
1

Computing Maximum Cardinality Matchings in
Parallel on Bipartite Graphs via Tree-Grafting

Ariful Azad, Aydın Buluç, and Alex Pothen

Abstract—It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms
explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this
limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in
computing maximum cardinality matchings in bipartite graphs. Our algorithm searches for augmenting paths via specialized
breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms
that employ multiple-source searches cannot discard a search tree once no augmenting path is discovered from the tree, unlike
algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge
traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a
subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the
number of edges traversed, the average augmenting path length, and the number of iterations. We provide a proof of correctness for
our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel
Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available.
The performance improvement is more significant on graphs with small matching number.

Index Terms—Cardinality matching, bipartite graph, tree grafting, parallel algorithms.

F

1 INTRODUCTION

We design and implement a parallel algorithm for comput-
ing maximum cardinality matchings in bipartite graphs on
shared memory parallel processors. Approximation algo-
rithms are employed to create parallelism in matching prob-
lems, but a matching of maximum cardinality is needed in
several applications. One application in scientific computing
is to permute a matrix to its block triangular form (BTF)
via the Dulmage-Mendelsohn decomposition of bipartite
graphs [1]. Once the BTF is obtained, in circuit simulations,
sparse linear systems of equations can be solved faster [2],
and data structures for sparse orthogonal factors for least-
squares problems can be correctly predicted [3].

Matching algorithms that achieve high performance on
modern multiprocessors are challenging to design and im-
plement because they either rely on searching explicitly for
long paths or implicitly transmit information along long
paths in a graph. In earlier work, effective parallel match-
ing algorithms have been designed and implemented on
shared memory multiprocessors, especially multi-threaded
machines [4], [5]. These algorithms achieve parallelism by
using multi-source graph searches, i.e., by searching with
many threads from multiple (unmatched) vertices for aug-
menting paths (paths in the graph that alternate between
matched and unmatched edges with unmatched vertices as
endpoints), and using these augmenting paths to increase
the cardinality of the matching.

A. Azad and A. Buluç are with the Computational Research Divi-
sion, Lawrence Berkeley National Laboratory, Berkeley, CA 94720. E-mail:
azad@lbl.gov, abuluc@lbl.gov.
A. Pothen is with the department of Computer Science, Purdue University,
West Lafayette, IN 47907. E-mail: apothen@purdue.edu

Algorithms based on multi-source graph searches (i.e.,
multi-source or MS algorithms) have a significant weakness
relative to algorithms based on single-source graph searches
(i.e., single-source or SS algorithms). When an SS algorithm
fails to match a vertex u, it will not match u at any future
step, so it can remove u (and other vertices in its search tree)
from further consideration. Setubal [6] and Duff et al. [7]
used this property to implement SS algorithms, although
they did not provide a formal proof. A restricted version of
this property of SS algorithms that applies only to the start-
ing vertices of graph searches was proved in Theorem 10.5
by Papadimitriou and Steiglitz [8]. In this paper, we prove
a stronger version of this property that applies to all the
vertices visited during an unsuccessful search. However, the
search trees in MS algorithms are constrained to be vertex-
disjoint to allow concurrent augmentations along multiple
augmenting paths [9], [7]. Thus, even if the algorithm fails
to find an augmenting path from an unmatched vertex u at
some step, there could be an augmenting path from u at a
future step since some vertices that could be included in the
search tree rooted at u at this step might have been included
in some other search tree. Hence, MS algorithms cannot
discard search trees from which we do not discover aug-
menting paths and have to reconstruct them many times.
This property limits the scaling of MS algorithms, especially
on graphs where the size of the maximum matching is small
compared to the number of vertices.

We address this limitation of MS algorithms by reusing
the trees constructed in one phase in the next phase. We
graft a part of a search tree that yields an augmenting path
onto another search tree from which we have not found
an augmenting path. If the search succeeds in finding an
augmenting path in the grafted tree, we reuse parts of this

2

tree in subsequent grafting operations. Otherwise, we keep
the tree intact with the hope of discovering an augmenting
path in future. In both cases, we have avoided the work of
constructing this search tree from scratch, at the cost of the
work associated with the grafting operation. In addition to
tree grafting, we have integrated the direction optimization
idea [10] to the specialized breadth-first-searches (BFS) of
our algorithm. We demonstrate that the new serial algo-
rithm computes maximum cardinality matchings an order
of magnitude faster than the current best-performing algo-
rithms on several classes of graphs. Even faster performance
is obtained by the parallel grafting algorithm on multi-
threaded shared memory multiprocessors.

Our main contributions in this paper are as follows:

• We theoretically and experimentally characterize the
properties of existing SS and MS algorithms for
maximum cardinality matching. With a theorem, we
prove the advantage of SS algorithms on certain
graphs and motivate the changes in MS algorithms
needed to make them faster on those graphs.

• We present a novel tree-grafting method that elimi-
nates most of the redundant edge traversals of MS
matching algorithms, and prove the correctness of
our algorithm.

• We employ the recently developed direction-
optimized BFS [10] to speed up augmenting path
discoveries.

• We provide a NUMA-aware multithreaded imple-
mentation that attains up to 15x speedup on a two-
socket node with 24 cores. The algorithm yields
better search rates than its competitors, and is less
sensitive to performance variability of multithreaded
platforms.

• On average, our algorithm runs 7x faster than current
best parallel algorithm on a 40-core Intel multiproces-
sor. On graphs where the maximum matching leaves
a number of vertices unmatched, our algorithm runs
10x and 27x faster than two state-of-the-art imple-
mentations.

• We provide an efficient implementation of our algo-
rithm on Intel’s Many Integrated Core (MIC) archi-
tecture. The newly developed algorithm attains up to
36x speedup on an Intel Knights Corner coprocessor
using 60 cores, which demonstrates the utility of our
algorithm on future manycore architectures.

2 EXISTING ALGORITHMS FOR MAXIMUM MATCH-
ING IN BIPARTITE GRAPHS

2.1 Background and Notations

Given a graph G=(V,E) on the set of vertices V and edges
E, a matching M is a subset of edges such that at most one
edge in M is incident on each vertex in V . The number of
edges in M is called the cardinality |M | of the matching.
A matching M is maximal if there is no other matching
M ′ that properly contains M . M is a maximum cardinality
matching if |M |≥|M ′| for every matching M ′. M is a perfect
matching if every vertex of V is matched. The cardinality of
the maximum matching is the matching number of the graph.

In this paper, we report the matching number as a fraction
of the number of vertices. We denote |V | by n and |E| by m.

This paper focuses on matchings in a bipartite graph,
G=(X∪Y,E), where the vertex set V is partitioned into
two disjoint sets such that every edge connects a vertex
in X to a vertex in Y . Given a matching M in a bipartite
graph G, an edge is matched if it belongs to M , and
unmatched otherwise. Similarly, a vertex is matched if it
is an endpoint of a matched edge, and unmatched other-
wise. If x in X is matched to y in Y , we call x is the
mate of y and write x=mate[y] and y=mate[x]. An M -
alternating path in G with respect to a matching M is a
path whose edges are alternately matched and unmatched.
An M -augmenting path is an M -alternating path which
begins and ends with unmatched vertices. By exchanging
the matched and unmatched edges on an M -augmenting
path P , we can increase the cardinality of the matching M
by one (this is equivalent to the symmetric difference of
M and P , M⊕P=(M\P)∪(P\M)). Given a set of vertex
disjoint M -augmenting paths P, M ′=M⊕P is a matching
with cardinality |M |+|P|.

2.2 Classes of cardinality matching algorithms

Maximal matching algorithms compute a matching with car-
dinality at least half of the maximum matching. For many
input graphs, maximal matching algorithms find all or a
large fraction of the maximum cardinality matching [11].
Since maximal matching algorithms can be implemented in
O(m) time, which is much faster than maximum matching
algorithms, the former algorithms are often used to initialize
the latter.

Maximum matching algorithms are broadly classified into
three groups: (1) augmenting-path based, (2) push-relabel
based [5], [12], and (3) auction based [13]. This paper is pri-
marily focused on the augmenting-path based algorithms.
An augmenting-path based matching algorithm runs in
several phases, each of which searches for augmenting paths
in the graph with respect to the current matching M and
augments M by the augmenting paths. The algorithm finds
a maximum matching M when there is no M -augmenting
path in the graph [14]. Augmenting path based algorithms
primarily differ from one another based on the search strate-
gies used to find augmenting paths. The search can be per-
formed form one unmatched vertex (SS algorithms) or from
all unmatched vertices simultaneously (MS algorithms). The
search can be performed by using the BFS, depth-first search
(DFS), or a combination of both BFS and DFS (the Hopcroft-
Karp algorithm [9]). Table 1 summarizes the major classes of
cardinality matching algorithms relevant to the discussion
in this paper. For more details, we refer the reader to a book
on matching algorithms [15].

In this paper, without loss of generality, we search for
augmenting paths from unmatched X vertices, one vertex
set of a bipartite graph. The graph searches for augment-
ing paths have a structure different from the usual graph
searches: the only vertex reachable from a matched vertex
y in Y is its unique mate. The search for all neighbors
continues from the mate, which is again a vertex in X . We
call the search trees constructed in a phase of the algorithms
as alternating search trees. An alternating search tree T is

3

Algorithm 1 Matching algorithms based on single-source
augmenting path searches. Input: A bipartite graph G(X ∪
Y,E), a matching M . Output: A maximum cardinality
matching M .

1: procedure SS-MATCH(G(X ∪ Y,E), M)
2: for each y ∈ Y do visited [y]← 0

3: for each unmatched vertex x0 ∈ X do
4: P ←SS-SEARCH(G, x0 , visited ,M) . search

for an augmenting path from x0 using previously unvisited
vertices. visited [y] is set to 1 for every traversed vertex y in
Y .

5: Ys ← Y vertices traversed in the latest search
6: if P 6= φ then . An augmenting path is found
7: M ←M ⊕ P . Increase matching by one
8: for each y ∈ Ys do visited [y]← 0

Algorithm 2 Matching algorithm based on multi-source
augmenting path searches. Input and Output same as Al-
gorithm 1.

1: procedure MS-MATCH(G(X ∪ Y,E), M)
2: repeat
3: for each y ∈ Y do visited [y]← 0

4: X0 ← all unmatched X vertices
5: P←MS-SEARCH(G,X0 , visited ,M) . search for a

set of vertex disjoint augmenting paths from X0. visited [y]
is set to 1 for each traversed vertex y in Y .

6: M ←M ⊕ P . Increase matching by |P|
7: until P = φ . Continue if an augmenting path is found

rooted at an unmatched vertex x, and all paths from x to
other vertices in the tree are alternating paths. We denote a
tree rooted at x by T (x).

2.3 Single- and multi-source algorithms

The SS-MATCH (Algorithm 1) and MS-MATCH (Algo-
rithm 2) functions describe the general structures of the
SS and MS augmenting path based algorithms. They both
take a bipartite graph G(X ∪ Y,E) and an initial matching
M as input, and return a maximum cardinality matching
by updating M . In each phase, SS-MATCH searches for
an augmenting path from an unmatched vertex x0 in X
using the SS-SEARCH function. SS-SEARCH constructs an
alternating tree T (x0) by using Y vertices whose visited
flags are 0 and sets the visited flag to 1 for every Y ver-
tex included in the current search tree. SS-SEARCH stops
exploring the graph as soon as an augmenting path P is
found, which is then used to augment the matching. By
contrast, MS-MATCH traverses the graph fromX0, the set of
all unmatched X vertices, using the MS-SEARCH function.
MS-SEARCH constructs an alternating forest and returns a
set of vertex disjoint augmenting paths P, which is used to
augment the matching.

There is a crucial difference between the SS and MS
algorithms when we fail to augment a matching from an
unmatched vertex x0. For the SS algorithm, vertices and
edges in the alternating search tree T (x0) cannot be part
of any future augmenting paths. We formally prove this
property of SS algorithms in Theorem 1 and Corollary 1
below, which are the extensions of Theorem 10.5 and its
Corollary described by Papadimitriou and Steiglitz [8]. As
a consequence, SS algorithms could remove all vertices and
edges in a tree T (x0) that fails to discover any augmenting

x0

u

v

w y1

z

x1

xk

yk

An alternating tree T(x0) An augmenting path P

Fig. 1. Edges shown with solid lines represent an alternating tree T (x0)
that does not have an augmenting path. Edges shown with broken lines
represent an augmenting path P = (x1, y1, ..., xk, yk). Matched and un-
matched vertices are shown in filled and empty circles, respectively. Thin
lines represent unmatched edges and thick lines represent matched
edges. This Figure represents a plausible situation that T (x0) and P
do not have an edge in common.

path from further consideration [6], [7]. Such a failed tree
T (x0) can be easily removed from future search space by not
clearing the visited flags of the vertices in T (x0). For exam-
ple, line 8 of Algorithm 1 clears the visited flags only when
an augmenting path is discovered in the current phase. By
contrast, an MS algorithm cannot discard vertices from a
tree T (x0) without an augmenting path, because the same
tree could yield an augmenting path in future phases of the
algorithm. Consequently, Algorithm 2 clears the visited flags
of Y vertices in every phase of the algorithm.

Theorem 1. Suppose that in a bipartite graphG(X∪Y,E) there
is no augmenting path starting from an unmatched vertex x0 in
X with respect to a matching M . Let T (x0) be an M -alternating
tree rooted at x0 identified by the single source algorithm (Algo-
rithm 1) and P be an M -augmenting path starting from another
unmatched vertex x1 inX . Then T (x0) and P are vertex disjoint.

Proof. Let P = (x1, y1, ..., xk, yk) where xi and yj are
vertices in X and Y , respectively. Suppose that P and T (x0)
are not vertex disjoint. Let u be the first vertex on P that is
also in T (x0), and v be the last vertex on P belonging to
T (x0) such that all vertices between u and v are in T (x0)
(see Fig. 1).

First, consider that u is an X vertex and w in Y is the
vertex preceding u on the path P where w is not in T (x0).
Such a vertexw always exists because the first vertex x1 in P
does not belong to T (x0). Since T (x0) yields no augmenting
path, the SS algorithm explores all neighbors of X vertices
in the tree. Therefore, all neighbors of u must be in T (x0),
which contradicts the fact that a neighbor w of u is outside
of T (x0).

Next, consider that u is a Y vertex and z is the vertex
following v on the path P where z is not in T (x0). (This is
the situation illustrated in Fig. 1.) Such a vertex z always
exists because the last vertex yk in P is unmatched and
therefore, does not belong to T (x0). Since the alternating
subpath between u and v is of odd length, v must be an
X vertex. Therefore, all neighbors of v must be in T (x0),

4

TABLE 1
Summary of cardinality matching algorithms. Newly developed MS-BFS-Graft algorithm is shown in bold. In fine grained parallelism, each thread
processes a vertex, whereas in coarse grained parallelism, each thread processes a DFS tree or a large portion of a search tree. Fat cores are

latency-optimized cores (such as the CPU cores today) and thin cores are throughput optimized cores (such as Xeon Phi or GPU cores today). In
the last column, references to the original algorithms are shown first, followed by their serial and parallel implementations.

Algorithm Search Acronym Serial Parallelization Architecture References
Class Strategy Complexity Strategy Preference

Single-Source Alternating DFS SS-DFS O(nm) Not parallel One fat core [7]
Alternating BFS SS-BFS O(nm) Fine-grained Many thin cores [7]

Multi-Source

Vertex-disjoint alternating DFSs PF O(nm) Coarse-grained Few fat cores [1], [7], [4](Pothen-Fan algorithm)

Vertex-disjoint alternating BFSs MS-BFS O(nm) Fine-grained Many thin cores [4]

Vertex-disjoint BFSs MS-BFS-Graft O(nm) Fine-grained Many thin cores [16]with tree grafting

Both alternating BFS and DFS HK O(
√
nm)

Both fine- and Both fat and [9], [7], [4](Hopcroft-Karp algorithm) coarse-grained thin cores

Push-Relabel Label guided PR O(nm)
a Both fine- and Both fat and [12], [18], [5]FIFO search coarse-grained thin cores

Auction Concurrent Auction O(
√
nm logn) Both fine- and Both fat and [13], [19], [20]bidding coarse-grained thin cores

Maximal Greedy maximal matching GM O(m) Fine-grained Many thin cores [11]
matching Karp-Sipser algorithm KS O(m) Fine-grained Many thin cores [21], [11], [4]

a. A variant of the push-relabel algorithm called the minimum distance discharge algorithm attains the asymptotic complexity of O(
√
nm) for

the maximum cardinality matching problem [17]. This algorithm processes push and relabel operations by non-decreasing order of vertex labels.
However, Kaya et al. [18] found that the first-in-first-out (FIFO) ordering that has O(nm) complexity performs the best on most practical problems.

which contradicts the fact that a neighbor z of v is outside
of T (x0). Hence, T (x0) and P are vertex disjoint.

Corollary 1. If at some phase of a single source algorithm there
is no augmenting path in a tree T (x0) rooted at x0, then there
will never be an augmenting path passing through any vertex in
T (x0).

Proof. Let M0 be the matching before constructing the tree
T (x0), and Mk be the matching at the beginning of the kth
phase after building T (x0). Since T (x0) fails to discover
any augmenting path,M0 remains unchanged after building
T (x0) (i.e.,M1 =M0). Now we proceed by induction onMk

to prove the corollary.
If we discover an M1-augmenting path P in the first

phase after building T (x0), then by Theorem 1, P and T (x0)
are vertex disjoint. Suppose that all augmenting paths dis-
covered in the first k phases after building T (x0) are vertex
disjoint with T (x0). That is, T (x0) remains unchanged (i.e.,
matched and unmatched edges in T (x0) remain matched
and unmatched, respectively) in all of these possible k aug-
mentations and therefore, every alternating path in T (x0)
is Mk+1-alternating path in the (k + 1)th phase. Then by
Theorem 1, any augmenting path discovered in the (k+1)th
phase is also vertex disjoint with T (x0). Therefore, by in-
duction, there will never be an augmenting path passing
through any vertex in T (x0).

2.4 DFS- and BFS-based Algorithms
SS and MS algorithms search for augmenting paths using
alternating DFS, BFS, or a combination of both. Alternating
DFS and BFS generate search trees whose roots are always
unmatched vertices and each path from the root to every
other vertex in a search tree is an alternating path. Since

matching algorithms always search for alternating paths,
we often drop the term “alternating” in this paper. Next,
we briefly describe three algorithms with theoretical and
practical importance [4], [7], [22].

The multi-source BFS (MS-BFS) algorithm runs a level-
synchronous BFS from all unmatched vertices and builds
an alternating forest. At each level, the MS-BFS algorithm
explores the unvisited neighbors of the current frontier (the
set of vertices in the current level) and the mates of the
neighbors. A tree stops growing when it finds an augment-
ing path, while other trees continue growing by advancing
the frontier in a level-synchronous way. When the frontier
becomes empty, we augment the current matching by the
augmenting paths discovered in this phase and proceed to
the next phase. In the worst case, the MS-BFS algorithm
might need n phases to find the maximum matching, hence
the O(mn) bound.

The Pothen-Fan (PF) algorithm [1] is a multi-source DFS-
based algorithm that uses DFS with lookahead to find a maxi-
mal set of vertex-disjoint augmenting paths. The idea of the
lookahead mechanism in DFS is to search for an unmatched
vertex in the adjacency list of a vertex x being searched
before proceeding to continue the DFS from one of x’s
children. If the lookahead discovers an unmatched vertex,
then we obtain an augmenting path and can terminate the
DFS. From one iteration to the next, the direction in which
the adjacency list is searched for unmatched vertices can be
switched from the beginning of the list to the end of the list,
and vice versa. Duff et al. [7] call this fairness, and found that
this enhancement leads to faster execution times of the PF
algorithm. The complexity of the algorithm is O(mn).

The Hopcroft-Karp (HK) algorithm [9] finds a maximal
set of shortest vertex-disjoint augmenting paths and aug-
ments along each path simultaneously. At each phase, the

5

HK algorithm employs BFS from all unmatched vertices
and constructs an alternating layered graph by traversing the
graph level by level. The BFS stops at the first level where
an unmatched vertex is discovered, hence exposing only the
shortest augmenting paths. Next, the DFS is used to find
a maximal set of vertex-disjoint augmenting paths within
this layered graph. By using the two-step searches, the
number of augmentation phases can be bounded by O(

√
n),

resulting in faster asymptotic time complexity O(m
√
n) [9].

2.5 Characteristics of existing algorithms relevant to
parallel performance

In this subsection, we investigate three properties of aug-
menting path based matching algorithms, which signifi-
cantly impact their parallel performance. These properties
are: (a) the number of traversed edges, (b) the number of
phases, and (c) average length of augmenting paths. Since
a matching algorithm spends most of its time on graph
searches (e.g., see Fig. 11), the first property determines
its serial execution time. The number of phases is a lower
bound on the number of synchronization steps needed
by an algorithm because any parallel matching algorithm
needs to synchronize between consecutive phases. Finally,
the average length of augmenting paths determines the
heights of search trees. Hence, longer augmenting paths
could lead to load imbalance on higher concurrency. Fur-
thermore, augmenting a matching by long paths where
each augmentation is often performed sequentially might
increase the time to augment the matching. Hence, the
second and third properties influence the performance of
parallel algorithms. Here, we compare these three properties
of five sequential algorithms, all initialized via the Karp-
Sipser algorithm: (1) single-source DFS (SS-DFS), (2) single-
source BFS (SS-BFS), (3) the PF algorithm (with fairness),
(4) multi-source BFS (MS-BFS), and (5) the HK algorithm.
The MS-BFS implementation is taken from Azad et al. [4]
and the rest are taken from Duff et al. [7]. We selected three
graphs (kkt-power, cit-patents, and wikipedia), one
from each class of graphs described in Table 3.

Number of traversed edges (Fig. 2(a)): PF and MS-
BFS algorithms traverse fewer edges than HK algorithm
in spite of the latter’s superior asymptotic time complex-
ity [4], [7]. For kkt-power (with a perfect matching),
MS algorithms perform significantly better than SS algo-
rithms with PF traversing the fewest edges. However, for
graphs with smaller matching numbers (cit-patents,
and wikipedia), SS-BFS traverses the fewest number of
edges.

Number of phases (Fig. 2(b)): MS algorithms could
identify multiple augmenting paths in a single phase; hence
they need fewer number of phases than the SS algorithms.
When computing matchings on graphs with small diame-
ters, the PF algorithm might require more phases than MS-
BFS because the former usually finds longer augmenting
paths instead of several short augmenting paths. Despite
the superior bound of O(

√
n) on the number of phases, the

HK algorithm requires more phases than MS-BFS since the
former discovers only the shortest augmenting paths.

Augmenting path lengths (Fig. 2(c)): BFS-based algo-
rithms find shorter augmenting paths than DFS-based algo-

Single-‐Source	 Mul.-‐Source	

Alterna.ng	 DFS	 SS-‐DFS	 Pothen-‐Fan	

Alterna.ng	 BFS	 SS-‐BFS	 MS-‐BFS	

Both	 BFS	 and	 DFS	 Hopcro3-‐Karp	

Fewer phases

Shorter paths
Fine-grained

Fig. 3. Different algorithms expose different features favorable to paral-
lelization. Darker shades are used for algorithms with more features.

rithms. The HK algorithm discovers the shortest augment-
ing paths. MS algorithms usually discover shorter augment-
ing paths than the SS algorithms, and the difference is more
dramatic for the DFS based algorithms.

Theoretical vs. practical performance of matching algo-
rithms: The Hopcroft-Karp algorithm has the best asymp-
totic complexity of O(

√
nm) where O(

√
n) is the bound on

the number of phases, and each phase requires time O(m).
Other maximum matching algorithms described in Table 1
have higher asymptotic complexity of O(mn) because in
the worst case, they might require O(n) phases. However,
empirical results suggest that the worst case running time
seems to be an over-pessimistic estimation of the actual
running time in practice [4], [7]. On Erdős-Rényi random
graphs, Motwani [23] and Bast et al. [24] proved that with
high probability every non-maximum matching has an aug-
menting path of length O(log n). In the HK algorithm, the
length of the shortest augmenting path strictly increases
from one phase to the next and thus a bound O(log n) on
the maximal length of shortest augmenting paths implies a
bound on the number of phases. Empirical results on most
practical (non-random) graphs also indicate the existence of
short augmenting paths in any phase of cardinality match-
ing. For example, Fig. 2 (c) demonstrates that the average
length of augmenting paths can be less than ten for different
classes of graphs with several millions of vertices, which
directly influences the number of phases (Fig. 2 (b)) and the
overall runtime of an algorithm.

Practical considerations in parallel algorithms: Based
on our preliminary experiments, Fig. 3 summarizes different
favorable features present in different algorithms. MS algo-
rithms are more scalable because of increased concurrency
and decreased synchronization between consecutive phases.
In contrast to the PF algorithm that employs coarse grained
parallelism [4], the BFS-based algorithm can employ fine-
grained parallelism with each thread processing one vertex
in a level of a BFS tree. Based on these considerations, MS-
BFS promises to be the most scalable algorithm on highly
parallel environments.

However, for some graphs, especially those with small
matching numbers (e.g., cit-patents and wikipedia
in Fig. 2), SS-BFS traverses fewer edges than MS-BFS. As
discussed earlier, single source algorithms can reduce the
search space in later phases of the algorithm by removing
search trees yielding no augmenting paths. For example,
cit-patents has 75,982 unmatched vertices with respect
to the maximum matching (see Table 3). For cit-patents,
an SS algorithm could discard 75,982 trees at different
phases of the algorithm, whereas the MS-BFS algorithm
could build these trees many times. Therefore, when run
sequentially, SS-BFS is expected to run faster than MS-

6

1	

10	

100	

1000	

10000	

100000	

kkt-‐power	 cit-‐patents	 wikipedia	

	 	 #
	 E
dg
es
	 T
ra
ve
rs
ed

	 	 (
M
ill
io
ns
)	

SS-‐DFS	 PF	 SS-‐BFS	
MS-‐BFS	 HK	

(a)	
1	

10	

100	

1000	

10000	

100000	

1000000	

kkt-‐power	 cit-‐patents	 wikipedia	

	 	 #
	 P
ha
se
s	

SS-‐DFS	 PF	 SS-‐BFS	
MS-‐BFS	 HK	

(b)	
1	

10	

100	

1000	

10000	

100000	

kkt-‐power	 cit-‐patents	 wikipedia	

M
ea
n	
le
ng
th
	 o
f	 a
ug
em

nF
ng
	 p
at
hs
	 SS-‐DFS	 PF	 SS-‐BFS	

MS-‐BFS	 HK	

(c)	
Fig. 2. (a) The number of traversed edges, (b) the number of phases, and (c) the average length of augmenting paths for five maximum matching
algorithms.

x1 x2

x3 x4 x5

y1 y2 y3

y4 y5

(b) Alternating BFS Forest

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

x6 y6
Unvisited
Vertices

(a) A maximal matching
 in a Bipartite Graph

x1

x3 x4

y1 y2

Active Tree

x2

y3

x1

x3 x4

y1 y2

Active Tree

x2

y3 y4

y6

x6

(d) Tree Grafting (e) Continue BFS

x1 x2

x3 x4 x5

y1 y2 y3

y4 y5

(c) Augment

Active Tree Renewable Tree

Fig. 4. (a) A maximal matching in a bipartite graph. Matched and unmatched vertices are shown in filled and empty circles, respectively. Thin lines
represent unmatched edges and thick lines represent matched edges. (b) A BFS forest with two trees T (x1) and T (x2) created by the MS-BFS
algorithm. The edges (x1, y2) and (x3, y3) (shown with broken lines) are scanned but not included in T (x1) to keep the trees vertex-disjoint.
Unvisited vertices shown in Subfig. (a) did not take part in the current BFS traversal. (c) The current matching is augmented by the augmenting
path (x2, y3, x5, y5). T (x1) remains active since no augmenting path is found in it, while T (x2) becomes a renewable tree. (d) Vertices y2 and y3
along with their mates are grafted onto T (x1). The vertices x2 and x4 form the new frontier. (e) BFS proceeds from the new frontier and finds an
augmenting path in T (x1).

BFS on a graph with small matching number. We address
this limitation of the MS-BFS algorithm with a tree-grafting
mechanism that reduces the repetition of work across mul-
tiple phases in MS algorithms. This newly developed algo-
rithm called MS-BFS-Graft has the advantage of both SS and
MS algorithms and demonstrates better serial and parallel
performance than other existing algorithms.

3 MS-BFS ALGORITHM WITH TREE GRAFTING

3.1 Intuition behind the algorithm
Consider a maximal matching in a bipartite graph shown
in Fig. 4(a). The MS-BFS algorithm traverses the graph from
unmatched X vertices x1 and x2 and creates two vertex-
disjoint alternating trees T (x1) and T (x2). The trees are
shown in Fig. 4(b) where the edges (x1, y2) and (x3, y3)
(shown with broken lines) are scanned but not included
in T (x1) to maintain the vertex-disjointedness property.
In Fig. 4(b), T (x1) stops growing because its last frontier
{x3} does not have any unvisited neighbors. On the other
hand, T (x2) stops growing as soon as an augmenting
path (x2, y3, x5, y5) is found. Next, we augment the current
matching with (x2, y3, x5, y5) as shown in Fig. 4(c), which
finishes the current phase. After augmentation, existing

MS algorithms (e.g., the PF algorithm) destroy both T (x1)
and T (x2) and start the next phase from the remaining
unmatched vertex x1. Notice that the whole tree T (x1)
must be grown again along with the edges (x1, y2) and
(x3, y3) before we can explore the rest of the graph for
an augmenting path. An alternative approach is to keep
T (x1) intact, graft relevant edges ((x1, y2) and (x3, y3)) onto
T (x1), and then continue the next phase with the grafted
tree T (x1). We call this process “tree grafting”.

In this context, we call T (x1) (a tree where no augment-
ing path is found) an active tree and T (x2) (a tree where
an augmenting path is found) a renewable tree. Additionally,
in Fig. 4(a), x6 and y6 are unvisited vertices in the current
phase. At the end of a phase, we graft a Y vertex yj from
a renewable tree onto an X vertex xi in an active tree if
(xi, yj) is an edge in the graph. In Fig. 4(c), y2 and y3
from the renewable tree have edges to x1 and x3 in the
active tree. Therefore, y2 and y3 along with their mates
are grafted onto T (x1) as shown in Fig. 4(d). The rest of
T (x2) are destroyed (by clearing parent pointers, visited
flags, etc.). The next phase of the algorithm begins with
the frontier {x2, x4} obtained after the tree-grafting step
(Fig. 4(d)) and continues growing T (x1). Fig. 4(e) shows
the next phase where the algorithm discovers an augment-

7

Algorithm 3 The MS-BFS-Graft algorithm. Input: A bipar-
tite graph G(X ∪ Y,E), an initial matching vector mate .
Output: Updated mate with a maximum cardinality match-
ing.

1: for each y ∈ Y in parallel do
2: visited [y]← 0, root [y]←−1, parent [y]←−1
3: for each x ∈ X in parallel do
4: root [x]←−1, leaf [x]←−1
5: F ← all unmatched X vertices . initial frontier
6: for each x ∈ F in parallel do root [x]←x

7: repeat
8: . Step 1: Construct alternating BFS forest
9: while F 6= ∅ do

10: if |F | < numUnvisitedY /α then
11: F ← TOPDOWN(G,F, ...)
12: else
13: R ← unvisited Y vertices
14: F ← BOTTOMUP(G,R, ...)

15: . Step 2: frontier F becomes empty. Augment match-
ing.

16: for every unmatched vertex x0 ∈ X in parallel do
17: if an augmenting path P from x0 is found then
18: Augment matching by P
19: . Step 3: Construct frontier for the next phase
20: F ← GRAFT(G, visited , parent , root , leaf ,mate)
21: until no augmenting path is found in the current phase

Algorithm 4 Top-down construction of the next level BFS
frontier from the current frontier F .

1: procedure TOPDOWN(G, F , visited , parent , root , leaf ,
mate)

2: Q ← ∅ . next frontier (thread-safe queue)
3: for x ∈ F in parallel do
4: if x is in an active tree then . leaf [root [x]] = −1
5: for each unvisited neighbor y of x do . atomic
6: Update pointers and queue (Algorithm 5)

return Q

Algorithm 5 Updating pointers in BFS traversals.
1: parent [y]← x, visited [y]← 1, root [y]← root [x]
2: if mate[y] 6= −1 then
3: Q← Q ∪ {mate[y]} . thread safe
4: root [mate[y]]← root [y]
5: else . an augmenting path is found
6: leaf [root [x]]← y . end of augmenting path

Algorithm 6 Bottom-up construction of BFS frontier from a
subset of Y vertices R.

1: procedure BOTTOMUP(G, R, visited , parent , root ,
leaf ,mate)

2: Q ← ∅ . next frontier (thread-safe queue)
3: for y ∈ R in parallel do
4: for each neighbor x of y do
5: if x is in an active tree then . leaf [root [x]] = −1
6: Update pointers and queue (Algorithm 5)
7: break . stop exploring neighbors of y

return Q

ing path (x1, y2, x4, y4, x6, y6). The tree-grafting mechanism
therefore reduces the work involved in the reconstruction of
alternating trees at the beginning of a phase.

3.2 The MS-BFS-Graft algorithm

We employ tree grafting and direction-optimized BFS [10]
to the MS-BFS algorithm and call it the MS-BFS-Graft

Algorithm 7 Rebuild frontier for the next phase.
1: procedure GRAFT(G, visited , parent , root , leaf , mate)
2: activeX ← {x ∈ X : root [x] 6=−1 & leaf [root [x]] = −1}
3: activeY ← {y ∈ Y : root [y] 6=−1 & leaf [root [y]] = −1}
4: renewableY ← {y ∈ Y : root [y] 6=−1 &
5: leaf [root [y]] 6= −1}
6: for y ∈ renewableY in parallel do
7: visited[y]← 0, root[y]← −1
8: if | activeX | > | renewableY |/α then . tree grafting
9: F ← BOTTOMUP(G, renewableY , ...)

10: else . regrow active trees
11: F ← unmatched X vertices
12: for y ∈ activeY in parallel do
13: visited [y]← 0, root [y]← −1
14: for x ∈ (activeX \F) in parallel do
15: root [y]← −1

return F . return frontier for the next phase

algorithm. A multithreaded version of this algorithm is
described in Algorithm 3 that takes a bipartite graph
G(X ∪ Y,E) and an initial matching represented by a mate
array of size |X ∪ Y | as inputs. mate[u] is set to -1 for an
unmatched vertex u. The MS-BFS-Graft algorithm updates
the mate array with the maximum cardinality matching.

We assume that the alternating trees are rooted at un-
matched X vertices. Since the alternating forest grows two
levels at a time, the BFS frontier F is always a subset of
X vertices. A visited flag for each Y vertex ensures that
it is part of a single tree. The pointer parent [y] points to
the parent of a vertex y in Y . A matched X vertex is visited
from its mate , hence it does not need a visited flag or parent
pointer. For every vertex v in X ∪ Y , root [v] stores the root
of the tree containing v. Finally, leaf [x] stores an unmatched
leaf of a tree rooted at x, denoting an augmenting path from
x to leaf [x]. The parent , root and leaf pointers are set to
−1 for a vertex that is not part of any tree. Each iteration
of the repeat-until block in Algorithm 3 is a phase of the
algorithm. Each phase is further divided into three steps:
(1) discovering a set of vertex-disjoint augmenting paths by
multi-source BFS, (2) augmenting the current matching by
the augmenting paths, and (3) rebuilding the frontier for the
next phase by the tree-grafting mechanism.

Step 1 (BFS traversal): Algorithm 3 employs level-
synchronous BFS to grow an alternating BFS forest until the
frontier F becomes empty. We use the direction-optimizing
BFS algorithm [10] that dynamically selects between top-
down and bottom-up traversals based on the frontier size.

The top-down traversal: Algorithm 4 describes the top-
down traversal that constructs the next frontier Q by explor-
ing the neighbors of the current frontier F . If a vertex x in F
is part of an active tree, then each unvisited neighbor y of x
becomes a child of x. Then we update the necessary pointers
by Algorithm 5. When y is matched, we include mate[y] into
Q . Otherwise, we discover an augmenting path from root [x]
to y and set leaf [root [x]] = y. In the latter case, T (root [x])
becomes a renewable tree and stops growing further.

In the multithreaded implementation of the TOPDOWN
function, threads maintain the vertex-disjointedness prop-
erties of the alternating trees via atomic updates of the
visited array. Hence, a vertex y is processed by one thread
and becomes a child of a single vertex x in F . (We check
the visited flags before performing the atomic operations
to reduce the overhead of unnecessary atomics [25]). A

8

vertex is inserted in Q in a thread-safe way (line 3 of
Algorithm 5). To reduce memory contention among threads,
we assign a small private queue to each thread so that it
fits in the local cache. When a private queue is filled up,
the associated thread copies the local queue to the global
shared queue in a thread-safe manner. This approach is
similar to the implementation of omp_csr reference code
of Graph500 benchmark [26] and improves the scalability
of our matching algorithm on multiple sockets. When a
thread discovers an augmenting path, it immediately marks
the corresponding tree as renewable by setting the leaf
pointer (line 6). This could create a race condition if multiple
threads discover augmenting paths in the same tree at the
same time. This is a benign race condition that does not
affect correctness because the last update of the leaf pointer
overwrites previous updates by other threads and maintains
a single augmenting path in a tree.

The bottom-up traversal: Algorithm 6 describes the
bottom-up traversal that explores the neighborhood of a
subset of Y vertices, R, that will be defined below. We use
the same BOTTOMUP function for both regular BFS traversal
and the tree-grafting steps. Here, R is the set of unvisited
Y vertices in the former case and the set of Y vertices
in the renewable trees in the latter case. If a vertex y in
R has a neighbor x in an active tree, y becomes a child
of x. The necessary pointers and the next frontier Q are
updated by Algorithm 5, similar to the top-down traversal.
We stop exploring the neighbors of a vertex y in R as soon
as it is included in an active tree (break at line 7). In a
multithreaded execution, the vertices in R are concurrently
processed by different threads. Since a vertex y in R is
processed by a single thread in the BOTTOMUP function,
its visited flag can be updated without atomic operations.

Top-down or bottom-up?: When the size of the current
frontier F is smaller than a fraction (1/α) of the number of
unvisited Y vertices numUnvisitedY , we use the top-down
BFS. Otherwise, the bottom-up BFS is used.

Step 2 (Augment the matching): Assume that x0 is the
root of a renewable tree T (x0) and leaf [x0]=y0, where both
x0 and y0 are unmatched vertices. The unique augmenting
path P is retrieved from T (x0) by following the parent and
mate pointers from y0 to x0. We augment the matching
by flipping the matched and unmatched edges in P . Since
the augmenting paths are vertex disjoint, each path can be
processed in parallel by different threads (lines 16–18 of
Algorithm 3).

Step 3 (Reconstruction of the frontier): When the cur-
rent frontier becomes empty, Algorithm 3 constructs the
frontier for the next phase by calling the GRAFT function
described in Algorithm 7. For this step, we identify three
sets of vertices: (1) activeX is the set of X vertices in active
trees, (2) activeY is the the set of Y vertices in active
trees, and (3) renewableY is the the set of Y vertices in
renewable trees. We reset visited flags and root pointers of
the renewableY vertices so that they can be reused (lines
6–7 of Algorithm 7).

Algorithm 7 constructs the frontier for the next phase by
using the tree-grafting mechanism (line 9) or with the set of
unmatched X vertices (line 11). The former is more bene-
ficial than the latter when the size of the renewable forest
is smaller than the size of the active forest. Following the

same argument of the top-down vs bottom-up traversal, we
employ tree grafting when the size of activeX is greater than
| renewableY |/α. The BOTTOMUP function grafts vertices
from renewable trees onto active trees when the function
is called with renewableY as its argument. When it is not
profitable to employ tree grafting, we destroy all trees and
start building active trees from scratch (lines 11–15). For
most graphs, we observe that tree grafting is usually not
beneficial in the first few phases when a large number of
augmenting paths is discovered (i.e., a large number of
renewable trees).

After a new frontier is constructed, Algorithm 3 pro-
ceeds to the next phase. The algorithm terminates when no
augmenting paths are found in a phase, at which point the
maximum cardinality matching is attained.

Time and space complexity: In the worst case, the
MS-BFS-Graft algorithm might need n phases, each phase
traversing O(m) edges. Hence, the complexity of the (serial)
algorithm is O(mn). We store the graph in compressed
sparse row (CSR) format that requires O(n + m) storage.
Additionally, the MS-BFS-Graft algorithm uses seven arrays
of size n.

3.3 Correctness of the algorithm
Lemma 1. There is no unvisited Y vertex adjacent to vertices
in active trees at the end of any phase of the MS-BFS-Graft
algorithm.

Proof. The phases of MS-BFS-Graft algorithm come in
batches: each batch starts with a phase with unmatched
vertices in the frontier, followed by several phases with
grafted frontiers. Since every batch of phases progresses
similarly, it suffices to prove the lemma for one such batch
of phases beginning with the ith phase. We will prove by
induction that there is no unvisited Y vertex adjacent to
active trees at the end of (i+ k)th phase where k successive
grafting phases follow the ith phase.

The ith phase builds active trees from scratch starting
with all unmatched X vertices. Thus at the end of the
ith phase, there is no edge between an active X vertex
x1 and an unvisited Y vertex y1 because if such an edge
were to exist, BFS search would have discovered y1 from
x1. Assume that phases i, (i+1), ..., (i+k) have applied tree
grafting, and there is no unvisited Y vertex adjacent to
vertices in active trees at the end of the (i+k)th phase. To
conclude the induction, we have to show that there is no
unvisited Y vertex adjacent to active trees at the end of the
(i+k+1)th phase.

Let X̃ be the set of active X vertices and Ỹ be the set of
unvisited Y vertices at the end of the (i+k+1)th phase. X̃
can be further divided into two subsets X1 and X2, where
the former is a subset of active vertices in the (i+k)th phase
and the latter is a subset of newly visited active vertices in
the (i+k+1)th phase. Similarly, Ỹ can be divided into two
subsets Y1 and Y2, where the former is a subset of unvisited
vertices and the latter is a subset of renewable vertices (that
were not grafted) in the (i+k)th phase. According to our
inductive hypothesis, X1 has no neighbor in Y1. In the tree-
grafting step in the (i+k)th phase, all renewable Y vertices
adjacent to X1 have been grafted onto active trees. Hence,
X1 has no neighbor in Y2 either. Finally, X2 is the set of

9

newly visited X vertices in the (i+k+1)th phase. Therefore,
no unvisited vertex in Y1∪Y2 is adjacent to a vertex in X2.
By induction, there is no unvisited Y vertex adjacent to
vertices in active trees at the end of every phase in the batch
beginning with the ith phase.

Theorem 2. The MS-BFS-Graft algorithm finds a maximum
cardinality matching in a bipartite graph G(X ∪ Y,E).

Proof. Let M be the final matching returned by the MS-BFS-
Graft algorithm. To obtain a contradiction, assume that M
is not a maximum cardinality matching. Then by Berge’s
theorem [14], there is an M -augmenting path in the graph
G that the MS-BFS-Graft algorithm failed to find.

Let P = (x0, y1, x1, ..., yk, xk, yk+1) be an M -
augmenting path in G, where x0 and yk+1 are unmatched
vertices. x0 is an active vertex because it being an
unmatched vertex in X is the root of an active tree and
yk+1 is an unvisited vertex because the algorithm does
not discover an augmenting path in the last phase. To
form a path P whose end points are active and unvisited
vertices, P must include at least one edge connecting an
active vertex with an unvisited vertex. Since there is no
edge between active and unvisited vertices at the end of
any phase according to Lemma 1, P does not exist. Hence,
by Berge’s theorem [14], M is a maximum cardinality
matching.

Definition 1. Let F be the initial frontier in a phase where
an augmenting path P is discovered. The suffix of the path
P is the alternating path from F to the last unmatched
vertex on P . For example, in Fig. 4(e) where the initial
frontier is {x2, x4}, the suffix of the augmenting path
(x1, y2, x4, y4, x6, y6) is (x4, y4, x6, y6).

Lemma 2. Let M be the initial matching in the current phase.
Then, the MS-BFS-Graft algorithm discovers an M -augmenting
path with the shortest suffix.

Proof. Let F be the initial frontier in the current phase. Let
y0 be the first unmatched Y vertex discovered in the ith
level of BFS search, and P ′ be corresponding M -alternating
path from F to y0. Since BFS proceeds level by level until the
discovery of y0, no other unmatched Y vertex is discovered
before the ith level. Hence, P ′ is the shortest M -alternating
path from F to y0.

Even though Lemma 2 has no direct influence on the
time complexity of the MS-BFS-Graft algorithm, this prop-
erty is relevant in comparing MS-BFS-Graft with other maxi-
mum matching algorithms. For example, the Hopcroft-Karp
algorithm obtains O(

√
n) bound on the number of phases

using the “maximal” and “shortest length” properties of
augmenting paths. The Pothen-Fan algorithm maintains the
“maximal” property, but not the “shortest length” property.
By contrast, MS-BFS-Graft discovers augmenting paths with
the “shortest suffixes”, which translates into shortest aug-
menting paths if tree grafting is not used. We believe that
this property of MS-BFS-Graft would help the readers and
other researchers to study MS-BFS-Graft along with other
matching algorithms.

4 EXPERIMENTAL SETUP

4.1 Methodology and Implementation Details
We evaluate the performance of parallel matching algo-
rithms on two multithreaded multiprocessors, Mirasol and
Edison, and on a Knights Corner (KNC) coprocessor based
on the Intel Many Integrated Core (MIC) Architecture. Mi-
rasol has 40 Intel Westmere-EX processors, a single node
of Edison (a Cray XC30 supercomputer at NERSC) has 24
Intel Ivy Bridge processors and the KNC coprocessor has
60 cores. The KNC coprocessor is part of a NERSC testbed
system called Babbage and we use it in “native” mode in
which both the operating system and user applications run
on the MIC card (i.e., Intel Xeon “host” processors were
not used in computing matchings). The specifications of
these systems are described in Table 2. We implemented
our algorithms using C++ and OpenMP. For atomic mem-
ory access, we used compiler builtin functions, such as
__sync_fetch_and_add.

We use the Karp-Sipser [21] algorithm to initialize all
matching algorithms described in this paper, because it has
been shown to be one of the best initializers when com-
puting maximum matching on most practical problems [7]
and scales well on large number of threads [4]. In our
experiments, we found that α ∼ 5 works the best for most
input graphs when deciding about top-down or bottom-up
traversals and tree grafting in the MS-BFS-Graft algorithm.
Slight performance improvement can be obtained with dif-
ferent α values for different input graphs, but we opt to fix
α to 5 so that the algorithm does not need to discover this
parameter for different inputs.

To reduce overhead of thread migration, we pinned
threads to specific cores. We employed compact thread
pinning (filling threads one socket after another) by setting
the environment variable GOMP_CPU_AFFINITY on Mirasol
and KMP_AFFINITY on Edison and KNC. Both Mirasol and
Edison have non-uniform memory access (NUMA) costs
since physically separate memory banks are associated with
each socket. When the threads are distributed across sock-
ets, we employed interleaved memory allocation (memory
allocated evenly across sockets). Otherwise, we allocated
memory on the socket on which the threads were running
using the numactl command. Availability: The source
code of the MS-BFS-Graft algorithm is publicly available at
https://bitbucket.org/azadcse/ms-bfs-graft.

4.2 Input Graphs
Table 3 describes a representative set of bipartite graphs
from the University of Florida sparse matrix collection [27]
and a randomly generated RMAT graph. For the RMAT
graph, we did not use the default Graph500 [26] parameter
(.57, .19, .19, .05) because it creates graphs that are trivial
for a matching algorithm. We group the problems into three
classes based on application areas where they arise. Note
that the matching number is relatively small for problems
in the last group.

Let A be an n1×n2 matrix with nnz (A) nonzero entries.
We create an undirected bipartite graph G(X ∪ Y,E) such
that every row (column) of A is represented by a vertex in
X (Y), i.e., |V |=|X ∪ Y |=n1+n2=n. Each nonzero entry
A[i, j] of A is represented by two edges (xi, yj) and (yj , xi)

https://bitbucket.org/azadcse/ms-bfs-graft

10

TABLE 2
Description of the systems used in the experiments.

Feature Edison (24-core) Mirasol (40-core) KNC (60-core)

Architecture Ivy Bridge Westmere-EX Many Integrated Core (MIC)
Intel Model E5-2695 v2 E7-4870 Knights Corner
Clock rate 2.4 GHz 2.4 GHz 1 GHz
NUMA domains 2 4 1
Cores 24 40 60
Threads 48 80 240
DRAM size 64 GB 256 GB 8GB
Compiler icc 14.0.2 gcc 4.4.7 icc 15.0.1
Optimization -O2 -O2 -O2

TABLE 3
Test problems for evaluating the matching algorithms. The problems are grouped into three classes: (top) scientific computing and random

instances, (middle) real world and random networks with large matching numbers, (bottom) networks with small matching numbers. Matching
cardinalities are shown as a fraction of total number of non-isolated vertices. Maximal matchings are computed by the Karp-Sipser algorithm.

Class Graph #Vertices #Edges Maximal Maximum Description
(M) (M) Card. (%) Card. (%)

hugetrace 32.00 96.00 98.68 100.00 Frames from 2D Dynamic Simulations
Scientific delaunay n24 33.55 201.33 98.58 100.00 Delaunay triangulations of random points
Computing kkt power 4.13 29.23 99.03 100.00 Optimal power flow, nonlinear optimization

rgg n24 s0 33.55 530.23 99.97 99.99 Random geometric graph

coPapersDBLP 1.08 60.98 97.93 99.95 Citation networks in DBLP
Networks- amazon0312 0.80 3.20 93.82 99.56 Amazon product co-purchasing network
LargeM cit-Patents 7.55 16.52 97.42 97.99 Citation network among US Patents

RMAT 8.38 255 96.12 96.78 RMAT random graph (param: .45,.15,.15,.25)

road usa 47.89 115.42 93.68 94.90 USA street networks
Networks- wb-edu 19.69 57.16 79.90 80.50 Web crawl on .edu domain
SmallM web-Google 1.83 5.11 67.45 68.75 Webgraph from the Google prog. contest, 2002

wikipedia 7.13 45.03 58.33 58.70 Wikipedia page links

TABLE 4
Runtimes (average of ten runs) of the MS-BFS-Graft algorithm for problems in Table 3. Two rightmost columns show the time to read input files

and create the graph (both are multithreaded), respectively using 24 threads on Edison. The matching time includes the runtimes of the
Karp-Sipser and MS-BFS-Graft algorithms. RMAT graphs were generated on the fly, and rgg_n24_s0 ran out of memory on KNC.

Graph Matching time I/O and data structure

Mirasol KNC Edison 24 threads of Edison

1 thread 40 threads 1 thread 60 threads 240 threads 1 thread 24 threads File I/O Graph creation

hugetrace 57.861 3.734 519.465 12.318 5.761 51.605 3.933 3.767 0.504
delaunay n24 25.703 1.578 148.562 6.312 4.012 17.910 1.341 5.368 0.979
kkt power 3.579 0.329 24.303 1.599 0.973 3.259 0.331 1.955 0.149
rgg n24 s0 170.411 22.429 - - - 153.204 11.552 11.783 0.884
coPapersDBLP 1.776 0.097 13.509 0.566 0.381 1.115 0.088 2.685 0.137
amazon0312 2.162 0.212 51.470 1.595 0.797 1.755 0.133 0.577 0.029
cit-Patents 2.942 0.204 3.902 0.382 0.254 0.379 0.057 0.151 0.023
RMAT22 89.642 4.421 2069.320 56.086 25.743 87.495 4.657 - -
road usa 19.920 1.184 75.327 1.836 1.151 14.621 0.955 4.052 0.350
wb-edu 4.658 0.360 51.210 1.260 0.978 2.699 0.218 4.056 0.180
web-Google 0.653 0.050 6.017 0.216 0.159 0.481 0.034 0.763 0.062
wikipedia 4.635 0.297 20.164 0.637 0.421 3.685 0.265 3.691 0.466

connecting the vertices xi (denoting the ith row) and yj
(denoting the jth column). We keep edges in both directions
to facilitate the top-down and bottom-up searches. Two
rightmost columns in Table 4 show the time to read input
files and construct the graph on 24 cores on Edison. Ap-
proximately 30% of the graph construction time was spent
on creating edges from column vertices to row vertices.

5 RESULTS

5.1 Relative performance of algorithms

Table 4 shows runtimes of the MS-BFS-Graft algorithm (in-
cluding the time of the Karp-Sipser initialization) for prob-
lems in Table 3 on three shared-memory systems used in our

experiments. We compare the performance of the MS-BFS-
Graft algorithm shown in Table 4 with the PF (with fairness)
and PR algorithms. The latter algorithms are considered
the state-of-the art for the maximum cardinality matching
problem [4], [5], [7]. The multithreaded implementations of
PF and PR are taken from Azad et al. [4] and Langguth et
al. [5], respectively. To improve performance, the PR code
uses periodic global relabeling by setting all labels to exact
distances [5], [18]. Following the suggestion made in prior
work [5], we apply one global relabeling after every n
pushes when using one thread and after every n/8 pushes
when using 40 threads.

Fig. 5 shows the relative performance of three algorithms
on Mirasol using one and 40 threads. For every input graph,
we compute the average time of 10 runs of each algorithm.

11

0	

4	

8	

12	

16	

kk
t_
po

w
er
	

hu
ge
tr
ac
e	

de
la
un

ay
	

rg
g_
n2

4_
s0
	

co
Pa
er
sD
BL
P	

am
az
on

03
12
	

ci
t-‐
Pa
te
nt
s	

RM
AT

	

ro
ad
_u

sa
	

w
b-‐
ed

u	

w
eb

-‐G
oo

gl
e	

w
ik
ip
ed

ia
	

Re
la
Iv
e	
sp
ee
du

p	

Push-‐Relabel	

Pothen-‐Fan	

MS-‐BFS-‐GraM	

(a)	 one	 core	

0	

4	

8	

12	

16	

kk
t_
po

w
er
	

hu
ge
tr
ac
e	

de
la
un

ay
	

rg
g_
n2

4_
s0
	

co
Pa
er
sD
BL
P	

am
az
on

03
12
	

ci
t-‐
Pa
te
nt
s	

RM
AT

	

ro
ad
_u

sa
	

w
b-‐
ed

u	

w
eb

-‐G
oo

gl
e	

w
ik
ip
ed

ia
	

Re
la
Iv
e	
sp
ee
du

p	

35	 29	 42	 (b)	 40	 cores	

Fig. 5. Speedups of MS-BFS-Graft and PR algorithms relative to the PF algorithm on Mirasol using (a) one core and (b) 40 cores (i.e., PF has the
speedup of 1). We truncate y-axis in Subfig. (b) and show large values beside the bars. Dashed vertical lines separate different classes of graphs.

0	

2	

4	

6	

8	

huget
race	 delaun

ay	

coPap
ersDB

LP	
amazon0

312	 road_
usa	

wikipe
dia	

Re
la
Cv
e	
sp
ee
du

p	

Push-‐Relabel	 Pothen-‐Fan	 MS-‐BFS-‐GraK	

22	

Fig. 6. Speedups of MS-BFS-Graft, PR, and PF algorithms relative to
the PF algorithm on Intel Knights Corner using 120 threads (i.e., PF has
the speedup of 1).

We compute the relative speedups of an algorithm by di-
viding its runtime by the runtime of the PF algorithm (i.e.,
PF has the speedup of 1). On average, over all problem
instances, serial MS-BFS-Graft algorithm runs 5.7x faster
than serial PR and 4.8x faster than serial PF algorithms. We
did not observe any performance improvement for the first
class of graphs (scientific computing and random instances)
for serial runs. However, the serial MS-BFS-Graft algorithm
runs 4.9x faster than PR and 8.2x faster than PF on networks
with large matching numbers, and 11.3x faster than PR
and 5.5x faster than PF on networks with small matching
numbers. The performance improvement of the MS-BFS-
Graft algorithm is more significant on 40 threads (Fig. 5
(b)). On average, our algorithm runs 7.5x faster than PR
and 11.4x faster than PF on 40 threads. For different classes
of problems, the average performance improvements of the
MS-BFS-Graft algorithm are as follows: (a) scientific: 4.9x
to PR, 1.2x to PF (2) networks-largeM: 7.1x to PR, 5.1x to
PF and (3) networks-smallM: 10.4x to PR, 27.8x to PF. As

PF
1 0.10312016
2 7.8719318
4 18.0712417
8 24.4145709
15 41.0322252
30 48.3098722
60 42.5525824

120 33.5905881
240 47.1452907

Total time = 41.64 spent on
Total time = 41.63 spent on
Total time = 41.62 spent on
Total time = 41.63 spent on
Total time = 41.64 spent on
Total time = 41.62 spent on
Total time = 41.62 spent on
Total time = 41.63 spent on
Total time = 41.66 spent on
Total time = 41.71 spent on
Total time = 41.62 spent on
Total time = 41.64 spent on
Total time = 41.63 spent on
Total time = 41.62 spent on
Total time = 41.62 spent on
Total time = 41.48 spent on
Total time = 41.67 spent on
Total time = 41.65 spent on
Total time = 41.66 spent on
Total time = 41.67 spent on
Total time = 16.64 spent on
Total time = 16.35 spent on
Total time = 16.79 spent on
Total time = 18.34 spent on
Total time = 17.53 spent on
Total time = 16.12 spent on
Total time = 15.91 spent on
Total time = 13.77 spent on
Total time = 17.63 spent on
Total time = 18.62 spent on
Total time = 16.6 spent on

0	

10	

20	

30	

40	

50	

60	

1	 4	 16	 64	 256	

Pa
ra
lle
l	 S
en

si=
vi
ty
	 (%

)	 	

Number	 of	 Threads	

Pothen-‐Fan	
Push-‐Relabel	
MS-‐BFS-‐GraN	

Fig. 7. Parallel sensitivity of three algorithms for coPapersDBLP graph
on the KNC coprocessor. An algorithm with small parallel sensitivity is
more desirable because of its deterministic parallel performance.

in the serial case, the performance improvement is more
significant for the second and third classes of graphs. Note
that the PF algorithm might achieve super-linear speedups
for certain networks (e.g., amazon0312) because the num-
ber of phases needed by the PF algorithm decreases as
we increase threads for these graphs [4]. Hence, the PF
algorithm becomes the fastest algorithm for amazon0312
on 40 threads despite it being the slowest serial algorithm
for this graph.

Parallel MS-BFS-Graft algorithm also shows superior
performance on Intel’s KNC coprocessor. Fig. 6 shows the
speedups of MS-BFS-Graft, PR, and PF algorithms relative
to the PF algorithm on KNC using 120 threads (2 threads
per core). On this architecture, PR is usually the slowest
algorithm because of its limited scalability on higher con-
currency (for example see Fig. 9). The PF algorithm runs
up to 5x faster than PR on 120 threads. By contrast, the

12

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	 64	 128	

Av
er
ag
e	
Sp
ee
du

ps
	

Number	 of	 Threads	

Scien=fic	

Networks-‐LargeM	

Networks-‐SmallM	

Hyperthreading	

Change	 of	 socket	

(a)	 Mirasol	
1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	 64	

Av
er
ag
e	
Sp
ee
du

ps
	

Number	 of	 Threads	

Scien=fic	

Networks-‐LargeM	

Networks-‐SmallM	

Hyperthreading	

Change	 of	 socket	

(b)	 Edison	

Fig. 8. Strong scaling of the MS-BFS-Graft algorithm for three classes of input graphs on (a) Mirasol and (b) Edison. For each class of graphs, we
compute the speedups of individual graphs with respect to the serial MS-BFS-Graft algorithm and take the average.

1	

2	

4	

8	

16	

32	

64	

1	 4	 16	 64	 256	

Av
er
ag
e	
Sp
ee
du

ps
	

Number	 of	 Threads	

Scien>fic	
Networks-‐LargeM	
Networks-‐SmallM	

(a)	 MS-‐BFS-‐Gra,	
1	

2	

4	

8	

16	

32	

64	

1	 4	 16	 64	 256	

Av
er
ag
e	
Sp
ee
du

ps
	

Number	 of	 Threads	

Scien>fic	
Networks-‐LargeM	
Networks-‐SmallM	

(b)	 Pothen-‐Fan	
1	

2	

4	

8	

16	

32	

64	

1	 4	 16	 64	 256	

Av
er
ag
e	
Sp
ee
du

ps
	

Number	 of	 Threads	

Scien>fic	
Networks-‐LargeM	
Networks-‐SmallM	

(c)	 Push-‐Relabel	

Fig. 9. Strong scaling of MS-BFS-Graft, PF and PR algorithms for three classes of input graphs on the Intel KNC coprocessor. On the right side of
the vertical line, more than one thread is run on each core.

newly developed MS-BFS-Graft algorithm runs faster than
both PF and PR on all problem instances with the maximum
improvement of 22x over the PF algorithm.

The performance of MS-BFS-Graft on KNC is compara-
ble to the reported runtime of an efficient GPU implementa-
tion on NVIDIA Tesla C2050 [28]. Here we only consider
problems common to our test suite and the GPU paper
by Deveci et al. [28]. For hugetrace, a problem with a
perfect matching, MS-BFS-Graft on KNC using 240 threads
runs about 30% faster than the GPU implementation. On
graphs with small matching numbers, MS-BFS-Graft on
KNC performs even better than GPU implementations. For
example, for wikipedia and wb-edu, MS-BFS-Graft on
KNC computes the maximum matching in 0.42 and 0.98
seconds, whereas the GPU implementation by Deveci et al.
takes 1.09 and 33.82 seconds, respectively.

5.2 Variation in parallel runtimes

In a multithreaded environment, different executions of an
algorithm are likely to process vertices in different order-
ings, which could change the runtime of an algorithm.
To measure the sensitivity of matching algorithms to the
multithreaded environment, we run each algorithm 20 times
for each input graph and compute the variation in parallel
runtimes. Following prior notation [4], we measure the
parallel sensitivity (ψ) of an algorithm as the ratio of the
standard deviation (σ) of runtimes from 20 runs, to the mean

of runtimes (µ): ψ = σ
µ×100. For all input graphs of Table 3,

we computed ψ for MS-BFS-Graft, PF, and PR algorithms
using 40 threads on Mirasol. On average, the variation in
runtimes is higher for PF (17%) and PR (10%) relative to the
MS-BFS-Graft algorithm (6%).

DFS-based algorithm is more sensitive (i.e., less de-
terministic) to the multithreaded environment because it
assigns each thread to explore a DFS tree, exposing a greater
potential for load imbalance. By contrast, MS-BFS-Graft
divides work into smaller chunks that could be distributed
evenly among threads resulting in less sensitivity in run-
times. The stable parallel performance of MS-BFS-Graft is
even more valuable on modern manycore architectures with
hundreds of threads. For example, Fig. 7 shows the parallel
sensitivity of three algorithms for coPapersDBLP graph on
the KNC coprocessor. As we increase the number of threads,
the sensitivity of PF increases rapidly relative to PR and
MS-BFS-Graft. The maximum variation in runtime is about
50% for PF, 20% for PR, and less than 10% for MS-BFS-
Graft. This deterministic parallel performance of MS-BFS-
Graft is expected to make it an attractive candidate on future
architectures.

5.3 Scalability

MS-BFS-Graft algorithm shows good scaling on different
multithreaded and MIC architectures. Fig. 8 shows the
strong scaling of the MS-BFS-Graft algorithm on Mirasol

13

and Edison for different classes of graphs. We report the
average speedup for graphs in each class with respect to
the serial MS-BFS-Graft algorithm. Using all available cores
(without hyperthreading), the average speedup of problems
in Table 3 is 15 on Mirasol (stdev=3.5, min=9, max=21) and
12 on Edison (stdev=2, min=7, max=15). This performance
is significantly better than the reported speedup (5.5x on a
32-core Intel multiprocessor) of the PR algorithm [5].

Both of the multicore multiprocessors used in our ex-
periments are NUMA systems with multiple sockets. By
using an efficient queue implementation (discussed earlier),
we achieve excellent speedups on multiple sockets on both
machines. On average (over all problem instances), we
observe 22% performance improvement on Mirasol and
19% performance improvement on Edison when we used
hyperthreading. Hence, for the best problem instance, we
can achieve up to 35x speedup on Mirasol and 19x speedup
on Edison when all the available threads are used with
hyperthreading. Unlike PF and PR algorithms [5], the MS-
BFS-Graft algorithm continues to scale up to 80 threads of
Intel multiprocessors.

On modern manycore systems with a large number of
slower cores, MS-BFS-Graft algorithm scales even better
than other maximum matching algorithms. Fig 9 shows
the strong scaling of three matching algorithms on the
KNC coprocessor. On 60 cores (1 threads per core), MS-
BFS-Graft achieves 28x-36x speedups for different classes
of graphs. By contrast, PR achieves 4x-7x and PF achieves
6x-50x speedups on the same number of cores. As discussed
before, PF might show super linear scaling initially on some
networks (e.g., 7x speedups on 4 cores in Fig. 9(b)). We
note that the speedup achieved by MS-BFS-Graft on 60
cores of the KNC coprocessor is comparable to the reported
15x-20x speedup achieved by traditional BFS on 31 cores
of a Knights Ferry (KNF) coprocessor [29]. However, the
performance of the latter BFS implementation degraded by
a factor of two when four hardware threads were used in
each core [29]. By contrast, our more involved matching
algorithm continues to scale when several hardware threads
are used in each core and achieves up to 2x speedups when
we go from 60 to 240 threads on KNC.

5.4 Search rate

We report the search rate of a matching algorithm in millions
of traversed edges per second (MTEPS), defined by the ratio
of millions of edges traversed in all phases of the algorithm
to its total runtime. The MS-BFS-Graft algorithm traverses
edges at a faster rate relative to the DFS-based algorithms.
Fig. 10 shows that MS-BFS-Graft searches at a rate 2-12 times
faster than the PF algorithm for different input graphs on
Mirasol. The improvement is larger for graphs with small
matching number, e.g., our algorithm searches 12x faster for
wikipedia and 10x faster for web-Google.

Note that the search rate of a matching algorithm is
defined differently than traditional BFS searches used in
the Graph500 benchmark [26]. The latter computes the
search rate using the total number of edges in the graph
even though an algorithm might traverse fewer edges (e.g.,
direction-optimized BFS [10]). By contrast, we use the actual
number of edges traversed in the search, augmentation

0	

200	

400	

600	

road
_usa

	

hug
etra

ce	

wiki
ped

ia	

web
-‐Go

ogle
	

ama
zon

031
2	

kkt_
pow

er	

dela
una

y	

coP
ape

rsDB
LP	

Se
ar
ch
	 R
at
e	
(M

TE
PS
)	

Pothen-‐Fan	
MS-‐BFS-‐GraL	

Fig. 10. Search rates of the MS-BFS-Graft and Pothen-Fan algorithms
for different input graphs on Mirasol with 40 threads.

0%	

20%	

40%	

60%	

80%	

100%	

kkt_
pow

er	

hug
etra

ce	

coPa
pers

DBL
P	

ama
zon0

312
	

cit-‐P
aten

ts	
wb-‐

edu
	

web
-‐Goo

gle	

wiki
ped

ia	

Top-‐Down	 BoFom-‐Up	 Tree	 GraHing	 Augment	 StaKsKcs	

Fig. 11. Breakdown of time spent on different steps of the MS-BFS-Graft
algorithm for different graphs on Mirasol with 40 threads.

and grafting steps of matching algorithms. We can not
use Graph500-style search rates because matching algo-
rithms use alternating BFS, and each phase of MS-BFS-
Graft searches different subgraphs of the input. Therefore,
the search rates reported here are not comparable to those
reported for direction-optimized BFS [10].

5.5 Breakdown of runtime
Fig. 11 shows the breakdown of runtime of the MS-BFS-
Graft algorithm on Mirasol with 40 threads. Here, the “Top-
Down” and “Bottom-Up” steps comprise the BFS traversal
(Step 1 of Algorithm 3), “Augment” step increases the
cardinality of the matching (Step 2 of Algorithm 3), “Tree-
Grafting” step constructs frontier for the next phase (Step 3
of Algorithm 3), and “Statistics” denotes the time to collect
statistics needed for tree grafting (lines 2-4 of Algorithm 7).
For all graphs in Table 3, at least 40% of the time is spent
on the BFS traversal. However, graphs with large matching
number (e.g., hugetrace, kkt_power) spend a larger pro-
portion of total runtime on BFS traversal, whereas graphs
with small matching number (e.g., wb-edu, wikipedia)
spend more time on the augmentation and tree-grafting
steps.

The distributions of total runtime spent on different steps
of the MS-BFS-Graft algorithm indeed capture the unique
properties of the respective graphs. For example, consider
two graphs (a) wikipedia and (b) hugetrace with small
and large matching numbers, respectively. Fig. 12 shows
the fraction of active, renewable, and unvisited vertices at
different phases of MS-BFS-Graft algorithm run on these
two graphs. On wikipedia, renewable vertices are always
fewer than active vertices because the algorithm maintains
a large number of active trees where no augmenting path is
found (due to the small matching number of wikipedia).

14

0%	

20%	

40%	

60%	

80%	

100%	

1	 3	 5	 7	 9	 11	 13	

Fr
ac
1o

n	
of
	 to

ta
l	 v
er
1c
es
	

Phases	

Ac1ve	 Renewable	 Unvisited	 (b)	 hugetrace	

0%	

20%	

40%	

60%	

80%	

100%	

1	 3	 5	 7	 9	 11	 13	

Fr
ac
1o

n	
of
	 to

ta
l	 v
er
1c
es
	

Phases	

Ac1ve	 Renewable	 Unvisited	 (a)	 wikipedia	

Fig. 12. The fraction of active, renewable and unvisited vertices at the end of each phase of the MS-BFS-Graft algorithm for graphs: (a) wikipedia
and (b) hugetrace on Mirasol with 40 threads.

0

2

4

6

8

Scien�fic Networks-LargeM	 Networks-SmallM	

MS-BFS

MS-BFS (dir-opt)

MS-BFS-Gra�

Re
la
�v
e	
Pe
rf
or
m
an
ce

Fig. 13. Performance improvement of the parallel MS-BFS algorithm by
direction-optimized BFS and tree grafting for different classes of graphs
on Mirasol with 40 threads (normalized to MS-BFS).

Since tree grafting only explores the neighborhood of re-
newable vertices, it is much faster than rebuilding all active
trees for this graph. By contrast, hugetrace maintains
significantly more renewable vertices than active vertices,
which makes the tree-grafting mechanism more expensive
than reconstructing the active trees (due to the large match-
ing number of hugetrace). Hence, for hugetrace the
algorithm spends more time on BFS traversal than tree
grafting as was shown in Fig. 11.

5.6 Performance contributions
Fig. 13 shows the effects of direction-optimizing BFS and
tree grafting on the performance of parallel MS-BFS. On av-
erage, direction optimization speeds the MS-BFS algorithm
up by 1.6x, and tree grafting speeds it up by another 3x.
Graphs with relatively small matching number benefit most
from tree grafting, with 7.8x.

Fig. 14 shows the size of BFS frontiers at two
phases of the MS-BFS and MS-BFS-Graft algorithms on
coPapersDBLP. At the beginning of each phase, tree graft-
ing generates a large frontier that gradually shrinks as the
algorithm progresses level by level. By contrast, without
grafting, a phase starts with a small frontier (the unmatched
vertices) that grows to the highest size before shrinking.
Hence, tree grafting reduces the height of BFS forests,
decreasing the synchronization points of the parallel algo-
rithm. Furthermore, tree grafting decreases the number of
vertices in an alternating forest (the area under the curve),
thus reducing the work in graph traversals at the expense of
additional work in the tree-grafting step.

6 CONCLUSIONS

We presented a novel multi-source (MS) cardinality match-
ing algorithm that can reuse the trees constructed in earlier

0	

100	

200	

300	

400	

0	 4	 8	 12	 16	 20	 Gra,	 2	 6	 10	 14	 18	

Fr
on

0e
r	 S

ize
	 (t
ho

us
an
ds
)	

Levels	 in	 the	 BFS	 Forest	

MS-‐BFS-‐Gra,	
MS-‐BFS	

Phase	 5	 Phase	 6	

Fig. 14. The size of frontiers in the 5th and 6th phases (separated
by a vertical line) of the MS-BFS and MS-BFS-Graft algorithms for
coPapersDBLP on Mirasol with 40 threads. Tree grafting is employed
between two phases.

phases. This method, called tree grafting, eliminates redun-
dant augmenting path reconstructions, which is a major im-
pediment of MS algorithms for achieving high performance
on several classes of graphs, especially those with small
matching number. By combining tree grafting, direction-
optimizing BFS searches, and an efficient parallel imple-
mentation, we compute maximum cardinality matchings an
order of magnitude faster than the current best performing
algorithms on graphs with small matching numbers. The
newly developed MS-BFS-Graft algorithm scales up to 80
threads of an Intel multiprocessor and up to 240 threads
on an Intel Knights Corner coprocessor, yields better search
rates than its competitors, and is less sensitive to perfor-
mance variability of multithreaded platforms. This insensi-
tivity may be valuable for future systems with nonuniform
performance characteristics due to various reasons such as
frequent error correction and near-threshold voltage scal-
ing [30]. Level synchronous BFSs employed by the MS-BFS-
Graft algorithm are suitable to distributed-memory paral-
lelism as well [31]. We have already developed a distributed-
memory MS-BFS algorithm that scales up to 12,000 cores
on a Cray XC30 supercomputer [32]. The distributed al-
gorithm can be used in static pivoting for solving large
sparse systems of linear equations [33]. Distributed-memory
algorithm for tree grafting remains a subject of future work.

7 ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Applied Mathematics pro-
gram under contract number No. DE-AC02-05CH11231 and

15

by NSF grants CCF 1218196 and 1552323, and DOE grant
DE-FG02-13ER26135.

REFERENCES

[1] A. Pothen and C.-J. Fan, “Computing the block triangular form of
a sparse matrix,” ACM Trans. Math. Softw., vol. 16, pp. 303–324,
1990.

[2] T. A. Davis and E. P. Natarajan, “Algorithm 907: KLU, a direct
sparse solver for circuit simulation problems,” ACM Trans. Math.
Softw., vol. 37, no. 3, p. 36, 2010.

[3] A. Pothen, “Predicting the structure of sparse orthogonal factors,”
Linear algebra and its applications, vol. 194, pp. 183–203, 1993.

[4] A. Azad, M. Halappanavar, S. Rajamanickam, E. G. Boman,
A. Khan, and A. Pothen, “Multithreaded algorithms for maximum
matching in bipartite graphs,” in IPDPS. IEEE, 2012, pp. 860–872.

[5] J. Langguth, A. Azad, M. Halappanavar, and F. Manne, “On
parallel push–relabel based algorithms for bipartite maximum
matching,” Parallel Computing, 2014.

[6] J. C. Setubal, “Sequential and parallel experimental results with
bipartite matching algorithms,” Univ. of Campinas, Tech. Rep. IC-
96-09, 1996.

[7] I. S. Duff, K. Kaya, and B. Uçar, “Design, implementation, and
analysis of maximum transversal algorithms,” ACM Trans. Math.
Softw., vol. 38, no. 2, pp. 13:1– 13:31, 2011.

[8] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Courier Dover Publications, 1998.

[9] J. Hopcroft and R. Karp, “A n5/2 algorithm for maximum match-
ings in bipartite graphs,” SIAM J. Comput., vol. 2, pp. 225–231,
1973.

[10] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing
breadth-first search,” Scientific Programming, vol. 21, no. 3, pp. 137–
148, 2013.

[11] J. Langguth, F. Manne, and P. Sanders, “Heuristic initialization for
bipartite matching problems,” Journal of Experimental Algorithmics
(JEA), vol. 15, pp. 1–3, 2010.

[12] A. V. Goldberg and R. E. Tarjan, “A new approach to the
maximum-flow problem,” Journal of the ACM, vol. 35, no. 4, pp.
921–940, 1988.

[13] D. P. Bertsekas, “The auction algorithm: A distributed relaxation
method for the assignment problem,” Annals of operations research,
vol. 14, no. 1, pp. 105–123, 1988.

[14] C. Berge, “Two theorems in graph theory,” Proceeding of National
Academy of Science, pp. 842–844, 1957.

[15] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[16] A. Azad, A. Buluç, and A. Pothen, “A parallel tree grafting
algorithm for maximum cardinality matching in bipartite graphs,”
in IPDPS. IEEE, 2015.

[17] A. V. Goldberg and R. Kennedy, “Global price updates help,”
SIAM Journal on Discrete Mathematics, vol. 10, no. 4, pp. 551–572,
1997.

[18] K. Kaya, J. Langguth, F. Manne, and B. Uçar, “Push-relabel based
algorithms for the maximum transversal problem,” Computers &
Operations Research, vol. 40, no. 5, pp. 1266–1275, 2013.

[19] D. P. Bertsekas and D. A. Castañon, “Parallel synchronous and
asynchronous implementations of the auction algorithm,” Parallel
Computing, vol. 17, no. 6, pp. 707–732, 1991.

[20] M. Brady, K. K. Jung, H. Nguyen, R. Raghavan, and R. Subramo-
nian, “The assignment problem on parallel architectures,” Network
Flows and Matching. DIMACS, pp. 469–517, 1993.

[21] R. M. Karp and M. Sipser, “Maximum matching in sparse random
graphs,” in FOCS’81. IEEE, 1981, pp. 364–375.

[22] A. Azad and A. Pothen, “Multithreaded algorithms for matching
in graphs with application to data analysis in flow cytometry,” in
IPDPSW. IEEE, 2012, pp. 2494–2497.

[23] R. Motwani, “Average-case analysis of algorithms for matchings
and related problems,” Journal of the ACM (JACM), vol. 41, no. 6,
pp. 1329–1356, 1994.

[24] H. Bast, K. Mehlhorn, G. Schafer, and H. Tamaki, “Matching
algorithms are fast in sparse random graphs,” Theory of Computing
Systems, vol. 39, no. 1, pp. 3–14, 2006.

[25] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in SC’10, 2010.

[26] “Graph500 benchmark,” www.graph500.org.
[27] T. A. Davis and Y. Hu, “The University of Florida sparse matrix

collection,” ACM Trans. Math. Softw., vol. 38, no. 1, p. 1, 2011.

[28] M. Deveci, K. Kaya, B. Uçar, and Ü. V. Çatalyürek, “Gpu accel-
erated maximum cardinality matching algorithms for bipartite
graphs,” in Euro-Par 2013 Parallel Processing. Springer, 2013, pp.
850–861.

[29] E. Saule and U. V. Catalyurek, “An early evaluation of the scalabil-
ity of graph algorithms on the intel mic architecture,” in IPDPSW.
IEEE, 2012, pp. 1629–1639.

[30] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to
the “new normal” for computer artichture,” Computing in Science
& Engineering, vol. 15, no. 6, pp. 16–26, 2013.

[31] S. Beamer, A. Buluç, K. Asanović, and D. Patterson, “Dis-
tributed memory breadth-first search revisited: Enabling bottom-
up search,” in IPDPSW. IEEE Computer Society, 2013.

[32] A. Azad and A. Buluç, “Distributed-memory algorithms for max-
imum cardinality matching in bipartite graphs,” in IPDPS. IEEE,
2016.

[33] X. S. Li and J. W. Demmel, “SuperLU DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems,”
ACM Trans. Math. Softw., vol. 29, no. 2, pp. 110–140, 2003.

Ariful Azad is a postdoctoral fellow at the
Lawrence Berkeley National Laboratory. His re-
search interests are in parallel computing, high-
performance graph analysis, and bioinformatics.
He received his Ph.D. in Computer Science from
Purdue University in 2014 and B.S. in Computer
Science and Engineering from Bangladesh Uni-
versity of Engineering and Technology in 2006.
Dr. Azad received an IBM PhD fellowship, a Pur-
due fellowship, a fellowship incentive grant.

Aydın Buluç is a Research Scientist at the
Lawrence Berkeley National Laboratory. His
research interests include parallel comput-
ing, combinatorial scientific computing, high-
performance graph analysis, sparse matrix com-
putations, and computational genomics. Previ-
ously, he was a Luis W. Alvarez Postdoctoral
Fellow at LBNL and a visiting scientist at the
Simons Institute for the Theory of Computing.
He received his Ph.D. in Computer Science from
the University of California, Santa Barbara in

2010 and his B.S. in Computer Science and Engineering from Sabanci
University, Turkey in 2005. Dr. Buluç received the DOE Early Career
Award in 2013 and the IEEE TCSC Award for Excellence for Early
Career Researchers in 2015. He is also a founding associate editor of
the ACM Transactions on Parallel Computing.

Alex Pothen is a professor of computer sci-
ence at Purdue University. He led a pioneering
research project in combinatorial scientific com-
puting, as the Director of the CSCAPES Institute
funded by the U.S. Department of Energy, to
work on combinatorial algorithms to enable com-
putational science and engineering on extreme-
scale computers. Alex’s research interests span
combinatorial scientific computing, parallel com-
puting, computational science and engineering,
and bioinformatics. Alex received an undergrad-

uate degree from the Indian Institute of Technology, Delhi, and a PhD
from Cornell in applied mathematics. He is an editor of the Journal
of the ACM, the SIAM Review, SIAM Books and other publications.
Alex has received a National Science Talent Scholarship, the Director’s
Silver Medal and a Distinguished Alumnus award from IIT Delhi, a
Cornell fellowship, an IBM University Research award, two distinguished
teaching awards, and several best paper prizes. He has advised more
than twenty PhD students and postdoctoral scientists.

www.graph500.org

	Introduction
	Existing Algorithms for Maximum Matching in Bipartite Graphs
	Background and Notations
	Classes of cardinality matching algorithms
	Single- and multi-source algorithms
	DFS- and BFS-based Algorithms
	Characteristics of existing algorithms relevant to parallel performance

	MS-BFS algorithm with tree grafting
	Intuition behind the algorithm
	The MS-BFS-Graft algorithm
	Correctness of the algorithm

	Experimental Setup
	Methodology and Implementation Details
	Input Graphs

	Results
	Relative performance of algorithms
	Variation in parallel runtimes
	Scalability
	Search rate
	Breakdown of runtime
	Performance contributions

	Conclusions
	Acknowledgments
	References
	Biographies
	 Ariful Azad
	Aydın Buluç
	 Alex Pothen

