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Our Current Focus: Cryogenic Sensors/Qubits

* Expensive and noise-prone cables to move data to room temperature

* Lower-temperature environments are more power constrained and are more noisy
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Superconducting Magnet Quench Detection

A new quench avoidance paradigm for HTS magnets

Fuench snd snrdyexac Quench propagation in HTS conductors is one to two orders
of magnitude slower than in conventional superconductors

HTS magnet protection is difficult, as voltage rise associated
with the normal zone may be too low to detect it reliably

Experiments show that HTS conductors can operate in a
stable dissipative regime before entering thermal runaway
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» Therefore, a new protection paradigm for HTS magnets has
- emerged, aiming at avoiding quenching altogether

—=1 » We will detect the dissipative regime using advanced non-

T {onc) voltage diagnostics and estimate proximity to the runaway
Current (top) and voltage (bottom) plots
for a subscale Bi-2212 HTS coil. From:
T. Shen, etal. 2019 Sci Rep 9, 10170.
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Motivating Challenges

* Device density
— Makes area a primary constraint
— And memory capacity

« Cables to room temperature
— Mostly reliability

*  Circuit reliability under harsh environments
—  Or with thermal noise, cooling variation
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Temporal Computing



The Team For The Early Work

LBNL and UCSB team. Funded by ARO 2019 - 2022 FINALIST
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Data Encoding in Race Logic

An epoch contains N time slots. A pulse in time slot “I” encodes the value “I”
- Epochs repeat
- Epoch duration = TimeSlotDuration x NumTimeSlots

- Each pulse represents an equivalent 2N binary number
— (N = NumTimeSlots)

- Can efficiently represent non power of two number ranges

X >
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Num =1 Num =4

Time >

G Tzimpragos et al., “A computational temporal logic for superconducting accelerators”, ASPLOS 2020



First Arrival — The MIN Function
First incoming pulse causes an output pulse. Has a reset
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DFF’s clock input repurposed
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G Tzimpragos et al., “A computational temporal logic for superconducting accelerators”, ASPLOS 2020



Last Arrival - The MAX Function
Last incoming pulse causes an output pulse

MAX(¢,w)
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G Tzimpragos et al., “A computational temporal logic for superconducting accelerators”, ASPLOS 2020



Race Logic Makes Comparison Easy

Which is one of the scaling bottlenecks of hyperdimensional computing (HDC)

Associative Search Module (ASM)

» Area still large (due to other HDC
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Arithmetic in RL is Expensive

For instance, multiplying two race logic pulses

There are some
0 1 2 3 4 recent works that

f push this boundary
0 1 2 3 4 x

1
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U-SFQ: Temporal and Pulse
Streams Encoding



Instead: Unipolar and Bipolar Race Logic

Changing the range of representation to [0,1] (unipolar) To obtain bipolar representation
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P Gonzalez-Guerrero et al., “Temporal and SFQ pulse-streams encoding for area-efficient
superconducting accelerators”, ASPLOS 2022
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Pulse Train Operands

Maps a value to the number of pulses. “1” is for the maximum number of pulses

fmﬂx N =8 To obtain bipolar representation
A =n/ max (not shown)
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P Gonzalez-Guerrero et al., “Temporal and SFQ pulse-streams encoding for area-efficient
superconducting accelerators”, ASPLOS 2022
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U-SFQ: Race Logic and Pulse Stream Operands

This shows a multiplication. The output is a pulse train
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P Gonzalez-Guerrero et al., “Temporal and SFQ pulse-streams encoding for area-efficient
superconducting accelerators”, ASPLOS 2022
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Multiplication With Just One or Four Cells

Essentially a CMOS XNOR
The bipolar multiplier for stochastic computing

Before “B”, pulses in “A” pass
After “B”, the complement of “A” pass
The output is their merge
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P Gonzalez-Guerrero et al., “Temporal and SFQ pulse-streams encoding for area-efficient
superconducting accelerators”, ASPLOS 2022
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U-SFQ Multiplier Exposes an Area-Latency Tradeoff

A fundamental tradeoff in race logic compute circuits.

U-SFQ provides higher performance over area
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P Gonzalez-Guerrero et al., “Temporal and SFQ pulse-streams encoding for area-efficient
superconducting accelerators”, ASPLOS 2022

17



Multiply-Accumulate Unit

Final result is a pulse stream
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P Gonzalez-Guerrero et al., “Temporal and SFQ pulse-streams encoding for area-efficient
superconducting accelerators”, ASPLOS 2022
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Memory Cell for Race Logic

Inductor-based. Releases an incoming pulse in the same time slot of a future epoch
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P Gonzalez-Guerrero et al.,
“Temporal and SFQ pulse-
streams encoding for area-
efficient superconducting
accelerators”, ASPLOS 2022

19



CNN Accelerator
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Binary 4 bits 5 bits 6 bits 7 bits 8 bits
Binary uses 8 bits
(4,8) means inner layers 4 bits, outer 8 bits

P Gonzalez-Guerrero et al., “An Area Efficient Superconducting Unary CNN Accelerator”, ISQED 22(%23
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On-Chip Data Movement and
Networks

Dynamic energy to traverse wires small
Buffers are expensive (in area and power)

On-chip networks should adapt to novel compute models and be area efficient



D Lyles et al., “PaST-NoC: A Packet-Switched Superconducting Temporal NoC”, IEEE Tran Appl Sup 2023

PaST-NoC: A RL Packet-Switched On-Chip Network

Stage 1 AP
Control path i J DJE}"'Q j_l
(ﬁ*Ed FAl— —T1M/=+C

0 o 122 |
R -+ () -
4x4 _ 4x4
1 —>» - — 1 «—{ Shiftreg |—
2x2 2x2 Cy

TN

33— — 3

e 8 & e [TSEa
@ © ® :

S1.51a51b[S2.S2a.S2b

@@'

L |
[
Hal wys
Has yys

oo

U to 5x higher throughput per JJ for long

packets




H BERKELEY LAB QENERGY

Bringing Science Solutions to the World Office of Science

What’s Next?



Challenges at Lower Temperatures

At a sizeable application scale
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https://github.com/andreamurillomtz/decimation filter.qit

Power Limits

Simple 16-bit adder. Results with gPalace. 50% activity factor in every input

~1000x gap with
MW target

How to reduce
power?

- ERSFQ/eSFQ
(static power)

*  Fewer gates
(smaller circuit)

«  Lower activity
factor

* Lower clock
frequency


https://github.com/andreamurillomtz/decimation_filter.git
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Unipolar SFQ multiplier Bipolar SFQ multiplier

Power depends on numerical value of inputs. Higher numbers -> more pulses
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Active power consumption for the bipolar multiplier, using three different pulse
stream frequencies representing the numbers -1, 1, and 0. We vary the RL input from -1 to 1.

ower [nW]

Active

32-input 8-bit U-SFQ dot-product unit

Component Active [mW] | Passive [mW]
Multiplier 9x 107> 0.05 RSFQ. RL and pulse train
Balancer 17 X 107> 0.1 inputs set to half the
DPU w/o cooling 84 x 107 4.8 maximum value

P Gonzalez-Guerrero et al., “Temporal and SFQ pulse-streams encoding for area-efficient
superconducting accelerators”, ASPLOS 2022 *



Noise / Variability
From external factors, thermal noise, device variability, etc

«  SFQ devices are usually biased around 70% of their switching voltage

* If noise levels are high, fluctuations in voltage can cause JJs to produce erroneous
pulses

* Noisy grounds and power supplies can cause issues with device performance

*  Worse at 300mK compared to 4K

« Can compute models accept device errors but bound the numerical error?

* We can use a solid noise model and resulting simulation models
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How Do Compute Models Affect The Impact of Errors?

Predictability of errors matters too, not just its numerical impact

« For binary, pulse trains, and race logic:
— How does an erroneous pulse appearing affect the represented value?
— How about a pulse disappearing?
— How about a pulse shifting?
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Conclusion

«  Compute models affect efficiency and reliability

« Lets support tools and methods to keep exploring until we settle on a logic family
— Or we may never settle on a single winner

«  What we are designing for matters a lot:
— HPC applications, quantum, cryosensors, etc.
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