
Analyzing Performance of Selected NESAP
Applications on the Cori HPC System

Thorsten Kurth1, William Arndt1, Taylor Barnes1, Brandon Cook1, Jack
Deslippe1, Doug Doerfler1, Brian Friesen1, Yun (Helen) He1, Tuomas Koskela1,
Mathieu Lobet1, Tareq Malas1, Leonid Oliker2, Andrey Ovsyannikov1, Samuel

Williams2, Woo-Sun Yang1, and Zhengji Zhao1

1 National Energy Research Scientific Computing Center, Berkeley, CA, USA
2 Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA,

USA

Abstract. NERSC has partnered with over 20 representative applica-
tion developer teams to evaluate and optimize their workloads on the
IntelR© Xeon PhiTM Knights Landing processor. In this paper, we present
a summary of this two year effort and will present the lessons we learned
in that process. We analyze the overall performance improvements of
these codes quantifying impacts of both Xeon PhiTM architectural fea-
tures as well as code optimization on application performance. We show
that the architectural advantage, i.e. the average speedup of optimized
code on KNL vs. optimized code on Haswell is about 1.1×. The aver-
age speedup obtained through application optimization, i.e. comparing
optimized vs. original codes on KNL, is about 5×.

1 Introduction

The National Energy Research Scientific Computing Center (NERSC) [10] is
the production HPC facility of the U.S. DOE Office of Science. It’s mission is to
enable and accelerate scientific discoveries through high performance computing
and data analysis. The center supports over 6,000 users with more than 700
applications which cover a wide variety of science domains [7]. Therefore, HPC
systems deployed at NERSC should not only support a diverse workload from
a broad user base but also satisfy the increasing demand of computing cycles
required to fulfill scientific goals. At the same time, power constraints for exascale
computing are forcing major HPC and data centers to transition to more energy
efficient-architectures.

At NERSC the transition to an energy-efficient pathway to exascale was re-
alized via the procurement of the Cori system: a Cray XC40 powered by more
than 9600 Intel R© Xeon PhiTM 7250 (Knights Landing, KNL) based nodes which
were added to an existing Cori phase I system powered by 1900+ XeonTME5-
2698 (Haswell) CPUs. The Xeon PhiTM7250 is a self-hosted x86-64 compatible
CPU. As such, in principal, all current NERSC users can immediately run their
application without modification. In order to leverage the full capability of the
Knights Landing architecture however, scientific applications often require some



2 Thorsten Kurth et al.

VASP
10%

chroma

7%

CESM

6%

MILC

6%

Quantum
ESPRESSO

5%

XGC1

5%

NAMD

3%

GYRO
3% qlua
2%

LAMMPS2%
gtc2%
Nyx/BoxLib2%
gts1%
cp2k1%
M3D

1%

osiris
1%

AMD
1%

WRF
1%

Other

41%

Fig. 1. Breakdown of NERSC workload in fractions of overall compute hour budget
for 2015. NESAP applications are colored blue (note that the Other chunk includes
four other NESAP apps).

non-trivial optimization. In order to facilitate this transition, NERSC has es-
tablished the NERSC Exascale Science Application Program (NESAP) — a
collaboration of NERSC staff along with experts at Cray and Intel, as well as
the scientific application developers — with the goal of optimizing selected ap-
plications for the Xeon PhiTM architecture [8]. As shown by the blue regions of
Fig. 1, the NESAP codes constitute about 60% of the overall NERSC workload.

In this paper, we present the results of the NESAP effort by discussing
achieved speedups, lessons learned, and multi-node specific challenges develop-
ers might face when they aim at running their applications on KNL-based Cray
XC40 systems at scale.

2 HPC Systems at NERSC

We will briefly describe the three major HPC systems at NERSC as well as
compare the performance of (un-)optimized NESAP codes on all three systems
later on. We consider the following systems:

– Edison is a Cray XC30 supercomputer with peak performance of about
2.57 PFLOP/s. It is comprised of 5,586 compute nodes with two 12-core
Intel R© XeonTME5-4603 CPUs per node. Each of the 12 superscalar out-of-
order cores runs at 2.4GHz and is capable of hosting 2 threads per core. Each
cores supports the AVX instruction set and includes a 32KB L1 and 256KB



NESAP Application Performance 3

L2 cache, and each socket includes a shared 30MiB L3 cache and 32GiB of
DDR3 memory (64GiB/node).

– Cori-Haswell represents the 1.92 PFLOP/s Haswell partition of the Cori
Cray XC40 supercomputer. It is comprised of 2,004 compute nodes with two
16-core Intel R© XeonTME5-2698 CPUs per node. Each superscalar out-of-
order core runs at 2.3GHz, has a similar cache architecture to those in Edison,
but supports the AVX2 instruction set. Unlike Edison, each socket has a
40MiB L3 cache and has 64GiB of DDR4 main memory (128GiB/node).

– Cori-KNL is the KNL partition of the Cori Cray XC40 supercomputer. It
has a peak performance of about 29.1 PFLOPS/s and is comprised of 9,688
self-hosted KNL compute nodes. Each KNL processor includes 68 cores run-
ning at 1.3GHz and capable of hosting 4 HyperThreads (272 HyperThreads
per node). Each out-of-order superscalar core has a private 32KiB L1 cache
and two 512-bit wide vector processing units (supporting the AVX-512 in-
struction set3). Each pair of cores (called “tile”) shares a 1MiB L2 cache and
each node has 96GiB of DDR4 memory and 16GiB of on-package high band-
width (MCDRAM) memory. The MCDRAM memory can be configured into
different modes, where the most interesting being cache mode in which the
MCDRAM acts as a 16GiB L3 cache for DRAM. Additionally, MCDRAM
can be configured in flat mode in which the user can address the MCDRAM
as a second NUMA node. The on-chip directory can be configured into a
number of modes, but in this publication we only consider quad mode, i.e.
in quad-cache mode where all cores are in a single NUMA domain with MC-
DRAM acting as a cache for DDR, and in quad-flat mode where MCDRAM
acts as a separate, flat memory domain.

All three systems feature the Cray Aries low-latency, high-bandwidth intercon-
nect utilizing the dragonfly topology.

There are a number of challenges associated with optimizing codes for Xeon
PhiTM . Perhaps the most obvious is that new sources of parallelism must be
identified. This is not limited to only thread parallelism, but also includes vec-
torization opportunities. The latter imposes restrictions on data layouts (i.e.
data should be preferably contiguous and 64-bit aligned) and data dependen-
cies between loop iterations should be avoided. Furthermore, maximizing cache
locality is more important as there is no on-chip L3 cache to capture misses. Fi-
nally, and this is important for multi-node scalability, a single Xeon PhiTM core
can not saturate the injection rate of the Aries interconnect. Therefore, multiple
cores (multiple threads or multiple MPI ranks per node) should be employed in
order to achieve good performance. The detailed analysis of this is beyond the
scope of this paper and can be found in another reference [20].

3 NESAP Results Overview

In this paper, we present the results from a variety of NESAP codes or their
proxies. Table 1 displays an overview of these codes along with categorizations

3 This includes the subsets F, CD, ER, PF but not VL, BW, DQ, IFMA, VBMI.



4 Thorsten Kurth et al.

of their scientific field and, if applicable, the application they act as proxy for.
The table further shows the most performance-critical kernels. Many of these
kernels are representative for kernels in modern scientific codes used on a variety
of HPC systems worldwide. The selection of codes further encompasses a broad
variety of communication patterns (nearest neighbor exchanges or other point-
to-point patterns, global reductions, all-to-all exchange, etc...) representative of
those found in a wide range of applications.

Name Scientific Field Description Kernels Proxy

BerkeleyGW Materials
MBPT

FFT,

[19, 1] Science Linear Algebra

CESM Climate
Grid

Stencil(Multiple),
WRF

[2, 28] Modeling Linear Algebra

Chombo-Crunch
Multiple AMR EB

EB Stencil(3D),

[42–44] Solver(AMG)

Chroma Nuclear Lattice Stencil(4D),
qlua

[23, 29, 30] Physics QCD Solver(BiCGStab)

DWF HEP
Lattice FFT, Stencil(5D),

qlua
QCD Solver(BiCGStab)

EMGeo
Geophysics Grid

SpMM,

[39, 38] Solver(IDR)

GROMACS Materials Molecular
Force Calculation

LAMMPS,

[4, 40] Science Dynamics NAMD

HISQ HEP
Lattice Stencil(4D),

QCD Solver(BiCGStab)

HMMER
Bioinformatics

Gene Dynamic Programming(2D),

[5, 22] Annotation Byteword Arithmetics

MFDN Nuclear Many SpMM,

[35, 36, 34, 18] Physics Body Eigensolver(lanczos)

MILC
HEP

Lattice Stencil(4D),
qlua

[6, 17] QCD Solver(BiCGStab)

MPAS-O Climate Unstructured Gather,
WRF

[41, 37] Modeling Grid Solver(RK4)

Nyx/BoxLib
Multiple AMR

Stencil(3D),

[14, 33, 24] Solver(GMG)

Qbox Materials
PW DFT

FFT, Linear Algebra,
cp2k

[11, 26] Science Eigensolver(lanczos)

Quantum ESPRESSO Materials
PW DFT

FFT, Linear Algebra,

[25, 16] Science Eigensolver(lanczos)

VASP Materials
PW DFT

FFT,

[31] Science Eigensolver(multiple)

WARP Accelerator
PIC

Gather, Sort,
osiris

[12, 45] Physics FFT, Solver

XGC1 Fusion
PIC

Gather, gtc, gts,

[13, 32, 27] Research Sort GYRO

Table 1. Overview of NESAP applications discussed in this paper including important
references. The specified kernels represent the hot spots at the beginning of the NESAP
effort. Due to optimization efforts, their importance relative to the rest of the code has
decreased in general, but they still consume a significant fraction of the overall wall
time.



NESAP Application Performance 5

3.1 Optimizations Summary

Historically, when a user is presented with a new architecture, they must often
weigh the relative costs of porting and optimization effort against potential per-
formance benefits. This is especially the case for Intel Xeon PhiTM as most x86-64
applications can run natively without modification. In the following sections we
summarize the optimizations undertaken by the NESAP teams and quantify the
performance benefits not only to KNL but also on traditional Xeons (Haswell,
Ivy Bridge). We found the following techniques had the largest impact on a wide
range of NESAP applications:

– identifying and exploiting parallelism / creating more work for individual
threads: This maybe the most important thing to consider when switching
from multi-core to many-core architectures. Small OpenMP sections that do
not contain enough work for multiple threads will hurt performance signifi-
cantly due to implicit barriers at the end of these sessions. Profiling usually
highlights this as large omp or kmp sync/barrier overheads. Where possible,
loop nests should be collapsed to maximize parallelism. Whereas perfect rect-
angular loop nests can be collapsed using the OpenMP 4 collapse clause,
more complicated loop structures often require more manual transformations
including data structure rearrangements such as extending array dimensions
to allow for batched processing. We found the latter to be especially benefi-
cial for batched node-local Fast Fourier Transforms (FFT).

– loop tiling : Cache blocking to achieve cache locality of heavily used arrays
can be realized by reordering and tiling inner loops. This advice is not new
as it is in general a good practice to optimize code for L1/L2 accesses. On
Xeon PhiTM this is even more important as there is no L3 cache to mitigate
the impact of L2 misses on application performance. Unfortunately, as this is
a manual code transformation rather than a directive, code can become less
readable and more brittle. Nevertheless, this technique benefits application
performance on most architectures. In terms of loop tile sizes, we found that
blocking to shared L2, i.e. 512KiB/core, performs best for most applications.

– short loop unrolling : Short loops do not provide sufficient work for either
threads or the wide vector registers. Instead it is beneficial to unroll them
using compiler directives or manual unrolling.

– ensuring efficient vectorization: This may sound obvious but can often re-
sult in a major challenge as it may entail loop reordering, loop restructuring,
and/or data layout transformations. It is nevertheless desirable not only be-
cause there is a potential 16× loss in performance from not vectorizing (vs.
4× on Ivy Bridge), but it also affects memory and cache bandwidth as sin-
gle element loads and stores are inefficient. Further compounding this chal-
lenge on scientific codes, efficient mathematical function implementations
for square roots, exponentials, etc. are only available as vectorized variants.
Where the compiler is deficient in auto-vectorizing parallel loops, compiler
hints and the OpenMP 4 simd pragmas were found to be particularly useful.

– using optimized mathematical functions: This is related to the previous point
that vectorization enables the compiler to utilize efficient implementations



6 Thorsten Kurth et al.

of expensive functions. Unfortunately, their generation may only be enabled
by instructing the compiler to use a relaxed floating-point model. Under the
same restrictions, compilers may not be able to factor a divide by a loop
constant out of an inner loop. We found that manually factoring out the
divide (by multiplying by the inverse of the loop-carried constant) could
significantly improve performance.

This list is not meant to be a complete guide, and we recommend reviewing some
of our NESAP case studies which discuss some of these topics [9] and a previous
overview of the NESAP program results [15]. Nevertheless, this list can serve as
a guideline for developers who aim at getting their current codes ready for Xeon
PhiTM .

3.2 Optimized vs. Original

We will first compare the speedup achieved by optimizing the code for Xeon
PhiTM on the three different systems. The current state of this effort is displayed
in Figure 2. It shows the speedup of optimized vs. original codes on all HPC
systems at NERSC for a typical production partition size. Single node results
represent capacity workloads with ideal weak scaling. The plot shows several im-
portant results: speedups of up to 17× (on KNL) to about 6× (on Haswell) could
be achieved. The diagram shows that optimizations targeting Xeon PhiTM can
significantly benefit multi-core architectures as well. The main reason for that
is that the optimized applications feature improved cache locality, contiguous
aligned data access which facilitates vectorization and offers better thread-level
parallelism. The improvements for some applications have an even bigger effect
on Cori-Haswell. For example, this can happen if chunks of data are accessed in
a random fashion but those chunks fit into the big L3 cache of the two multi-core
architectures but not into L2 on Xeon PhiTM . These problems are usually mem-
ory latency bound and MCDRAM does not offer a significant advantage over
conventional DRAM. An example for this is Chombo, which utilizes comparably
large lookup tables in order to retrieve memory locations of the next relevant
chunk of data. Another more obvious reason is that serial sections or sections
with insufficient vectorization are hurting Xeon PhiTM performance more than
conventional multi-core architectures. The median speedup achieved on Xeon
PhiTM is 2.8×, which generated a median speedup of about 1.7× and 1.4× on
Edison and Cori-Haswell respectively.

3.3 Manycore vs. Multicore

Perhaps one of the most fundamental questions is to quantify the performance
advantage provided by manycore architectures like KNL compared to traditional
multicore architectures like Ivy Bridge and Haswell. Figure 3 shows the speedup
of the optimized codes on Cori-KNL with respect to Cori-Haswell and Edison. It
shows that almost all applications on Xeon PhiTM exceed Edison’s performance
(node for node) by at least 30% with similar power-requirements per node. We



NESAP Application Performance 7

Be
rk
el
ey
GW

42
 n
od
es

CE
SM

96
 n
od
es

Ch
om

bo
-C
ru
nc
h

64
 n
od
es
Ch
ro
m
a

25
6 
no
de
s

DW
F

1 n
od
e

EM
Ge
o

16
 n
od
es

GR
OM

AC
S

48
 n
od
es HI
SQ

1 n
od
e

HM
M
ER

1 n
od
e

M
FD
N

30
 n
od
es

M
IL
C

51
2 
no
de
s

M
PA
S-
O

12
8 
no
de
s

Ny
x/
Bo
xL
ib

1 n
od
e Qb
ox

2 
no
de
s

Qu
an
tu
m
 E
SP
RE
SS
O

64
 n
od
es
VA
SP

8 
no
de
s

W
AR
P

12
8 
no
de
s

XG
C1

10
24
 n
od
es

0
2
4
6
8
10
12
14
16
18
20
22
24
26

sp
ee

du
p 
op

tim
iz
ed

 v
s.
 o
rig

in
al

Edison
Cori-Haswell
Cori-KNL

Fig. 2. Performance of optimized vs. original codes on the three major HPC sys-
tems/partitions at NERSC. The number of nodes mentioned below the application
name are representative for a typical production run on the Cori-KNL system. The
single node numbers represent embarrassingly parallel capacity workloads.

should mention that almost all original versions of NESAP applications, except
for some heavily memory bound applications such as EMGeo, were initially
significantly slower on Xeon PhiTM than on Haswell and some even compared to
Edison.

Compared to Cori-Haswell (a contemporaneous architecture), in many cases,
the performance difference is not that significant. MFDn for example shows
a huge speedup on Cori-KNL compared to Edison, but not to Cori-Haswell.
This might look surprising as the architectural differences between Edison and
Cori-Haswell are not very big, but there are three significant differences which
can cause this behavior. MFDn constructs a huge sparse matrix at first. In
this construction, vector instruction gather and broadcast routines are available
on Haswell (AVX2) and, in an improved version on Xeon PhiTM (AVX-512),
that offer a significant advantage over individual loads and stores that might be
used on Edison. Furthermore, the construction step used bitwise comparisons
(XOR) that can be accelerated with AVX2(Haswell) and AVX-512(KNL), and
the linear algebra part benefits from the fused multiply-add instructions also
only available in AVX2 and AVX-512. The combination of all three effects can
cause a significant architectural benefit for Haswell and Xeon PhiTM over Ivy
Bridge (Edison).

For the other applications the picture looks more consistent, where some ap-
plications favor Haswell over Xeon PhiTM . Quantum ESPRESSO for example is
very similar to BerkeleyGW and VASP but performs worse on Xeon PhiTM than
on Haswell. This is mainly due to inefficiencies in the eigenvalue solver: Quan-
tum ESPRESSO can utilize SCALAPACK and ELPA but both libraries seem to
have insufficient support for threading and/or vectorization. Other parts of the
code, for example sections which heavily employ FFT and dense linear algebra,
perform much better on Xeon PhiTM than on Haswell.



8 Thorsten Kurth et al.

The median overall speedups over Edison and Cori-Haswell are 1.8× and
1.1× respectively when running code optimized for the target machine.

Be
rk
el
ey
GW

42
 n
od
es

CE
SM

96
 n
od
es

Ch
om

bo
-C
ru
nc
h

64
 n
od
es

Ch
ro
m
a

25
6 
no
de
s

DW
F

1 n
od
e

EM
Ge
o

16
 n
od
es

GR
OM
AC
S

48
 n
od
es HI
SQ

1 n
od
e

HM
M
ER

1 n
od
e

M
FD
N

30
 n
od
es

M
IL
C

51
2 
no
de
s

M
PA
S-
O

12
8 
no
de
s

Ny
x/
Bo
xL
ib

1 n
od
e Qb
ox

2 
no
de
s

Qu
an
tu
m
 E
SP
RE
SS
O

64
 n
od
es
VA
SP

8 
no
de
s

W
AR
P

12
8 
no
de
s

XG
C1

10
24
 n
od
es

0

1

2

3

4

5

sp
ee

du
p 
op

tim
iz
ed

Cori-KNL vs. Edison
Cori-KNL vs. Cori-Haswell

Fig. 3. Speedups of optimized NESAP codes on Cori-KNL vs. Cori-Haswell and Edison.

3.4 Value of Wider Vectors (AVX-512)

Another question we asked is whether AVX-512 offers a significant advantage
over AVX2. Theoretically, the former offers a potential 2× speedup (ignoring
bandwidth) because the vector units are twice as wide. However, it forces the
developer to restructure for longer unit-stride access with no data dependen-
cies and thus might restrict the application design in undesirable ways. Figure 4
shows the speedups achieved by running the application on Xeon PhiTM with
either AVX-512 or AVX2 enabled. That is, for the same code, architecture, and
compiler, what is the value of doubling the vector length. For applications that
depend on libraries, we ensure the appropriate libraries were linked or environ-
ment variables were set (e.g. for selecting the instruction set in Intel MKL). In
case of Chroma and MILC, which utilize QPhiX[29] which in turn uses a do-
main specific language to generate architecture dependent code [30], we made
sure that the instruction level support was consistent. Figure 4 shows that the
value of doubling the vector length varies significantly (naively, a 100% speed is
expected because the vector lanes are twice as wide). Benefits lower than 100%
can be attributed to multiple factors. The simplest reason for this speedup is
that the code suffers from a low degree of vectorization. Another explanation
is that code is memory bandwidth bound and thus cannot benefit fully from
vectorization. However, it turns out that even bandwidth-bound codes such as
MFDn or EMGeo or MILC can be significantly accelerated by using AVX-512.
Although applying the Roofline Model [47, 46, 21] to such codes suggests there
should be little gain, the reality is that AVX-512 instructions reduce contention
in the pipeline and inject more parallelism into the memory subsystem thereby
allowing for higher bandwidth. Codes such as DWF and EMGeo that observe
more than 2× might benefit from advanced AVX-512 features such as masking.



NESAP Application Performance 9

This allows AVX-512 compilers to vectorize loops with certain types of condi-
tionals which otherwise would not vectorize under AVX2. EMGeo vectorizes the
solver over multiple right hand sides and relies on this masking for removing
converged right hand sides from the solve. Additionally, AVX-512 provides 32
registers and thus twice as many as AVX2. For some codes, these extra regis-
ters likely mitigate register spill performance penalties. Finally, there are other
advanced features such as optimized mathematical functions and broadcast op-
erations which can give a gain exceeding the expected gain. Chroma is a special
case as the performance for AVX-512 or AVX2 seems to be the same. At the
time of writing, we could not find a satisfying explanation for that behavior but
we have to note that about 90% of the time is spent in QPhiX and the rest in
plain Chroma. The Chroma part utilizes LLVM with JIT and we had to disable
AVX-512 JIT-support in because of an LLVM compiler bug. This means that
this part of the code actually uses AVX2 in both cases. However, the time dom-
inating part of the code should be sensitive to the instruction set and we cannot
explain the differences here.

Ultimately, the median speedup achieved by using AVX-512 in lieu of AVX2
is approximately 1.2×.

Be
rk
el
ey
GW

42
 n
od
es

CE
SM

96
 n
od
es

Ch
om

bo
-C
ru
nc
h

64
 n
od
es

Ch
ro
m
a

25
6 
no
de
s

DW
F

1 n
od
e

EM
Ge
o

16
 n
od
es

GR
OM

AC
S

48
 n
od
es

M
FD
N

30
 n
od
es

M
IL
C

51
2 
no
de
s

M
PA
S-
O

12
8 
no
de
s

Ny
x/
Bo
xL
ib

1 n
od
e

Qu
an
tu
m
 E
SP
RE
SS
O

64
 n
od
es
VA
SP

8 
no
de
s

W
AR
P

12
8 
no
de
s

XG
C1

10
24
 n
od
es

0.0
0.5
1.0
1.5
2.0
2.5
3.0

sp
ee

du
p 
AV

X-
51
2 
vs
. A

VX
2

Fig. 4. Speedup from AVX-512 over AVX2 for optimized NESAP codes on Cori-KNL.

3.5 Flat and Cache Memory Mode Comparison

No memory technology simultaneously provides high capacity, high bandwidth,
and energy efficiency. Thus, KNL instantiates two distinct memories — an
energy-efficient, high-capacity DDR, and a high-bandwidth MCDRAM. The
KNL architecture can be configured to present these memories to the user as
either two distinct memories (flat mode) or can be configured to treat the MC-
DRAM as a cache for DDR (cache mode). In this section we quantify the per-
formance differences of using either cache or flat mode or not using MCDRAM
at all; we do not consider hybrid modes as we have not identified any suitable
use cases thus far.



10 Thorsten Kurth et al.

Figure 5 shows the speedup attained with flat mode over the simpler cache
mode as well as the benefit of MCDRAM over pure DDR. The figure clearly
exhibits that MCDRAM should be used in any case as the performance was never
worse than running from DDR for our selected applications. Furthermore, the
use of MCDRAM can significantly speed up heavily memory bandwidth limited
codes. For cache vs. flat the story is more complicated: we observe that the best
performance gains for our codes are 15-20%. The codes that perform equally well
in either mode have local problem sizes which fit into MCDRAM and thus suffer
no MCDRAM cache capacity misses. Codes that show a significant performance
penalty in flat mode (ChomboCrunch, DWF, and Qbox) feature local problem
sizes that cannot entirely fit into MCDRAM. Instead of utilizing AutoHBW or
compiler directives for selectively placing hot arrays into MCDRAM, they use
numactl -p 1 to prefer memory allocation in MCDRAM4. Unfortunately, this
only places the first O(16GiB) of allocated data in MCDRAM and the rest will
be allocated in DDR. With that approach, a speedup can only be achieved if
all hot arrays are allocated at the beginning and if they fit into MCDRAM.
Nevertheless, codes that use pool allocators such as e.g. HISQ and Chroma can
safely use this procedure. For all other codes we conclude that cache mode should
be favored if one wishes minimal code modification.

CE
SM

96
 n
od
es

Ch
om

bo
-C
ru
nc
h

64
 n
od
es

Ch
ro
m
a

25
6 
no
de
s

DW
F

1 n
od
e

EM
Ge
o

16
 n
od
es

HI
SQ

1 n
od
e

HM
M
ER

1 n
od
e

M
FD
N

30
 n
od
es

M
IL
C

51
2 
no
de
s

Ny
x/
Bo
xL
ib

1 n
od
e Qb
ox

2 
no
de
s

Qu
an
tu
m
 E
SP
RE
SS
O

64
 n
od
es
VA
SP

8 
no
de
s

W
AR
P

12
8 
no
de
s

XG
C1

10
24
 n
od
es

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

sp
ee

du
p

MCDRAM vs. DDR
Flat vs. Cache

Fig. 5. Speedups of optimized NESAP codes achieved by running from MCDRAM vs.
DDR and in flat vs. cache mode on Cori-KNL.

3.6 Total Savings in CPU Hours

We can now estimate the overall savings in units of CPU hours for the NERSC
workload due to optimized applications and KNL architectural features. We
assume that the CPU time fractions for the individual codes will be the same on
Cori-KNL as those on Edison in 2015, and that the speedups are representative
for the overall workload, the problem sizes are representative for the typical use

4 numactl -p 1 mimics the behavior of numactl -m 1 but it is safer as it will not
abort execution if there is no remaining free space in MCDRAM.



NESAP Application Performance 11

of the specific application at NERSC, and users actually use the KNL-optimized
versions. Based on these assumptions we can combine the data from Fig. 1 with
the speedups achieved in Figure 2. This yields an expected saving of ∼1.8B
CPU hours by using the optimized code instead of the original code on Cori-
KNL. This is about 23% of total available CPU hours. Since NERSC charges by
the node-hour, the savings are real and can be used by the application teams to
tackle more complicated science problems.

4 Conclusions

We have presented overall and relative performance improvements of selected
NESAP applications and discussed specifics of Xeon PhiTM that have to be con-
sidered when applications are optimized for this architecture. We further showed
that improvements targeting Xeon PhiTM will usually benefit conventional multi-
core architectures. Thus, it can be beneficial for developers to start adapting their
codes to many-core systems even if they are still primarily targeting multi-core
architectures. Those improvements mainly target memory locality by applying
cache blocking to L2, and loop and data layout restructuring to exploit paral-
lelism and facilitate vectorization. Using a combination of these techniques is
essential if one is to outperform traditional multi-core architectures.

Acknowledgement

Research used resources of NERSC, a DOE Office of Science User Facility sup-
ported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-
05CH11231. This article has been authored at Lawrence Berkeley National Lab
under Contract No. DE-AC02-05CH11231 and UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the United States Department of Energy.
The United States Government retains and the publisher, by accepting the ar-
ticle for publication, acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United States
Government purposes. The Department of Energy will provide public access to
these results of federally sponsored research in accordance with the DOE Public
Access Plan [3].

References

1. BerkeleyGW Website, http://www.berkeleygw.org
2. CESM Web Site, http://www.cesm.ucar.edu
3. DOE Public Access Plan, https://energy.gov/downloads/

doe-public-access-plan

4. GROMACS Web Site, http://www.gromacs.org
5. HMMER Web Site, http://hmmer.org/



12 Thorsten Kurth et al.

6. MILC Website, http://physics.indiana.edu/~sg/milc.html
7. NERSC and DOE Requirements Reviews Series, http://www.nersc.gov/

science/hpc-requirements-reviews/

8. NERSC NESAP applications, http://www.nersc.gov/users/

computational-systems/cori/nesap/nesap-projects/

9. NERSC NESAP case studies, http://www.nersc.gov/users/

computational-systems/cori/application-porting-and-performance/

application-case-studies/

10. NERSC Web Site, http://www.nersc.gov
11. QBox Web Site, http://qboxcode.org
12. Warp Web Site, http://warp.lbl.gov
13. XGC1 Web Site, http://epsi.pppl.gov/computing/xgc-1
14. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Van Andel, E.: Nyx: A Mas-

sively Parallel AMR Code for Computational Cosmology. The Astrophysical Jour-
nal 765, 39 (Mar 2013)

15. Barnes, T., Cook, B., Deslippe, J., Doerfler, D., Friesen, B., He, Y.H., Kurth, T.,
Koskela, T., Lobet, M., Malas, T., Oliker, L., Ovsyannikov, A., Sarje, A., Vay,
J.L., Vincenti, H., Williams, S., Carrier, P., Wichmann, N., Wagner, M., Kent,
P., Kerr, C., Dennis, J.: Evaluating and optimizing the nersc workload on knights
landing. In: Proceedings of the 7th International Workshop on Performance Mod-
eling, Benchmarking and Simulation of High Performance Computing Systems. pp.
43–53. PMBS ’16, IEEE Press (2016)

16. Barnes, T.A., Kurth, T., Carrier, P., Wichmann, N., Prendergast, D., Kent, P.R.,
Deslippe, J.: Improved treatment of exact exchange in quantum espresso. Computer
Physics Communications 214, 52–58 (2017)

17. Bauer, B., Gottlieb, S., Hoefler, T.: Performance modeling and comparative anal-
ysis of the MILC Lattice QCD application su3 rmd. In: Proc. CCGRID2012:
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing
(2012)

18. Binder, S., Calci, A., Epelbaum, E., Furnstahl, R.J., Golak, J., Hebeler, K., Ka-
mada, H., Krebs, H., Langhammer, J., Liebig, S., Maris, P., Meißner, U.G., Minossi,
D., Nogga, A., Potter, H., Roth, R., Skinińki, R., Topolnicki, K., Vary, J.P., Wita la,
H.: Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces. Phys.
Rev. C 93(4), 044002 (2016)

19. Deslippe, J., Samsonidze, G., Strubbe, D.A., Jain, M., Cohen, M.L., Louie, S.G.:
Berkeleygw: A massively parallel computer package for the calculation of the quasi-
particle and optical properties of materials and nanostructures. Computer Physics
Communications 183(6), 1269 – 1289 (2012), http://www.sciencedirect.com/

science/article/pii/S0010465511003912

20. Doerfler, D., Austin, B., Cook, B., Deslippe, J., Kandalla, K., Mendygral, P.: Eval-
uating the networking characteristics of the cray xc-40 intel knights landing based
cori supercomputer at nersc. In: Cray User Group Meeting (CUG) 2017 (May 2017)

21. Doerfler, D., Deslippe, J., WIlliams, S., Oliker, L., Cook, B., Kurth, T., Lobet,
M., Malas, T., Vay, J.L., Vincenti, H.: Applying the Roofline Performance Model
to the Intel Xeon Phi Knights Landing Processor. In: International Conference on
High Performance Computing. vol. 9945, pp. 339–353. Springer (2016)

22. Eddy, S.R.: Accelerated profile hmm searches. PLOS Computational Biology 7(10),
1–16 (10 2011), https://doi.org/10.1371/journal.pcbi.1002195

23. Edwards, R.G., Joo, B.: The Chroma software system for lattice QCD. Nucl. Phys.
Proc. Suppl. 140, 832 (2005)



NESAP Application Performance 13

24. Friesen, B., Almgren, A., Lukić, Z., Weber, G., Morozov, D., Beckner, V., Day,
M.: In situ and in-transit analysis of cosmological simulations. Computational As-
trophysics and Cosmology 3, 4 (Aug 2016)

25. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C.,
Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Giron-
coli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C.,
Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R.,
Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero,
G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: Quantum
espresso: a modular and open-source software project for quantum simulations
of materials. Journal of Physics: Condensed Matter 21(39), 395502 (2009), http:
//stacks.iop.org/0953-8984/21/i=39/a=395502

26. Gygi, F.: Architecture of qbox: A scalable first-principles molecular dynamics code.
IBM J. Res. Dev. 52(1/2), 137–144 (Jan 2008), http://dl.acm.org/citation.

cfm?id=1375990.1376003

27. Hager, R., Yoon, E., Ku, S., D’Azevedo, E., Worley, P., Chang, C.: A fully non-
linear multi-species fokkerplancklandau collision operator for simulation of fusion
plasma. Journal of Computational Physics 315, 644 – 660 (2016), http://www.

sciencedirect.com/science/article/pii/S0021999116300298

28. Hurrell, J., Holland, M., Gent, P., Ghan, S., Kay, J., Kushner, P., Lamarque, J.F.,
Large, W., Lawrence, D., Lindsay, K., Lipscomb, W., Long, M., Mahowald, N.,
Marsh, D., Neale, R., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W.,
Hack, J., Kiehl, J., Marshall, S.: The Community Earth System Model: a framework
for collaborative research. Bulletin of the American Meteorological Society 94,
1339–1360 (2013)

29. Joó, B.: qphix package web page. http://jeffersonlab.github.io/qphix
30. Joó, B.: qphix-codegen package web page. http://jeffersonlab.github.io/

qphix-codegen

31. Kresse, G., Furthmueller, J.: Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Computational Materials
Science 6(1), 15 – 50 (1996), http://www.sciencedirect.com/science/article/
pii/0927025696000080

32. Ku, S., Chang, C., Diamond, P.: Full-f gyrokinetic particle simulation of centrally
heated global itg turbulence from magnetic axis to edge pedestal top in a realistic
tokamak geometry. Nuclear Fusion 49(11), 115021 (2009)

33. Lukić, Z., Stark, C.W., Nugent, P., White, M., Meiksin, A.A., Almgren, A.: The
Lyman α forest in optically thin hydrodynamical simulations. Monthly Notices of
the Royal Astronomical Society 446, 3697–3724 (Feb 2015)

34. Maris, P., Caprio, M.A., Vary, J.P.: Emergence of rotational bands in ab initio no-
core configuration interaction calculations of the Be isotopes. Phys. Rev. C 91(1),
014310 (2015)

35. Maris, P., Vary, J.P., Navratil, P., Ormand, W.E., Nam, H., Dean, D.J.: Origin of
the anomalous long lifetime of 14C. Phys. Rev. Lett. 106(20), 202502 (2011)

36. Maris, P., Vary, J.P., Gandolfi, S., Carlson, J., Pieper, S.C.: Properties of trapped
neutrons interacting with realistic nuclear Hamiltonians. Phys. Rev. C 87(5),
054318 (2013)

37. Petersen, M.R., Jacobsen, D.W., Ringler, T.D., Hecht, M.W., Maltrud, M.E.: Eval-
uation of the arbitrary lagrangian-eulerian vertical coordinate method in the mpas-
ocean model. Ocean Modelling 86, 93 – 113 (2015), http://www.sciencedirect.
com/science/article/pii/S1463500314001796



14 Thorsten Kurth et al.

38. Petrov, P.V., Newman, G.A.: Three-dimensional inverse modelling of damped elas-
tic wave propagation in the fourier domain. Geophysical Journal International
198(3), 1599–1617 (2014)

39. Petrov, P.V., Newman, G.A.: 3d finite-difference modeling of elastic wave prop-
agation in the laplace-fourier domain. GEOPHYSICS 77(4), T137–T155 (2012),
http://dx.doi.org/10.1190/geo2011-0238.1

40. Pronk, S., Pll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts,
M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.: Gro-
macs 4.5: a high-throughput and highly parallel open source molecular simu-
lation toolkit. Bioinformatics 29(7), 845 (2013), +http://dx.doi.org/10.1093/

bioinformatics/btt055

41. Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W., Maltrud,
M.: A multi-resolution approach to global ocean modeling. Ocean Modelling
69, 211 – 232 (2013), http://www.sciencedirect.com/science/article/pii/

S1463500313000760

42. Straalen, B.V., Trebotich, D., Ovsyannikov, A., Graves, D.T.: Exascale Scientific
Applications: Programming Approaches for Scalability Performance and Portabil-
ity, chap. Scalable Structured Adaptive Mesh Refinement with Complex Geometry.
CRC Press (in press)

43. Trebotich, D., Adams, M.F., Molins, S., Steefel, C.I., Chaopeng, S.: High-resolution
simulation of pore-scale reactive transport processes associated with carbon seques-
tration. Computing in Science & Engineering 16(6), 22–31 (2014)

44. Trebotich, D., Graves, D.: An adaptive finite volume method for the incompress-
ible Navier–Stokes equations in complex geometries. Communications in Applied
Mathematics and Computational Science 10(1), 43–82 (2015)

45. Vincenti, H., Lobet, M., Lehe, R., Sasanka, R., Vay, J.L.: An efficient and
portable {SIMD} algorithm for charge/current deposition in particle-in-cell
codes. Computer Physics Communications 210, 145 – 154 (2017), http://www.

sciencedirect.com/science/article/pii/S0010465516302764

46. Williams, S., Waterman, A., Patterson, D.: Roofline: An Insightful Visual Per-
formance Model for Multicore Architectures. Commun. ACM 52(4), 65–76 (Apr
2009), http://doi.acm.org/10.1145/1498765.1498785

47. Williams, S.W.: Auto-tuning Performance on Multicore Computers. Ph.D. thesis,
EECS Department, University of California, Berkeley (Dec 2008), http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.html


