknown

b
(8x1)  dense known

x =

…
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§ Computation = Directed Acyclic Graph (based on level sets)
§ Each node in the DAG is a small dense matrix-vector
§ Parallelism is sacrificed in the bulk synchronous approach (data dependencies satisfied, 

but will not be executed until all previous levels have been executed)

Recast SpTRSV as a DAG
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Barrier across levels

Parallelism inside levels
…
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§ A 2D block cyclic process layout
§ Asynchronous communications: no barrier across levels, edges are inter-process communications
§ Two types of computation: Solves (on-diagonal blocks), MatVec (off-diagonal blocks)
§ Two types of communication: Block column broadcast, Block row reduction
§ Typical message size: 256 -1024 bytes
§ Demand high messaging performance
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2x2 process decomposition

P0 P1

P2 P3

SpTRSV in SuperLU:  Message Driven
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§ Two-sided MPI on CPUs [1]
§ MPI_Isend/Recv

§ One-sided MPI on CPUs [2]
§ Computations remain the same with the two-sided solution
§ MPI_Put (non-blocking), each message= data + payload
§ Payload: user-coded checksum for receivers to check data arrival
§ Up to 2.4x vs. the Two-sided MPI solution from 64 to 4096 cores 

with foMPI[3] library on Cray Aries network

Previous Messaging Solutions in SuperLU

[1] Liu, Yang, et al. "Highly scalable distributed-memory sparse triangular solution algorithms." 2018 Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific Computing. 
Society for Industrial and Applied Mathematics, 2018
[2] Ding, Nan, et al. "Leveraging One-Sided Communication for Sparse Triangular Solvers." Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific Computing. 
Society for Industrial and Applied Mathematics, 2020.
[3] Gerstenberger, Robert, Maciej Besta, and Torsten Hoefler. "Enabling highly-scalable remote memory access programming with MPI-3 one sided." Proceedings of the International 
Conference on High Performance Computing, Networking, Storage and Analysis. 2013.
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NVSHMEM has potential
(but bad implementations can destroy it)

NVSHMEM (based on OpenSHMEM)
✓ uses GPU-initiated data transfers

-> all work can be done in one single 
CUDA kernel

✓ provides signaling operations and 
point-to-point synchronization 
operations to notify receivers
✗ limited number of thread blocks that 
can be launched

__device__  device_function()
{

/* computations*/
nvshmem_double_put_nbi_block(…)

}

✗ initiate communications on CPU
not good for DAG-Based computations 
but may satisfy BSP computations 
(stencil)

solve<<<…>>>(…)

MPI_Send(…)
MPI_Recv(…)

Other MPI， e.g.，cuda-aware MPI          

✓no limitation on #thread blocks
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Multi-GPU SpTRSV using two CUDA streams

§ Point-to-point communications can happen at any time between any two processes 
with no strict barrier synchronization
§ depending on the sparsity pattern and the process decomposition

§ Leverage high concurrency: processes can proceed its local computations whose 
data dependencies are satisfied

10

GPU memory

wait for WAIT successfully launched 

Control dependencies + SendWAIT: stream[0]

Compute + sendSOLVE: stream[1]

nvshmem_malloc buffers



Multi-GPU SpTRSV vs. cusparse_csrsv2()
up to 6x speedup (L-solve)

Experimented on Summit: 
§ Cuda 10, Nvshmem 1.1.3 with Grdcopy 2.0

§ bind one process to one GPU
§ Px1 process layout (column broadcast)
§ use nvshmem_double_put_nbi_block()

§ S1 is from M3DC1
§ Other matrices are from SuiteSparse Matrix Collection
§ factorized via SuperLU_DIST with METIS 

ordering for fill-in reduction

S1 Li DG LU
nnz 8.80e+08 5.18e+08 9.66e+08 8.54e+08

DAG levels 388 188 199 264
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Multi-GPU SpTRSV vs. cusparse_csrsv2()
up to 6x speedup (L-solve)

Interesting Observations:

• DG has a similar number of DAG levels with 
Li but more nonzeros -> DG scales better than 
Li but it’s not

• Exploit multiple GPUs on one node, 
performance is challenged when using multi-
nodes

S1 Li DG LU
nnz 8.80e+08 5.18e+08 9.66e+08 8.54e+08

DAG levels 388 188 199 264
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It's important to understand what constraint the performance

§ Some numerical methods lend themselves to simple performance analysis

§ DAG-based SpTRSV demands more sophistication

§ Solution:
• construct a critical path performance model
• assess our observed performance relative to machine capabilities.
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Critical path Performance model

§ Architecture Characterization
• Memory bandwidth scales with the number of blocks 

(GEMV/TRSV) in the same level until the aggregate 
bandwidth reach the peak: 

𝑇!"#$%&' (&) *(+ =
"''+!+,"#&- ./#&0

"**)"#&- 12

• Communication: binary communication tree, latency-
bandwidth model

off-diag diag

broadcast reduction

𝑇!"## $%& '$( = #
)*+*),

L-*. +
log2 #out ∗ sz

BW-*.
+ #

/%0%/1

𝑙𝑜𝑔2(#𝑖𝑛) ∗ (𝐿2%3 +
𝑠𝑧

𝐵𝑊2%3
)

§ SpTRSV Characterization
• Initial Critical path: based on level-set using BFS
• Refined Critical path: process decomposition

Inter-process column broadcast
Inter-process row reduction
Intra-process execution order
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Interesting Observations:

• DG has a similar number of DAG levels with 
Li but more nonzeros -> DG scales better than 
Li but it’s not

S1 Li DG LU
nnz 8.80e+08 5.18e+08 9.66e+08 8.54e+08

DAG levels 388 188 199 264
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Large  number  of  messages  of  DG makes its scaling performance 
worse than matrix Li.

@ 6 GPU (single node)
Li: 

§ 270 messages on the critical path

DG: 
§ 1000 messages on the critical path



Interesting Observations:

• Exploit multiple GPUs on one node, 
performance is challenged when using multi-
nodes

S1 Li DG LU
nnz 8.80e+08 5.18e+08 9.66e+08 8.54e+08

DAG levels 388 188 199 264
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SpTRSV performance differs with critical paths 



SpTRSV performance differs with critical paths 

Matrix #supernodes DAG levels nnz L

s1_mat_0_507744 9,827 388 8.80E+08
Li4244 362 188 5.18E+08

@ 6 GPU (single node)
S1: 

§ 7,922 messages on the critical path
§ 1.3 GB/s memory bandwidth

Li: 
§ 270 messages on the critical path
§ 5.2 GB/s memory bandwidth
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