
1

A High Performance Block Eigensolver for Nuclear
Configuration Interaction Calculations

Hasan Metin Aktulga, Md. Afibuzzaman, Samuel Williams, Aydın Buluç, Meiyue Shao, Chao Yang,
Esmond G. Ng, Pieter Maris, James P. Vary

Abstract—As on-node parallelism increases and the performance gap between the processor and the memory system widens,
achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers.
We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a
sparse symmetric matrix are needed. We consider a block iterative eigensolver whose main computational kernels are the multiplication
of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We present techniques to significantly improve the
SpMM and the transpose operation SpMMT by using the compressed sparse blocks (CSB) format. We achieve 3–4× speedup on
the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a
performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache
bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels
(inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries
for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver
on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques
on an Intel Xeon Phi Knights Corner (KNC) processor.
Keywords—Sparse Matrix Multiplication; Block Eigensolver; Configuration Interaction; Extended Roofline Model; Tall-Skinny Matrices

F

1 INTRODUCTION

The choice of numerical algorithms and how efficiently
they can be implemented on high performance computer
(HPC) systems critically affect the time-to-solution for
large-scale scientific applications. Several new numerical
techniques or adaptations of existing ones that can better
leverage the massive parallelism available on modern
systems have been developed over the years. Although
these algorithms may have slower convergence rates,
their high degree of parallelism may lead to better time-
to-solution on modern hardware [1]. In this paper, we
consider the solution of the quantum many-body prob-
lem using the configuration interaction (CI) formulation.
We present algorithms and techniques to significantly
speed up eigenvalue computations in CI by using a
block eigensolver and optimizing the key computational
kernels involved.

The quantum many-body problem transcends several
areas of physics and chemistry. The CI method enables
computing the wave functions associated with discrete
energy levels of these many-body systems with high
accuracy. Since only a small number of low energy states
are typically needed to compute the physical observables

• H. M. Aktulga and M. Afibuzzaman are with Michigan State University,
428 S. Shaw Lane, Room 3115, East Lansing, MI 48824. H. M. Aktulga
also has an affiliate appointment with the Lawrence Berkeley National
Laboratory. Corresponding author e-mail: hma@msu.edu.

• S. Williams, A. Buluç, M. Shao, C. Yang, and E. G. Ng are with the
Computational Research Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Rd, MS 50F-1650 Berkeley, CA 94720.

• P. Maris and J. Vary are with Iowa State University, Dept. of Physics and
Astronomy, Ames, IA 50011.

of interest, a partial diagonalization of the large CI
many-body Hamiltonian Ĥ ∈ RN×N is sufficient. More
formally, we are interested in finding a small number of
extreme eigenpairs of a large, sparse, symmetric matrix:

Ĥxi = λxi, i = 1, . . . ,m, m� N. (1)

Iterative methods such as the Lanczos and Jacobi–
Davidson [2] algorithms, as well as their variants [3],
[4], [5], can be used for this purpose. The key ker-
nels for these methods can be crudely summarized as
(repeated) sparse matrix–vector multiplications (SpMV)
and orthonormalization of vectors (level-1 BLAS). As
alternatives, block versions of these algorithms have
been developed [6], [7], [8] which improve the arithmetic
intensity of computations at the cost of a reduced con-
vergence rate and increased total number of matrix–
vector operations [9]. In block methods, SpMV becomes
a sparse matrix multiple vector multiplication (SpMM)
and vector operations become level-3 BLAS operations.

Related Work: Due to its importance in scientific com-
puting and machine learning, several optimization tech-
niques have been proposed for SpMV [10], [11], [12], [13],
[14], [15]. Performance of SpMV is ultimately bounded
by memory bandwidth [16]. The widening gap between
processor performance and memory bandwidth signifi-
cantly limits the achievable performance in several im-
portant applications. On the other hand, in SpMM, one
can make use of the increased data locality in the vector
block and attain much higher FLOP rates on modern
architectures. Gropp et al. was the first to exploit this
idea by using multiple right hand sides for SpMV in a

2

computational fluid dynamics application [17]. SpMM
is one of the core operations supported by the auto-
tuned sequential sparse matrix library OSKI [12]. OSKI’s
shared memory parallel successor, pOSKI, currently does
not support SpMM [18]. More recently, Liu et al. [1]
investigated strategies to improve the performance of
SpMM 1 using SIMD (AVX/SSE) instructions for Stoke-
sian dynamics simulation of biological macromolecules
on modern multicore CPUs. Röhrig-Zöllner et al. [19]
discuss performance optimization techniques for the
block Jacobi–Davidson method to compute a few eigen-
pairs of large-scale sparse matrices, and report reduced
time-to-solution using block methods over single vec-
tor counterparts for quantum mechanics problems and
PDEs. Finally, Anzt et al. [20] describe an SpMM imple-
mentation based on the SELLC matrix format, and show
that performance improvements in the SpMM kernel
can translate into performance improvements in a block
eigensolver running on GPUs.
Our Contributions: Our work differs from previous
efforts substantially, in part due to the immense size
of the sparse matrices (with dimensions on the order
of several billions and total number of nonzero matrix
elements on the order of tens of trillions) involved. We
therefore exploit symmetry to reduce the overall mem-
ory footprint, and offer an efficient solution to perform
SpMM on a sparse matrix and its transpose (SpMMT)
with roughly the same performance [21]. This is achieved
through a novel thread parallel SpMM implementation,
CSB/OpenMP, which is based on the Compressed Sparse
Blocks (CSB) storage format [22] (Sect. 3). We demon-
strate the efficiency of CSB/OpenMP on a series of
CI matrices where we obtain 3–4× speedup over the
commonly used compressed sparse row (CSR) format.
To estimate the performance characteristics and better
understand the bottlenecks of the SpMM kernel, we
propose an extended Roofline model to account for cache
bandwidth limitations (Sect. 3).

In this paper, we extend our previous work (presented
in [21]) by considering an end-to-end optimization of a
block eigensolver. As discussed in Sect. 4, performance of
the tall-skinny matrix operations in block eigensolvers is
critical for an excellent overall performance. We observe
that the implementations of these level-3 BLAS opera-
tions in optimized math libraries perform significantly
below expectations for typical matrix sizes encountered
in block eigensolvers. We propose a highly efficient
thread parallel implementation for inner product and
linear combination operations that involve tall-skinny
matrices and analyze the resulting performance.

To demonstrate the merits of the proposed techniques,
we incorporate the CSB/OpenMP implementation of
SpMM and optimized tall-skinny matrix kernels into
a LOBPCG [8] based solver in MFDn, an advanced

1. Liu et al. actually uses the name GSpMV for “generalized” SpMV.
We refrain from doing so because the same name has been used in
conflicting contexts such as SpMV for graph algorithms where the
scalar operations can be arbitrarily overloaded.

nuclear CI code [23], [24], [25]. We demonstrate through
numerical experiments that the resulting block eigen-
solver can outperform the widely used Lanczos algo-
rithm (based on single vector iterations) with modern
multicore architectures (Sect. 5.4). We also analyze the
performance of our techniques on an Intel Xeon Phi
Knights Corner (KNC) processor to assess the feasibility
of our implementations for future architectures.

While we focus on nuclear CI computations, the im-
pact of optimizing the performance of key kernels in
block iterative solvers is broader. For example, spectral
clustering, one of the most promising clustering tech-
niques, uses eigenvectors associated with the smallest
eigenvalues of the Laplacian of the data similarity matrix
to cluster vertices in large symmetric graphs [26], [27].
Due to the size of the graphs, it is desirable to exploit
the symmetry, and for a k-way clustering problem, k
eigenvectors are needed, where typically 10 ≤ k ≤ 100,
an ideal range for block eigensolvers. Block methods are
also used in solving large-scale sparse singular value
decomposition (SVD) problems [28], with most popular
methods being the subspace iteration and block Lanzcos.
SVDs are critical for dimensionality reduction in applica-
tions like latent semantic indexing [29]. In SVD, singular
values are obtained by solving the associated symmet-
ric eigenproblem that requires subsequent SpMM and
SpMMT computations in each iteration [30]. Thus, our
techniques can have a positive impact on the adoption
of block solvers in closely related applications.

2 BACKGROUND

2.1 Eigenvalue Problem in CI Calculations
Computational simulations of nuclear systems face mul-
tiple hurdles, as the underlying physics involves a
very strong interaction, three-nucleon interactions, and
complicated collective motion dynamics. The eigenvalue
problem arises in nuclear structure calculations because
the nuclear wave functions Ψ are solutions of the many-
body Schrödinger’s equation expressed as a Hamiltonian
matrix eigenvalue problem, HΨ = EΨ .

In the CI approach, both the wave functions Ψ and
the Hamiltonian H are expressed in a finite basis of
Slater determinants (anti-symmetrized product of single-
particle states, typically based on harmonic oscillator
wave functions). Each element of this basis is referred
to as a many-body basis state. The representation of
H within an A-body basis space, using up to k-body
interactions with k < A, results in a sparse symmetric
matrix Ĥ . Thus, the Schrödinger’s equation becomes
an eigenvalue problem, where one is interested in the
lowest eigenvalues (energies) and their associated eigen-
vectors (wave functions). A specific many-body basis
state corresponds to a specific row and column of the
Hamiltonian matrix. A nonzero in the Hamiltonian ma-
trix indicates the presence of an interaction between
either the same or different many-body basis states. Both
the total number of many-body states N (the dimension
of Ĥ) and the total number of nonzero matrix elements

3

0 2 4 6 8 10 12 14
N

max

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

M
-s

ch
em

e
b

as
is

 s
p
ac

e
d

im
en

si
o
n

4He
6Li
8Be
10B
12C
16O
19F
23Na
27Al

0 2 4 6 8 10
N

max

10
0

10
3

10
6

10
9

10
12

10
15

n
u
m

b
er

 o
f

n
o
n
ze

ro
 m

at
ri

x
 e

le
m

en
ts

16O, dimension
2-body interactions
3-body interactions
4-body interactions
A-body interactions

Fig. 1: The dimension
and the number
of non-zero matrix
elements of the
various nuclear
Hamiltonian matrices
as a function of the
truncation parameter
Nmax. While the
bottom panel is
specific to 16O, it is
also representative
of a wider set of
nuclei [23], [25].

in Ĥ are controlled by the number of nuclear particles,
the truncation parameter Nmax, which is the maximum
number of HO quanta above the minimum for a given
nucleus, and by the maximum number of particles al-
lowed to interact simultaneously. Higher Nmax values
yield more accurate results, but at the expense of an
exponential growth in problem size (see Fig. 1). Many
nuclear physics applications seek to reach at least an
Nmax of 10 to obtain a sequence of values of observables
as a function of Nmax using which exact answers can be
estimated through extrapolations to infinite Nmax.

2.2 CI Implementation in MFDn
The CI method is implemented in MFDn [23], [25]. A
major challenge in CI is the massive size of the matrix
Ĥ ∈ RN×N , where N can be in the range of several
billions and the total number of nonzeros can easily
exceed trillions. Since only the low-lying eigenpairs are
of interest, iterative eigensolvers are used to tame the
computational cost [31], [32]. As the identification of
nonzeros in Ĥ and calculation of their values are very
expensive, MFDn constructs the sparse matrix only once
and preserves it throughout the computation. To accel-
erate matrix construction and reduce the memory foot-
print, only half of the symmetric Ĥ matrix is stored in the
distributed memory available. A unique 2D triangular
processor grid is then used to carry out the computations
in parallel [31], [32]. In this scheme, a “diagonal” proces-
sor stores only the lower triangular part of a sub-matrix
along the diagonal of Ĥ . Each “non-diagonal” processor,
a processor that owns a sub-matrix from either the lower
or the upper half of Ĥ , is assigned the operations related
to the transpose of that sub-matrix. A well-balanced
distribution of the nonzeros among processors is ensured
through efficient heuristics [24]. Exploiting symmetry
in MFDn demands SpMVT (SpMMT) in addition to
the SpMV (SpMM) operations, and thus data structures
that efficiently implement both operations. The accuracy
from single-precision arithmetic is in general sufficient

to calculate the physical observables. Hence, in MFDn,
the Hamiltonian matrix is stored in single-precision to
further reduce the memory footprint.

2.3 Motivation for a Block Eigensolver
As the load balancing issue and communication over-
heads on distributed memory systems have been ad-
dressed in our previous work [24], [31], [32], here we
mainly focus on the performance of the thread-parallel
computations within a single MPI rank. Conventionally,
in MFDnm as well as in other CI codes, the Lanczos
algorithm is used due to its excellent convergence prop-
erties. However, locally optimal block preconditioned
conjugate gradient (LOBPCG) [33], a block eigensolver,
is an attractive alternative for a number of reasons. First,
the LOBPCG algorithm allows effective use of many-
body wave functions from closely related model spaces
(e.g. smaller basis, or different single-particle wave func-
tions) to be used as good initial guesses. Second, the
LOBPCG algorithm can easily incorporate an effective
preconditioner which can often be constructed based on
physics insights to significantly improve convergence.
Third and most relevant to our focus in this paper,
the LOBPCG algorithm naturally leads to an imple-
mentation with a high arithmetic density, as the main
computational kernels involved are the multiplication of
a sparse matrix with multiple vectors, and level-3 BLAS
on dense vector blocks, as opposed to the SpMVs and
level-1 BLAS operations that are the building blocks in
Lanczos. Finally, although not studied here, we note that
the potential benefits of a block eigensolver can be even
more significant for CI implementations based on on-
the-fly computation of the Hamiltonian.

Algorithm 1: LOBPCG algorithm (for simplicity,
without a preconditioner) used to solve ĤΨ = EΨ .

Input: Ĥ , matrix of dimensions N ×N ;
Input: Ψ0, a block of vectors of dimensions N ×m;
Output: Ψ and E such that ‖ĤΨ − ΨE‖F is small, and
ΨTΨ = Im;
Orthonormalize the columns of Ψ0;
P0 ← 0;
for i = 0, 1, . . . , until convergence do

Ei = ΨTi ĤΨi;
Ri ← ĤΨi − ΨiEi
Apply the Rayleigh–Ritz procedure on span{Ψi, Ri, Pi};
Ψi+1 ← argmin

S∈span{Ψi,Ri,Pi}, ST S=Im

trace(ST ĤS)

Pi+1 ← Ψi+1 − Ψi;
Check convergence;

Alg. 1 gives the pseudocode for a simplified ver-
sion of the LOBPCG algorithm without preconditioning.
LOBPCG is a subspace iteration method that starts with
an initial guess of the eigenvectors (Ψ0) and refines
its approximation at each iteration (Ψi). Ri denotes the
block residual at iteration i and Pi contains the direction
information from the previous step. Hence, in Alg. 1,
Ψi, Ri and Pi correspond to dense blocks of vectors.

We observe that achieving numerical stability with
LOBPCG requires using double-precision arithmetic for

4

most MFDn calculations. Therefore, after SpMM compu-
tations are completed, the resulting vector blocks ĤΨi

are typecast into double precision before the start of
LOBPCG computations. Another technique that we use
for numerical stability is the locking (deflation) of the
converged eigenpairs. Hence, m gets smaller as the al-
gorithm progresses. Finally, to ensure good convergence,
the dimension of the initial subspace m is typically set
to 1.5 to 2 times the number of desired eigenpairs nev.

3 MULTIPLICATION OF THE SPARSE MATRIX
WITH MULTIPLE VECTORS (SPMM)
To exploit symmetry in a block eigensolver, each process
must perform a conventional SpMM (Y = AX), as well
as a transpose operation SpMMT (Y = ATX), where
A corresponds to the local partition of Ĥ and X to a
row partition of Ψi. The matrix Y is the output vector
block in each case. The number of rows and the number
of columns of A are typically very close to each other,
therefore, for simplicity, we take A to be a square matrix
of size n × n. Both X and Y are dense vector blocks of
dimensions n×m. As SpMM and SpMMT are performed
in separate phases of the MPI parallel algorithm [32],
we use the same input/output vectors to simplify the
presentation.

Naively, one can realize SpMM by storing the vector
blocks in column-major order and applying one SpMV to
each column of X . However, to exploit spatial locality, a
row-major layout should be preferred for vector blocks
X and Y . This format also ensures good data locality
for the tall-skinny matrix operations of LOBPCG. Thus,
the simplest SpMM kernel can be implemented as an
extension of SpMV where the operation on scalar ele-
ments yi =

∑
Ai,jxj becomes an operation on m-element

vectors Yi =
∑
Ai,jXj . The input and output vectors can

be aligned to 32-byte boundaries (by padding with zeros
if necessary) for efficient vectorization of the m-element
loops. This operation can be implemented by looping
over each nonzero Ai,j .

3.1 CSR Format (Baseline)
The most common sparse matrix storage format is com-
pressed sparse rows (CSR) in which the nonzeros of
each matrix row are stored consecutively as a list in
memory. One maintains an array of pointers (which
are simply integer offsets) into the list of nonzeros in
order to mark the beginning of each row. An additional
index array is used to keep the column indices of each
nonzero. Nonzero values and column indices are stored
in separate arrays of length nnz , and the row pointers
array is of length n + 1. For single-precision sparse
matrices whose local row and column indices can be
addressed with 32-bit integers (i.e., n ≤ 232 − 1), the
storage cost for the CSR format is 8nnz + 4(n+ 1) bytes.
One may reuse matrices stored in the CSR format for
the SpMMT operation by reinterpreting row pointers
and column indices as column pointers and row indices,
respectively. Such an interpretation would correspond

to a compressed sparse column (CSC) representation
in which one operates on columns rather than rows to
implement the SpMMT operation.

3.2 Cache-blocked CSB Format
Large vector blocks (with 4 ≤ m ≤ 50, and n > 106) can
potentially prevent a CSR based SpMM implementation
from taking full advantage of the locality in vector blocks
depending on the matrix sparsity structure. After a few
rows, it is likely that vector data will have been evicted
from the L2 cache, while after a few hundred rows,
it is very likely that data will have been evicted from
even the last level L3 cache. Moreover, in a thread-
parallel SpMMT , CSC’s scatter operation on thread-
private output vectors (necessary to prevent race con-
ditions) coupled with the reduction required for partial
thread results can significantly impede performance [23].
Thus, it is imperative that we adopt a data structure that
can attain good locality for the vector blocks and does
not suffer from the performance penalties associated
with the CSR and CSC implementations.

Our data structure for storing sparse matrices is a vari-
ant of the compressed sparse blocks (CSB) format [22].
For a given block size parameter β, CSB nominally
partitions the n × n local matrices into β × β blocks.
When β is on the order of

√
n, we can address nonzeros

within each block by using half the bits needed to index
into the rows and columns of the full matrix (16 bits
instead of 32 bits). Therefore, for β =

√
n, the storage cost

of CSB matches the storage cost of traditional formats
such as CSR. In addition, CSB automatically enables
cache blocking [13]. In CSB format, each β × β block
is independently addressable through a 2D array of
pointers. The SpMM operation can then be performed
by processing this 2D array by rows, while SpMMT can
simply be realized by processing it via columns.

The formal CSB definition does not specify how the
nonzeros are stored within a block. An existing imple-
mentation of CSB for sparse matrix–vector (SpMV) and
transpose sparse matrix–vector (SpMVT) multiplication
stores nonzeros within each block using a space filling
curve to exploit data locality and enable efficient paral-
lelization of the blocks themselves [22].

3.3 Implementation and Optimization
CSR/OpenMP: Our baseline SpMM implementation
uses the CSR format. The SpMM operation was threaded
using an OpenMP parallel for loop with dynamic
scheduling over the matrix rows. SpMMT operation was
threaded over columns (which are simply reinterpreta-
tions of CSR rows for the transpose) where each thread
uses a private copy of the output vector block to prevent
race conditions. Private copies are then reduced (using
thread parallelism) to complete the SpMMT operation.

Rowpart/OpenMP: On multi-core CPUs with several
cores, the CSR implementation above is certainly not
suitable for performing SpMMT on large sparse matri-
ces. Thread private copies of the output vector require

5

Pβ

β

β
m X

A
Y

block 2 Pβ

m
block 1

Fig. 2: Overview of the
SpMM operation with
P = 4 threads. The op-
eration proceeds by per-
forming all Pβ × β lo-
cal SpMM operations
Y=AX+Y one blocked
row at a time. The op-
eration ATX is realized
by permuting the block-
ing (β × Pβ blocks).

an additional O(nmP) storage, where P denotes the
number of threads. In fact, more storage space than
the sparse matrix itself could be needed for even small
values of m for matrices with only tens of nonzeros
per row. In terms of performance, thread private out-
put vectors may adversely affect data reuse in the last
level of cache, and requires an expensive post-processing
step. Therefore we implemented the Rowpart algorithm.
It is identical to our baseline CSR implementation for
SpMM, but for a memory efficient and load balanced
SpMMT , it preprocesses the columns of the transpose
matrix and determines row indices for each thread such
that row partitions assigned to threads contain (roughly)
equal number of nonzeros. Each thread then maintains a
starting and ending index of its row partition boundaries
per column. Extra storage space cost of Rowpart is only
O(nP) and the preprocessing overheads are insignificant
when used in an iterative solver.

CSB/OpenMP: Our new parametrized implementa-
tion for SpMM and SpMMT , CSB/OpenMP, is based
on the CSB format. As the other implementations,
CSB/OpenMP is written in Fortran using OpenMP. As
shown in Fig. 2, the matrix is partitioned into β×β blocks
that are stored in coordinate format (COO) with 16-bit
indices and 32-bit single-precision values. The SpMM
operation is threaded over individual rows of blocks
(corresponding to β × n slices of the matrix), which
creates block rows of size Pβ × n. In SpMMT , threads
sweep through block columns of size n×Pβ and use the
COO’s row indices as column indices and vice versa. We
tune for the optimal value of β for each value of m for
a given matrix.

CSB/Cilk: For comparisons with the original Cilk-based
CSB implementation, we extended the fully parallel
SpMV and SpMVT algorithms [22] in CSB to operate on
multiple vectors. We used a vector of std::array’s,
a compile-time fixed-sized variant of the built-in arrays
for storing X and Y . This effectively creates tall-skinny
matrices in row major order. The original CSB imple-
mentation heuristically determines the block parameter
β, considering the parallel slackness, size of the L2 cache,
and the addressability by 16-bit indices. The parameter
β chosen for the single vector cases presented in Sect. 5
was 16,384 or 8,192 (depending on the matrix), and it

got progressively smaller all the way to β = 1024 as m
increases (due to increased L2 working set limitations).

SpMM and SpMMT implemented using CSB/Cilk em-
ploy three levels of parallelism. For SpMM (the transpose
case is symmetric), it first parallelizes across rows of
blocks, then within dense rows of blocks using tempo-
rary vectors, and finally within sufficiently dense blocks
if needed. Additional parallelization costs of second
and third levels are amortized by performing them on
sufficiently dense rows of blocks and individual blocks
that threaten load balance. Such blocks and rows of
blocks can be shown to have enough work to amortize
the parallelization overheads. Our CSB/OpenMP im-
plementation differs from the CSB/Cilk implementation
in that CSB/OpenMP does not parallelize within indi-
vidual rows/columns of blocks or within dense blocks.
Rather, CSB/OpenMP partitions the sparse matrix into
a sufficiently large number of rows/columns of blocks
by choosing an appropriate β. Dynamic scheduling is
leveraged to ensure load balance among threads.

In all implementations (CSR, Rowpart, CSB/OpenMP,
CSB/Cilk), innermost loops (Yi =

∑
Ai,jXj for SpMM

and Yj =
∑
Ai,jXi for SpMMT) were manually unrolled

for each m value. In Fortran !$dir simd directives and
in C #pragma simd always pragmas were used for
vectorization. We inspected the assembly code to ensure
that packed SIMD/AVX instructions were generated for
best performance. To minimize TLB misses, we used
large pages during compilation and runtime.

3.4 An Extended Roofline Model for CSB
Conventional wisdom suggests that SpMV performance
is a function of STREAM bandwidth and data move-
ment from compulsory misses on matrix elements. Then
the simplified Roofline model [16] provides a lower
bound to SpMV time by 8 · nnz/BWstream for single-
precision CSR matrices [14]. This simple analysis may
lead one to conclude that performing SpMV’s on mul-
tiple right-hand sides (SpMM) is essentially no more
expensive than performing one SpMV. Unfortunately,
this is premised on three assumptions — (i) compulsory
misses for vectors are small compared to the matrix, (ii)
there are few capacity misses associated with the vectors,
and (iii) cache bandwidth does not limit performance.
The first premise is certainly invalidated once the num-
ber of right-hand sides reaches half the average number
of nonzeros per row (assuming an 8-byte total space for
single-precision nonzeros, 4-byte single-precision vector
elements, and a write-allocate cache). The second would
be true for low-bandwidth matrices with working sets
smaller than the last level cache. The final assumption is
highly dependent on microarchitecture, matrix sparsity
structure, and the value of m. We observe that for MFDn
matrices and moderate values of m, this conventional
wisdom fails to provide a good performance bound.

In this paper, we construct an extended Roofline per-
formance model that captures how cache locality and
bandwidth interact to tighten the performance bound

6

for CSB-like sparse kernels. Let us consider three pro-
gressively more restrictive cases: vector locality in the
L2, vector locality in the L3, and vector locality in
DRAM. As it is highly unlikely a β × β block acting on
multiple vectors attains good vector locality in the tiny
L1 caches, we will ignore this case. Although potentially
an optimistic assumption, we assume we may always hit
peak L2, L3, or DRAM bandwidth with the caveat that,
on average, we overfetch 16 bytes.

First, if we see poor L1 locality for the block of vectors
but good L2 locality, then for each nonzero, CSB must
read 8 bytes of nonzero data, 4m bytes of the source vec-
tor, and 4m bytes of the destination vector. It may then
perform 2m flops and write back 4m bytes of destination
data. Thus we perform 2m flops and must move 8+12m
bytes ideally at the peak L2 bandwidth. Ultimately, this
would limit SpMM performance to 6.6 GFlop/s per core,
or about 80 GFlop/s per chip on Edison which has an
L2 cache bandwidth of 40 GB/s per core (see Sect. 5.1).
One should observe that we have assumed high locality
in L2. As this is unlikely, this bound is rather loose.

Unfortunately, static analysis of sparse matrix opera-
tions has its limits. In order to understand how locality
in the L2 and L3 bandwidth constrain performance, we
implemented a simplified L2 cache simulator to calculate
the number of capacity misses associated with accessing
X and Y . For each β × β block the simulator tries
to estimate the size of the L2 working set based on
the average number of nonzeros per column. When the
average number of nonzeros per column is less than one,
the working set size is bounded by (8m+32)·nnz bytes —
each nonzero requires a block of the source vector and a
block of the destination vector plus overfetch. When the
average number of nonzeros per column reaches one, we
saturate the working set at 8mβ bytes — full blocks of
source and destination vectors. If the working set is less
than the L2 cache capacity we must move 8 · nnz + 4mβ
bytes when the number of nonzeros per column is equal
to or greater than 1 and (8 + 4m + 16) · nnz bytes (but
never more than 8·nnz+4mβ bytes) when the number of
nonzeros per column is less than 1 (miss on the nonzero
and the source vector). If the working set exceeds the
cache capacity, then we forgo any assumptions on reuse
of X or Y in the L2 and incur (8 + 4m+ 16) · nnz + 8mβ
bytes of data movement. So, this bound on data move-
ment depends on both m and the input matrix.

Finally, let us consider the bound due to a lack of
locality in L3 and finite DRAM bandwidth. As shown
in Fig. 2, CSB matrices are partitioned into blocks of
size β × β, and P threads stream through block rows
(or block columns for SpMMT) performing local SpMM
operations on blocks of size Pβ×β. If one thread (a β×β
block) gets ahead of the others, then it will likely run
slower as it is reading X from DRAM while the others
are reading X from the last level cache. Thus, we created
a second simplified cache simulator to track DRAM
data movement which tracks how a chip processes each
Pβ×β block, rather than tracking how individual cores

process their β × β blocks. Our model streams through
the block rows of a matrix (like in Fig. 2) and for each
nonzero Pβ × β block examines its cache to determine
whether the corresponding block of X is present. If it
misses, then it fetches the entire block and increments the
data movement tally. If the requisite cache working set
exceeds the cache capacity, then we evict a block (LRU
policy). Finally, we add the nonzero data movement and
the read-modify-write data movement associated with
the output vector block Y (8nm bytes).

Ultimately, the combined estimates for DRAM, L2,
and L3 data movement provide us a narrow range of
expected SpMM performance as a function of m. For
low arithmetic intensity (small m), the Roofline suggests
we would be DRAM-bound, but the Roofline plateaus.
It likely does so because of either L2 or L3 bandwidth
limitations rather than the peak FLOP rate. As we
demonstrate in Sect. 5 through numerical experiments,
the extended Roofline model closely tracks the observed
SpMM performance and allows us to analyze the impact
of various potential sources of bottlenecks. In the future,
we plan to use this lightweight simulator as a model-
based replacement for the expensive empirical tuning of
β.

4 TALL-SKINNY MATRIX OPERATIONS

Besides sparse matrix operations, all block methods re-
quire operations on the dense blocks of vectors them-
selves, which we denote as tall-skinny matrix computa-
tions owing to the shape of the multiple vector struc-
tures involved. The LOBPCG algorithm mainly involves
inner product and linear combination operations. Perfor-
mance in these kernels are critical for the overall eigen-
solver performance for three reasons. First, an optimized
SpMM algorithm incurs a significantly reduced cost on
a per SpMV basis. Second, while the per iteration cost
of vector operations is O(N) for Lanczos-like solvers,
in block methods these operations cost O(Nm2) which
grows quickly with m. Finally, and most importantly,
the LOBPCG algorithm involves several of these opera-
tions in each iteration. For example, computing Ei and
updating the residual Ri before the Rayleigh–Ritz pro-
cedure in Alg. 1 requires an inner product and a linear
combination, respectively. The Rayleigh–Ritz procedure
itself requires computing the overlap matrix between
each pair of the current Ψi, Ri, Pi vectors themselves, as
well as their overlap with the vector blocks from the
previous iteration, leading to a total of 18 inner product
operations. Following the Rayleigh–Ritz procedure is the
updates to the Ψi, Ri, Pi blocks of vectors for the next
iteration, which require computing linear combinations.
There are a total of 10 such linear combination operations
per Rayleigh–Ritz procedure.

Note that the Hamiltonian matrix in MFDn is par-
titioned into a 2D triangular grid, and during parallel
SpMM the X and Y vector blocks are shared/aggregated
among the processes in the row/column groups of
this triangular grid [31], [32]. Efficient parallelization of

7

VTW

t1

t2

tp

l

m t1 t2 tp

VT

t1 t2
t1
t2

tp

W

t1
t2

m

Fig. 3: Overview of the custom implementation for thread-parallel
vector block inner product operation V TW .

LOBPCG operations requires further partitioning X and
Y among processes in the same row groups, resulting in
smaller local blocks of vectors of size l×m (l = n/prow,
where prow is the number of process in a row of the
triangular grid). In fact, as shown in Alg. 1, each process
has to keep several matrices of size l × m due to the
need for storing the residual R and previous direction P
information locally. Since we are mainly interested in the
performance of the kernels, we will generically denote
the local l ×m blocks of vectors as V and W .

We denote the inner product of two blocks of vectors
V and W as V TW , and the linear combination of the
vectors in a block by a small square coefficient matrix
C as V C. Both V TW and V C have high arithmetic
intensities. Specifically, for both kernels the number of
flops is O(lm2) and the total data movement is O(lm),
yielding an arithmetic intensity of O(m). These kernels
can be implemented as level-3 BLAS operations using
optimized math libraries such as Intel’s MKL or Cray’s
LibSci. While one would expect to achieve a high per-
centage of the peak performance (especially for large
m), as demonstrated in Sect. 5.3, both MKL and LibSci
perform poorly for these kernels. This is most likely due
to the unusual shape of the matrices involved (typically
l� m for large-scale computations).

To eliminate the performance bottlenecks with the
V TW and V C computations, we developed custom
thread-parallel implementations for them. Fig. 3 gives
an overview of our V TW implementation. We store V
and W in row-major order, consistent with the storage
of the vector blocks in sparse matrix computations. We
partition V and W into small row blocks of size s×m,
and compute the inner product V TW by aggregating
the results of (vendor tuned) dgemm operations between
a row block in V and the corresponding one in W (as
mentioned in Sect. 2.3, for numerical stability LOBPCG
computations are performed in double precision, hence
the use of dgemm). The loop over s×m blocks is thread
parallelized using OpenMP. To achieve load balance
with minimal scheduling overheads, we use the guided
scheduling option. Race conditions in the output matrix
are resolved by keeping a thread-private buffer matrix
of size m × m. We perform a reduction, which is also
thread-parallel, over the buffer matrices to compute the

final overlap matrix.
Our custom V C kernel is implemented similarly by

partitioning V into row blocks. In this case, C is a square
matrix of size m×m which is read-shared by all threads.
Again, the loop over the s × m blocks of V is thread
parallelized with guided scheduling. To prevent race
conditions, we let each thread perform the computation
using the full C matrix, i.e., a dgemm between matrices
of size s × m and m × m. Each thread then uniquely
produces the corresponding set of s output rows.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

We use a series of computations with MFDn for a
comprehensive evaluation of our methods for sparse
and tall-skinny matrix computations. As the overall
execution time is dominated by on-node computations,
we begin with single-socket performance evaluations of
SpMM (Sect. 5.2) and LOBPCG computations (Sect. 5.3).
In Sect. 5.4, we inspect the resulting solver’s performance
in a distributed memory setting.

MFDn Matrices: We identified three test cases, “Nm6”,
“Nm7” and “Nm8”, which are matrices corresponding
to the 10B Hamiltonian at Nmax = 6, 7, and 8 trunca-
tion levels, respectively. The actual Hamiltonian matrices
are very large and therefore are nominally distributed
across several processes in the actual calculations. For
a given nucleus, the sparsity of Ĥ is determined by (i)
the underlying interaction potential, and (ii) the Nmax

parameter. We used a 2-body interaction potential; a
3-body or a higher order interaction potential would
result in denser matrices presenting more favorable
conditions for achieving computational efficiency. For a
given nucleus and interaction potential, increasing the
Nmax value reduces the density of nonzeros in each row,
thereby allowing us to evaluate the effectiveness of our
techniques on a range of matrix sparsities.

Each process on a distributed memory execution re-
ceives a different sub-matrix of the Hamiltonian, but
these sub-matrices have similar sparsity structures. For
simplicity and consistency, we use the first off-diagonal
processor’s sub-matrix as our input for single-socket
evaluations. Table 1 enumerates the test matrices used in
this paper. Note that the test matrices have millions of
rows and hundreds of millions of nonzeros. As discussed
in Sect. 3, we use the compressed sparse block (CSB)
format [22] in our optimized SpMM implementation.
Therefore a sparse matrix is stored in blocks of size β×β.
When blocked with β = 6000, we observe that both
the number of block rows and the average number of
nonzeros per nonzero block remain high. Fig. 4 gives a
sparsity plot of the Nm6 matrix at the block level, where
each nonzero block is marked by a dot whose intensity
represents the density of nonzeros in the corresponding
block. For our test matrices, 41–64% of these blocks are
nonzero. We observe a high variance on the number of
nonzeros per nonzero block.

8

Fig. 4: Sparsity struc-
ture of the local Nm6
matrix at process 1 in
an MFDn run with 15
processes. A block size
of β = 6000 is used.
Each dot corresponds
to a block with nonzero
matrix elements in it.
Darker colors indicate
denser nonzero blocks.

Matrix Nm6 Nm7 Nm8
Rows 2,412,566 4,985,944 7,583,735

Columns 2,412,569 4,985,944 7,583,938
Nonzeros (nnz) 429,895,762 648,890,590 592,325,005

Blocked Rows 403 831 1264
Blocked Columns 403 831 1264

Average nnz per Block 7991 4191 2311

TABLE 1: MFDn matrices (per-process sub-matrix) used in our
evaluations. For the statistics in this table, all matrices were cache
blocked using β = 6000.

Vector block sizes: In nuclear physics applications, up to
20–25 eigenvalues are needed, and 5–15 eigenpairs will
be sufficient. In LOBPCG, to ensure a rich representation
of the subspace and ensure good convergence, the num-
ber of basis vectors m needs to be set to 1.5 to 2 times the
number of desired eigenvectors nev. As the algorithm
proceeds and eigenvectors converge, converged eigen-
pairs are deflated (or locked) and the subspace shrinks.
Therefore, we examine the performance of our optimized
kernels for values of m in the range 1 to 48.

Computing Platforms: We primarily use high-end multi-
core processors (Intel Xeon) for performance studies.
However, the energy efficiency requirements of HPC
systems point to an outlook where many-core processors
will play a prominent role. To guide our future efforts
in this area, we conduct performance evaluations on an
Intel Xeon Phi processor as well.

Our multi-core results come from the Cray XC30
MPP at NERSC (Edison) which contains more than 10
thousand, 12-core Xeon E5 CPUs. Each of the 12 cores
runs at 2.4 GHz and is capable of executing one AVX
(8×32-bit SIMD) multiply and one AVX add per cycle
and includes both a private 32 KB L1 data cache and a
256 KB L2 cache. Although the per-core L1 bandwidth
exceeds 75 GB/s, the per-core L2 bandwidth is less than
40 GB/s. There are two 128-bit DDR3-1866 memory con-
trollers that provide a sustained STREAM bandwidth of
52 GB/s per processor. The cores, the 30MB last level L3
cache and memory controllers are interconnected with
a complex ring network-on-chip which can sustain a
bandwidth of about 23 GB/s per core.

Our many-core results have been obtained at the

Processor Xeon E5-2695 v2 Xeon Phi 5110P
Core Ivy Bridge Pentium P54c

Clock (GHz) 2.4 1.05
Data Cache (KB) 32+256 32 + 512

Memory-Parallelism HW-prefetch SW-prefetch + MT
Cores/Processor 12 60

Threads/Processor 241 4
Last-level L3 Cache 30 MB –

SP GFlop/s 460.8 2,022
DP GFlop/s 230.4 1,011

Aggregate L2 BW 480 GB/s 960 GB/s2

Aggregate L3 BW 276 GB/s –
STREAM BW3 52 GB/s 320 GB/s

Available Memory 32 GB 8 GB

TABLE 2: Overview of Evaluated Platforms. 1 With hyper threading,
but only 12 threads were used in our computations. 2 Based on the
saxpy1 benchmark in [34]. 3 Memory bandwidth is measured using
the STREAM copy benchmark.

Babbage testbed at NERSC. Intel Xeon Phi (MIC) cards
are connected to the host processor through the PCIe
bus and contain 60 cores running at 1 GHz, with 4
hardware threads per core. Each MIC card has an on-
device 8 GB of high bandwidth memory (320 GB/s).
Cores are interconnected by a high-speed bidirectional
ring. Each core has a 32 KB L1 data cache and 512 KB
L2 cache locally with high speed access to all other L2
caches to implement a fully coherent cache. Note that
there is not a shared last level L3 cache on the MIC
cards. Each core supports 512-bit wide AVX-512 vector
ISA that can execute 8 double-precision (or 16 single-
precision or integer) operations per cycle. With Fused
Multiply-Add (FMA), this amounts to 16 DP or 32 SP
FLOPS/cycle. Peak performance for each MIC card is 1
TFlop/s in DP, and 2 TFlop/s in SP. The characteristics
of both processors are summarized in Table 2.

We use the Intel Fortran compiler with flags
-fast -openmp. For comparison with the original CSB
using Intel Cilk Plus, we use the Intel C++ compiler
with flags -O2 -no-ipo -parallel -restrict -xAVX.
As Intel Cilk Plus uses dynamically loaded libraries
not natively supported by the Cray operating system,
we use Cray’s cluster compatibility mode that causes
only a small performance degradation. The Xeon Phi’s
performance was evaluated in the native mode, enabled
through the -mmic flag in Intel compilers.

5.2 Performance of Sparse Matrix Computations
We first present the SpMM and SpMMT performance
results for our optimized implementations. We report
the average performance over five iterations where the
number of requisite floating-point operations is 2·nnz·m.

5.2.1 CSB Benefit
Fig. 5 presents SpMM (Y = AX) and SpMMT (Y =
ATX) performance for the Nm6 matrix as a function of
m (the number of vectors). For m = 1, a conventional
CSR SpMV implementation does about as well as can be
expected. However, as m increases, the benefit of CSB

9

0
10
20
30
40
50
60
70
80
90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
CSR/OpenMP

0
10
20
30
40
50
60
70
80
90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP

Fig. 5: Optimization
benefits on Edison us-
ing the Nm6 matrix
for SpMM (top) and
SpMMT (bottom) as
a function of m (the
number of vectors).

variants’ blocking on cache locality is manifested. The
CSB/OpenMP version delivers noticeably better perfor-
mance than the CSB/Cilk implementation. This may be
due in part to performance issues associated with Cray’s
cluster compatibility mode, but most likely due to addi-
tional parallelization overheads of the Cilk version that
uses temporary vectors to introduce parallelism at the
levels of block rows and blocks. This additional level of
parallelism is eliminated in CSB/OpenMP by noting that
the work associated with each nonzero is significantly
increased as m increases, and we leverage the large di-
mensionality of input vectors for load balancing among
threads. Ultimately, we observe that CSB/OpenMP’s
performance saturates at around 65 GFlop/s for m > 16.
This represents a roughly 45% increase in performance
over CSR, and 20% increase over CSB/Cilk.

The CSB based implementations truly shine when
performing SpMMT . The ability to efficiently thread
the computation coupled with improvements in locality
allows CSB/OpenMP to realize a 35% speedup for SpMV
over CSR and nearly a 4× improvement in SpMM for
m ≥ 16. The row partitioning scheme has only a minor
benefit and only at very large m. Moreover, the CSB for-
mat ensures SpMM and SpMMT performance are now
comparable (67 GFlop/s vs 62 GFlop/s with OpenMP) —
a clear requirement as both computations are required
for MFDn.

As an important note, we point out that the increase
in arithmetic intensity introduced by SpMM allows for
more than 5× increase in performance over SpMV.
This should be an inspiration to explore algorithms
that transform numerical methods from being memory
bandwidth-bound (SpMV) to compute-bound (SpMM).

5.2.2 Tuning for the Optimal Value of β

As discussed previously, we wish to maintain a working
set for the X and Y vector blocks as close to the
processor as possible in the memory hierarchy. Each β×β
block demands a working set of size βm in the L2 for

0

10

20

30

40

50

60

70

80

1 4 8 12 16 24 32 48 64 80 96

G
Fl

op
/s

#vectors (m)

𝛃=6K
𝛃=4K
𝛃=2K

Fig. 6: Performance
benefit on the
combined SpMM
and SpMMT

operation from
tuning the value
of β for the Nm8
matrix.

X and Y . Thus, as m increases, we are motivated to
decrease β. Fig. 6 plots performance of the combined
SpMM and SpMMT operation using CSB/OpenMP on
the Nm8 matrix as a function of m for varying β.
For small m, there is either sufficient cache capacity to
maintain locality on the block of vectors, or other per-
formance bottlenecks are pronounced enough to mask
any capacity misses. However, for large m (shown up
to m = 96 for illustrative purposes), we clearly see
that progressively smaller β are the superior choice as
they ensure a constrained resource (e.g., L3 bandwidth)
is not flooded with cache capacity miss traffic. Still,
note in Fig. 6 that no matter what β value is used, the
maximum performance obtained for m > 48 is lower
than the peak of 65 GFlop/s achieved for lower values
of m. This suggests that for large values of m, it may be
better to perform SpMM and SpMMT as batches of tasks
with narrow vector blocks. In the following sections, we
always use the best value of β for a given m.

5.2.3 Speedup for Combined SpMM/SpMMT Operation
Our ultimate goal is to include the LOBPCG algorithm
as an alternative eigensolver in MFDn. As discussed
earlier, the computation of both SpMM and SpMMT is
needed for this purpose. We are therefore interested in
the performance benefit for the larger (and presumably
more challenging) MFDn matrices. Fig. 7 presents the
combined performance of SpMM and SpMMT as a
function of m for our three test matrices. Clearly, the
CSB variants deliver extremely good performance for the
combined operation with the CSB/OpenMP delivering
the best performance. We observe that as one increases
the number of vectors m, performance increases to a
point at which it saturates. A naive understanding of
locality would suggest that regardless of matrix size, the
ultimate SpMM performance should be the same. How-
ever, as one moves to the larger and sparser matrices,
performance saturates at lower values. Understanding
these effects and providing possible remedies requires
introspection using our performance model.

5.2.4 Performance Analysis
Given the complex memory hierarchies of varying ca-
pacities and bandwidths in highly parallel processors,
the ultimate bottlenecks to performance can be extremely
non-intuitive and require performance modeling. In
Fig. 7, we provide three Roofline performance bounds
based on DRAM, L3, and L2 data movements and

10

0

10

20

30

40

50

60

70

80

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP
Roofline (DRAM)
Roofline (L3)
Roofline (L2)

0

10

20

30

40

50

60

70

80

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP
Roofline (DRAM)
Roofline (L3)
Roofline (L2)

0

10

20

30

40

50

60

70

80

1 4 8 12 16 24 32 48

G
F

lo
p

/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP
Roofline (DRAM)
Roofline (L3)
Roofline (L2)

0

10

20

30

40

50

60

70

80

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP
Roofline (DRAM)
Roofline (L3)
Roofline (L2)

Fig. 7: SpMM/SpMMT

combined performance
with Nm6, Nm7 & Nm8
matrices (from left to
right) as a function of m
(#vectors). We identify 3
Rooflines (one per level
of memory) with the
extended roofline model.

bandwidth limits as described in Sect. 3.4. In all cases,
we use the empirically determined optimal value of β for
each m as a parameter in our performance model. The
L2 and L3 bounds take the place of the traditional in-
core (peak flop/s) performance bounds. Bounding data
movement for small m (where compulsory data move-
ment dominates) is trivial and thus accurate. However,
as m increases, capacity and conflict misses start dom-
inating. In this space, quantifying the volume of data
movement in a deep cache hierarchy with an unknown
replacement policy and unknown reuse pattern is non-
trivial. As Fig. 4 clearly demonstrates, the matrices in
question are not random (worst case), but exhibit a
structure. We note that these Roofline curves for large m
are not strict performance bounds but rather guidelines.

Clearly, for small m performance is highly-correlated
with DRAM bandwidth. As we proceed to larger m,
we see an inversion for the sparser matrices where L3
bandwidth can surpass DRAM bandwidth as the pre-
eminent bottleneck. We observe that for the denser Nm6
matrix, performance is close to our optimistic L2 bound.
Nevertheless, the model suggests that the L3 bandwidth
is the true bottleneck while DRAM bandwidth does not
constrain performance for m ≥ 8. Conversely, the sparser
Nm8’s performance is well correlated with the DRAM
bandwidth bound for m ≤ 16 at which point the L3 and
DRAM bottlenecks reach parity.

Ultimately, our Roofline model tracks the perfor-
mance trends well and highlights potential bottlenecks
— DRAM, L3, and L2 bandwidths and capacities — as
one transitions to larger m or larger and sparser matrices.

5.3 Performance of Tall-Skinny Matrix Operations
In Fig. 8, we analyze the performance of our custom
inner product (V TW) and linear combination (V C) op-
erations proposed as alternatives to the BLAS library
calls for tall-skinny matrices. As mentioned in Sect. 4,
our custom implementations still rely on the library
dgemm calls to perform multiplications between small
matrix blocks. Hence, we report the performance of two
different versions, Custom/MKL based on MKL dgemm,
and Custom/LibSci based on the LibSci dgemm.

As shown in Fig. 8, we obtain significant speedups
over MKL and LibSci in computing V TW . Both of
our custom V TW kernels exhibit a similar performance
profile and outperform their library counterparts signif-
icantly. The speedups we obtain range from about 1.7×
(for larger values of m) up to 10× (for m ≈ 16). As

small m values are common in an application like MFDn,
this represents a significant performance improvement
for LOBPCG over using the library dgemm. However,
for the V C kernel, we do not observe speedups from
our custom implementations (Fig. 8) – they closely track
the performance of their library counterparts. In fact, for
larger values of m, the Custom/MKL implementation is
outperformed slightly by MKL. While l was fixed at 1 M
for these tests, we observed similar results in other cases
(l=10 K, 100 K, and 500 K).

Applying the (regular) Roofline model to the tall-
skinny matrix kernels reveals that while the performance
of these kernels are memory-bound for small values
of m, they do not attain a performance close to the
expectations when m > 16. A key observation here is
that the overall performance of both kernels are sig-
nificantly higher for larger m values. Since LOBPCG
contains operations with multiple blocks of vectors, i.e.,
Ψi, Ri, Pi, one potential optimization is to combine these
3 blocks of vectors into a single l×3m matrix. In this case,
the 18 inner product operations on l×m matrices would
be turned into 2 separate inner products with l × 3m
matrices. As the Custom bundled curve shows in Fig. 8, the
additional performance gains are significant for V TW ,
achieving up to 15× speedup compared to the library
counterparts. However, the linear combination operation
V C does not benefit from bundling as much as the inner
product does. For V C, the improvements we observe are
limited to a factor of 1.5 for values of m ranging from 12
to 48. The main reason behind the limited performance
gains in this case is that the tall-skinny matrix products
can be converted into dgemm’s of dimensions l×3m and
3m×m, as opposed to being extended to 3m in all shorter
dimensions as in the case of V TW .

5.4 Putting it Altogether
We now demonstrate the benefits of an architecture-
aware eigensolver implementation in actual CI prob-
lems. MFDn’s existing solver uses the Lanczos algorithm
with full orthogonalization (Lanczos/FO) for numerical
stability and good convergence. We implemented the
LOBPCG algorithm in MFDn using the optimized SpMM
and tall-skinny matrix kernels described above. The
distributed memory implementations for both solvers
are similar and use the 2D partitioning scheme described
in Sect. 2.2 and in more detail in [32].

Beyond optimizing the kernels, there are a number of
key issues that need to be considered to leverage the full

11

0

30

60

90

120

150

180

210

240

1 4 8 12 16 24 32 48 64 80 96

GF
lo
p/
s

#vectors	(m)

VTW	- Roofline
VTW	- Intel	MKL
VTW	- Cray	libsci
Custom	VTW/MKL
Custom	VTW/libsci
Custom	VTW	bundled

0

30

60

90

120

150

180

210

240

1 4 8 12 16 24 32 48 64 80 96

GF
lo
p/
s

#vectors	(m)

VC	- Roofline
VC	- Intel	MKL
VC	- Cray	libsci
Custom	VC/MKL
Custom	VC/libsci
Custom	VC	bundled

Fig. 8: Performance of the inner product
V TW (top), and linear combination V C
(bottom) operations, using Intel MKL,
Cray LibSci, and our custom implemen-
tations on Edison. Tall-skinny matrix
sizes are l×m, where l = 1 M. Regular
roofline is used to model the performance
with vector blocks of width m, therefore it
sometimes runs below the bundled kernel
performance which uses vector blocks of
width 3m.

benefits of LOBPCG. These include the choice of initial
eigenvector guesses, the design of a preconditioner to
accelerate convergence, and suitable data structures for
combining the optimized SpMM and tall-skinny kernels.
Full details and analyses of initial guesses and precondi-
tioning techniques used are discussed by Shao et al. [35].
We describe them briefly here:
• Initial Guesses: CI models with truncations smaller than

the target Nmax result in significantly smaller problem
sizes. Roughly speaking, reducing Nmax by 2 (sub-
sequent truncations must be evenly separated) gives
an order of magnitude reduction in matrix dimen-
sions. We observe that eigenvectors computed with
smaller Nmax values provide good approximations to
the eigenvectors in the target model space, so we
solve the eigenvalue problem of the smaller Nmax

first and use these results as initial guesses to our
target problem. This idea can be applied recursively
for additional performance benefits.

• Preconditioning: Preconditioners transform a given
problem into a form that is more favorable for iterative
solvers, often by reducing the condition number of the
input matrix. To be effective in large-scale computa-
tions, a preconditioner must be easily parallelizable
and computationally inexpensive to compute and ap-
ply, while still providing a favorable transformation.
We build such a preconditioner in MFDn by comput-
ing crude approximations to the inverses of the diag-
onal blocks of the Hamiltonian (easy to parallelize).
The diagonal blocks in CI typically contain very large
nonzeros (important for a quality transformation).

• Bundling Blocks of Vectors: While bundling all three
blocks of vectors into a single, but thicker tall-skinny
matrix is favorable for LOBPCG (see Sect. 4), this
would harm the performance of the SpMM and
SpMMT operations as the locality between consecutive
rows of input and output vectors would be lost. A
work around to this problem is to copy the input
vectors Ψi from the vector bundle into a separate
block of vectors at the end of LOBPCG (in preparation
for SpMM), and then copy HΨi back into the vector
bundle after SpMMT (in preparation for LOBPCG).
Our experiments show that overheads associated with
such copies are small compared to the gains obtained
from bundled V TW and V C operations, hence we
opt to bundle the blocks of vectors in LOBPCG into
a single one in our implementation.

Problem 10B, Nm6 10B, Nm7 10B, Nm8
Dimension (in millions) 12.06 44.87 144.06

Nonzeros (in billions) 5.48 26.77 108.53
nev (m for LOBPCG) 8 (12) 8 (12) 8 (12)

residual tolerance 1e-6 1e-6 1e-6
MPI ranks (w/6 omp threads) 15 66 231

Lanczos Iterations 240 320 240
SpMVs 240 320 240

Inner Products 28,800 51,200 28,800
LOBPCG Iterations 28 48 38

SpMVs 324 548 428
Inner Products 72,656 121,296 93,936

TABLE 3: Statistics for the full MFDn matrices used in distributed
memory parallel Lanczos/FO and LOBPCG executions.

• Alignment/Padding: If vector rows are not aligned with
the 32 byte boundaries, the overall performance of
the solver is significantly reduced due to the presence
of unpacked vector instructions. Hence we set the
initial basis dimension m for LOBPCG such that m
is a multiple of 4 to ensure vectorization at least with
SSE instructions – when m is a multiple of 8, AVX
instructions are automatically used, but forcing m to
always be a multiple of 8 introduces overheads not
compensated by AVX vectorization. Despite setting m
to be a multiple of 4 initially, as LOBPCG iterations
are performed, eigenvectors start converging one by
one and they need to be locked (deflated) when they
do so. To prevent the basis size from shrinking to
a non-multiple of 4 and maintain good performance
throughout, we shrink the basis only when the number
of active vectors decreases to a smaller multiple of
4, while replacing the converged eigenvectors with 0-
vectors in the meantime.

Our testcases to compare the eigensolvers are the
full 10B problems with Nmax truncations of 6, 7 and 8,
seeking 8 eigenpairs in all cases. Table 3 gives more de-
tails for the testcases and the distributed memory runs.
We executed the MPI/OpenMP parallel solvers using 6
threads/rank (despite having 12 cores/socket), because
the MPI library on Edison currently supports only se-
rialized MPI communications by multiple threads (i.e.,
MPI_THREAD_SERIALIZED mode). Using 12 threads
per rank resulted in not being able to fully saturate the
network injection bandwidth, and therefore increased
communication overheads in both cases.

In Fig. 9, we break down the overall timing

12

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0

20

40

60

80

100

120

140

160

180

Nm6 Nm7 Nm8

Ti
m
e	
(s
)

Tallreduce
Tcolumn-comm
Ortho/RR
Precond
SpMV/SpMM
Speedup

Fig. 9: Comparison and detailed breakdown of the time-to-solution
using the new LOBPCG implementation vs. the existing Lanczos/FO
solver. Nm6, Nm7 and Nm8 testcases executed on 15, 66, and 231
MPI ranks (6 OpenMP threads per rank), respectively, on Edison.

into the following parts: sparse matrix computations
(SpMV/SpMM), application of the preconditioner (Pre-
cond), orthonormalization for Lanczos and Rayleigh–
Ritz procedure for LOBPCG (Ortho/RR), communica-
tions among column groups of the 2D processor grid
(Tcol−comm)—row communications are fully overlapped
with (SpMV/SpMM) [32], and finally MPI_Allreduce
calls needed for reductions during Ortho/RR step
(Tallreduce). The solve times for smaller Nmax truncations
to obtain the initial LOBPCG guesses are included in the
execution times in Fig. 9.

We observe that our LOBPCG implementation con-
sistently outperforms the existing Lanczos solver by
a factor of 1.7×, 1.8×, and 1.4× for the Nm6, Nm7
and Nm8 cases, respectively. Although LOBPCG re-
quires more SpMVs overall for convergence (see Table 3),
the highly optimized SpMM/SpMMT kernels and tall-
skinny matrix computations allows LOBPCG to outper-
form the Lanczos solver. Since two threads in a socket
(one per MPI rank) are used to overlap communications
with SpMM computations, the peak SpMM flop rate
during the eigensolver iterations is slightly lower than
those in Fig. 7. For LOBPCG computations though, we
observe that V TW and V C kernels execute at rates in
line with those in Fig. 8. We remark that without the
preconditioner and initial guess techniques we adopted,
LOBPCG’s slow convergence rate leads to similar or
worse solution times compared to Lanczos/FO, wiping
out the gains from replacing SpMVs with SpMMs (for a
detailed analyses, please see Shao et al. [35]). In this re-
gard, for nuclear CI calculations, inexpensive solves with
smaller Nmax truncations and low cost preconditioners
are crucial for the performance benefits observed with
LOBPCG.

In Table 3, we also show the total number of inner
products required by both solvers. The LOBPCG algo-
rithm relies heavily on vector operations as discussed
in Sect. 4 and evidenced by the total number of inner
products reported here. So despite the use of Lanczos
with full orthogonalization, LOBPCG requires more in-
ner products overall. In addition, a smaller but still sig-
nificant number of linear combination operations, as well

as solutions of small eigenvalue problems are required
for LOBPCG. Cumulatively, these factors lead to a com-
putationally expensive Ortho/RR part for the LOBPCG
solver. So despite using highly optimized BLAS 3 based
kernels in LOBPCG, we observe that the time spent
in Ortho/RR part is comparable for Lanczos/FO and
LOBPCG. Finally, in the larger runs, i.e., Nm7 and Nm8,
we observe that Lanczos/FO solver incurs significant
Tallreduce times, possibly due to slight load imbalances
exacerbated by frequent synchronizations. On the other
hand, Tallreduce times are much lower for LOBPCG (an
expected consequence of the fewer iteration counts), but
LOBPCG’s Tcol−comm are significantly higher due to the
larger volume of communication required in this part.

5.5 Evaluation on Xeon Phi Knights Corner (KNC)
Our performance evaluation on Xeon Phi is limited to
the isolated SpMM and tall-skinny matrix kernels due
to MFDn’s large memory requirements and the limited
device memory available on the KNC (which was used
in the native mode as a proxy for the upcoming Knights
Landing architecture). We used the same testcases as
before, and experimented with 30, 60, 120, 180, and 240
threads to determine the ideal thread count. We obtained
the best performance with 120 threads for both SpMM
and tall-skinny matrix kernels and report those results.

Comparing the average SpMM GFlop rates on KNC
(given in Fig. 10) with the Ivy Bridge (IB) Xeon, we see
that the peak performance on KNC is much lower (as
much as 3× for Nm6, m = 12, for instance) than that
on IB for all cases. This is likely due to the significantly
smaller cache space available per KNC thread. In any
case, we can clearly see that the CSB/OpenMP imple-
mentation delivers significantly better performance than
traditional CSR and Rowpart implementations, as it did
on IB. On KNC, we also observe the pattern of increased
performance with increasing values of m values. But
unlike IB where the use of SSE vs AVX vectorization did
not make a significant difference (see the similar GFlop
rates for m = 12 and m = 16 in Fig. 7), on KNC utilizing
packed AVX-512 vectorization is crucial as indicated by
the sharp performance drop in going from m = 16 to
m = 24. We utilize the same extended Roofline model as
before, but KNC does not offer a shared L3 cache. Since
the data movement into the L2 cache is from the device
memory, the device memory bandwidth is used in this
case, and the corresponding curve in Fig. 10 is marked
as Roofline (L2-DRAM) to distinguish it from the regular
Roofline model. With KNC’s high bandwidth memory
and limited cache space, original DRAM Roofline gives a
very loose bound, and so does the plain L2 Roofline. But
L2-DRAM Roofline provides a relatively tight envelope.

For the tall-skinny matrix operations, we only present
results using the MKL library as LibSci was not available
on KNC. In Fig. 11, we observe that our custom V TW
kernel significantly outperforms MKL’s dgemm (up to
25×). Custom/Bundled implementation gives important
performance gains for 8 < m < 48. For the V C

13

0

10

20

30

40

50

60

70

80

90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
Rowpart/OpenMP
CSR/OpenMP
Roofline (DRAM)
Roofline (L2-DRAM)
Roofline (L2)

0

10

20

30

40

50

60

70

80

90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
Rowpart/OpenMP
CSR/OpenMP
Roofline (DRAM)
Roofline (L2-DRAM)
Roofline (L2)

0

10

20

30

40

50

60

70

80

90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
Rowpart/OpenMP
CSR/OpenMP
Roofline (DRAM)
Roofline (L2-DRAM)
Roofline (L2)

Fig. 10: SpMM and
SpMMT combined
performance results on
Babbage using the Nm6,
Nm7 and Nm8 matrices
(from left to right) as
a function of m (the
number of vectors).

kernel however, our custom implementations provide
only slight improvements over MKL. Overall, the perfor-
mance achieved for both kernels is very low compared to
the peak performance predicted by the Roofline model.

The poor performance observed for SpMM and tall-
skinny matrix operations on KNC suggests that further
optimizations are necessary to achieve good eigensolver
performance on future systems.

6 CONCLUSIONS

Block eigensolvers are favorable alternatives to SpMV-
based iterative eigensolvers for modern architectures
with a widening gap between processor and memory
system performance. In this study, we focused on the
sparse matrix multiple vectors product (SpMM, SpMMT)
and tall-skinny matrix operations (V TW , V C) that con-
stitute the key kernels of a block eigensolver. Using
many-body nuclear Hamiltonian test matrices extracted
from MFDn, we demonstrated that the use of the Com-
pressed Sparse Blocks (CSB) format in conjunction with
manual unrolling for vectorization and tuning can im-
prove SpMM and SpMMT performance by up to 1.5×
and 4×, respectively, on modern multi-core processors.
As block eigensolvers are sufficiently compute-intensive,
the DRAM bandwidth may be relegated to a secondary
bottleneck. We presented an extended Roofline model
that captures the effects of L2 and L3 bandwidth limits
in addition to the original DRAM bandwidth limit.
This extended model highlighted how the performance
bottleneck transitions from DRAM to the L3 bandwidth
for large m values or sparser matrices.

Contrary to the common wisdom, we observe that
simply calling dgemm in optimized math libraries does
not suffice to attain high flop rates for tall-skinny ma-
trix operations in block eigensolvers. Through custom
thread-parallel implementations for inner product and
linear combination operations and bundling separate
vector blocks into a single large block, we have obtained
1.2× to 15× speedup (depending on m and the type of
operation) over MKL and LibSci libraries.

By integrating our optimized kernels with effective ini-
tial guesses and preconditioners into an actual CI code,
MFDn, we demonstrated significant speedups using the
block eigensolver LOBPCG over an existing Lanczos
solver. This case study, albeit being limited to a few test
cases, provides a good benchmark for typical CI calcu-
lations and demonstrates that block solvers can better
serve the needs of large scale scientific computations on

modern architectures due to the widening gap between
chip vs. DRAM performance.

Finally, we explored the performance of proposed ker-
nels on the KNC many-core processor. Despite its higher
peak rate, the limited cache space and increased core
counts led to poor performance compared to Xeon CPUs,
indicating a need for further performance optimization
work. In fact, in the future, we plan on conducting
detailed scaling, analysis, and optimization of block
eigensolvers on many-core and GPU architectures, as
there are major challenges to effectively utilize increased
parallelism, while working with limited cache space and
a multi-level memory hierarchy.

ACKNOWLEDGMENTS
This research was supported by the U.S. DOE’s ASCR and NP Offices
as part of the Applied Mathematics Program and Scientific Discovery
through Advanced Computing (SciDAC) Program, which involves
the NUCLEI Project (grant DESC0008485), the FASTMath Institute,
and the SUPER Institute. The computational work was performed
at NERSC. Funding for Lawrence Berkeley National Laboratory was
provided under contract DE-AC02-05CH11231 and funding for Iowa
State University was provided through grant DE-FG02-87ER40371.

REFERENCES
[1] X. Liu, E. Chow, K. Vaidyanathan, and M. Smelyanskiy, “Improv-

ing the performance of dynamical simulations via multiple right-
hand sides,” in IEEE International Parallel & Distributed Processing
Symposium (IPDPS). IEEE, 2012, pp. 36–47.

[2] G. H. Golub and C. F. Van Loan, Matrix computations, 4th ed.
Johns Hopkins University Press, 2013.

[3] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide:
Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods. SIAM, 1998.

[4] K. Wu and H. Simon, “Thick-restart Lanczos method for large
symmetric eigenvalue problems,” SIAM Journal on Matrix Analysis
and Applications, vol. 22, no. 2, pp. 602–616, 2000.

[5] A. Stathopoulos and Y. Saad, “Restarting techniques for the
(Jacobi–)Davidson symmetric eigenvalue methods,” Electronic
Transactions on Numerical Analysis, vol. 7, pp. 163–181, 1998.

[6] G. H. Golub and R. Underwood, “The block Lanczos method for
computing eigenvalues,” Mathematical Software, vol. 3, pp. 361–
377, 1977.

[7] A. Stathopoulos and J. R. McCombs, “A parallel, block, Jacobi–
Davidson implementation for solving large eigenproblems on
coarse grain environment,” in PDPTA, 1999, pp. 2920–2926.

[8] A. V. Knyazev, “Toward the optimal preconditioned eigen-
solver: Locally optimal block preconditioned conjugate gradient
method,” SIAM Journal on Scientific Computing, vol. 23, no. 2, pp.
517–541, 2001.

[9] Y. Saad, “On the rates of convergence of the Lanczos and the
block-Lanczos methods,” SIAM Journal on Numerical Analysis,
vol. 17, no. 5, pp. 687–706, 1980.

[10] A. Pinar and M. T. Heath, “Improving performance of
sparse matrix–vector multiplication,” in Proceedings of the 1999
ACM/IEEE conference on Supercomputing. ACM, 1999, p. 30.

[11] E.-J. Im, “Optimizing the performance of sparse matrix–vector
multiplication,” Ph.D. dissertation, UC Berkeley, 2000.

14

0

150

300

450

600

750

900

1050

1 4 8 12 16 24 32 48 64 80 96

GF
lo
p/
s

#vectors	(m)

VTW	Roofline
VTW	- Intel	MKL
Custom	VTW/MKL
Custom	VTW	bundled

0

150

300

450

600

750

900

1050

1 4 8 12 16 24 32 48 64 80 96

GF
lo
p/
s

#vectors	(m)

VC	- Roofline
VC	- Intel	MKL
Custom	VC/MKL
Custom	VC	bundled

Fig. 11: Performance of V TW
(left) and V C (right) kernels,
using the MKL library, as well
as our custom implementations
on an Intel Xeon Phi processor.
Local vector blocks are l × m,
where l = 1 M.

[12] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of
automatically tuned sparse matrix kernels,” in Journal of Physics:
Conference Series, vol. 16, no. 1. IOP Publishing, 2005, p. 521.

[13] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Dem-
mel, “Optimization of sparse matrix–vector multiplication on
emerging multicore platforms,” in Proc. SC2007: High Performance
Computing, Networking, and Storage Conference, 2007.

[14] S. Williams, “Auto-tuning performance on multicore computers,”
Ph.D. dissertation, University of California, Berkeley, 2008.

[15] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop,
“A unified sparse matrix data format for efficient general sparse
matrix-vector multiplication on modern processors with wide
simd units,” SIAM Journal on Scientific Computing, vol. 36, no. 5,
pp. C401–C423, 2014.

[16] S. Williams, A. Watterman, and D. Patterson, “Roofline: An
insightful visual performance model for floating-point programs
and multicore architectures,” Comm. of the ACM, April 2009.

[17] W. Gropp, D. Kaushik, D. Keyes, and B. Smith, “Toward realistic
performance bounds for implicit CFD codes,” in Proceedings of
parallel CFD, vol. 99, 1999, pp. 233–240.

[18] J.-H. Byun, R. Lin, K. A. Yelick, and J. Demmel, “Autotuning
sparse matrix–vector multiplication for multicore,” Technical re-
port, EECS Department, University of California, Berkeley, Tech.
Rep., 2012.

[19] M. Röhrig-Zöllner et al., “Increasing the performance of the
Jacobi–Davidson method by blocking,” SIAM Journal on Scientific
Computing, vol. 37, no. 6, pp. C697–C722, 2015.

[20] H. Anzt, S. Tomov, and J. Dongarra, “Energy efficiency and
performance frontiers for sparse computations on gpu super-
computers,” in Proceedings of the sixth international workshop on
programming models and applications for multicores and manycores.
ACM, 2015, pp. 1–10.

[21] H. M. Aktulga, A. Buluç, S. Williams, and C. Yang, “Opti-
mizing sparse matrix-multiple vectors multiplication for nuclear
configuration interaction calculations,” in Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International. IEEE, 2014,
pp. 1213–1222.

[22] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and E. Leiserson,
“Parallel sparse matrix–vector and matrix-transpose–vector mul-
tiplication using compressed sparse blocks,” in SPAA, 2009, pp.
233–244.

[23] P. Maris, M. Sosonkina, J. P. Vary, E. Ng, and C. Yang, “Scaling
of ab-initio nuclear physics calculations on multicore computer
architectures,” Procedia Computer Science, vol. 1, no. 1, pp. 97 –
106, 2010.

[24] P. Maris, H. M. Aktulga, S. Binder, A. Calci, Ü. V. Çatalyürek,
J. Langhammer, E. Ng, E. Saule, R. Roth, J. P. Vary et al., “No-Core
CI calculations for light nuclei with chiral 2-and 3-body forces,”
Journal of Physics: Conference Series, vol. 454, no. 1, p. 012063, 2013.

[25] P. Sternberg, E. G. Ng, C. Yang, P. Maris, J. P. Vary, M. Sosonkina,
and H. V. Le, “Accelerating configuration interaction calculations
for nuclear structure,” in Proceedings of the 2008 ACM/IEEE confer-
ence on Supercomputing. IEEE Press, 2008, pp. 1–15.

[26] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang, “Parallel
spectral clustering in distributed systems,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 568–
586, 2011.

[27] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[28] M. W. Berry, “Large-scale sparse singular value computations,”
International Journal of Supercomputer Applications, vol. 6, no. 1, pp.
13–49, 1992.

[29] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” JASIS,
vol. 41, no. 6, pp. 391–407, 1990.

[30] H. Zha, O. Marques, and H. D. Simon, “Large-scale SVD and
subspace methods for information retrieval,” in Solving Irregularly
Structured Problems in Parallel. Springer, 1998, pp. 29–42.

[31] H. M. Aktulga, C. Yang, E. Ng, P. Maris, and J. Vary, “Topology-
aware mappings for large-scale eigenvalue problems,” in Euro-Par
2012 Parallel Processing, ser. Lecture Notes in Computer Science
(LNCS), vol. 7484, 2012, pp. 830–842.

[32] H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary,
“Improving the scalability of symmetric iterative eigensolver for
multi-core platforms,” Concurrency and Computation: Practice and
Experience, vol. 26, pp. 2631–2651, 2013.

[33] A. V. Knyazev, “Toward the optimal preconditioned eigen-
solver: Locally optimal block preconditioned conjugate gradient
method,” SIAM Journal on Scientific Computing, vol. 23, no. 2, pp.
517–541, 2001.

[34] J. Fang, H. Sips, L. Zhang, C. Xu, Y. Che, and A. L. Varbanescu,
“Test-driving Intel Xeon Phi,” in 5th ACM/SPEC International
Conference on Performance Engineering. ACM, 2014, pp. 137–148.

[35] M. Shao, H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and
J. P. Vary, “Accelerating nuclear configuration interaction calcula-
tions through a preconditioned block iterative eigensolver,” arXiv
preprint arXiv:1609.01689, 2016.

Hasan Metin Aktulga (PhD Purdue University, 2010) is an Assistant
Professor of Computer Science and Engineering at Michigan State
University. His research interests are in the areas of high performance
computing, scientific computing, and numerical linear algebra.

Md. Afibuzzaman is a graduate student in the Department of Computer
Science and Engineering at Michigan State University. His work on high
performance computing and scientific computing.

Samuel Williams (PhD UC Berkeley, 2008) is a staff scientist in the
Performance and Algorithms Research Group at the Lawrence Berke-
ley National Laboratory (LBNL). His research interests include high-
performance computing, auto-tuning, performance modeling, computer
architecture, and hardware/software co-design.

Aydın Buluç (PhD UCSB, 2010) is a Staff Scientist at LBNL. He works
on high-performance graph analysis, parallel sparse matrix computa-
tions, communication-avoiding algorithms, with applications in computa-
tional genomics and biology. Previously, he was an Alvarez Fellow.

Meiyue Shao (PhD EPFL, 2014) is a postdoctoral fellow in the Scalable
Solvers Group at LBNL. His interests are numerical linear algebra and its
applications, high performance computing and mathematical software,
and electronic structure calculations.

Chao Yang (PhD Rice University, 1998) joined LBNL in 2000, and
is currently a Senior Scientist. His expertise is in numerical linear
algebra, optimization, large-scale data analysis and high performance
computing.

Esmong Ng (PhD University of Waterloo, 1983) is currently the Head
of the Applied Mathematics Department at LBNL. He has more than 35
years of experience in high-performance numerical algorithms and sci-
entific computing, including 30 years of working with and at Department
of Energy national laboratories.

Pieter Maris (PhD University of Groningen, 1993) is a Research
Associate Professor at the Dept. of Physics and Astronomy at Iowa
State University. His research interests are in the area of computational
nuclear physics.

James Vary (PhD Yale University, 1970) is a Professor of Physics at
Iowa State University. His research activities span strong interaction
physics from ab-initio nuclear structure theory to include fundamental
tests of nature’s symmetries and to nuclear applications of Quantum
Chromodynamics (QCD).

