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Why Resource Disaggregation
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Expensive resources are consistently underutilized

NERSC’s Perlmutter CPU Nodes

J Li et al., “Analyzing Resource Utilization in an HPC System: A Case Study of NERSC’s Perlmutter”
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Reminder: NERSC’s Workload

4300 active users. 850 projects. 10 codes make up 50% of the workload. 50 codes 84%.
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https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
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Intra-rack resource 

disaggregation achieves most of 

the benefit with a fraction of the 

overhead
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J Li et al., “Analyzing Resource Utilization in an HPC System: A Case Study of NERSC’s Perlmutter”, 

ISC 2023

Michelogiannaks et al., “A Case for Intra-Rack Resource-Disaggregation in HPC”, ACM TACO 2022



Presentation Title | BERKELEY LAB

Targets of Memory Disaggregation Hardware

• Satisfy each chip’s maximum escape bandwidth

• Achieve comparable BER with today’s HPC systems

– Less than 10-18

– We use forward error correction (FEC) and take into 

account its latency

• Minimize energy overhead

• Minimize latency overhead

– Will be imposed to latency-sensitive communication 

such as to and from memory
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Our design goals
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NERSC’s Perlmutter GPU Rack

Study based on NERSC’s Perlmutter 

rack:

• 128 GPU accelerated nodes

• Each node has one AMD Milan 

CPU

• Eight 3200 MHz DDR4 modules 

per CPU

• Four NVIDIA Ampere A100 GPUs

• Each GPU has 40 GB of co-

located HBM
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With Emerging Co-Packaged Photonics

• To maximize bandwidth density, we use prototypes of dense 

wavelength division multiplexed links that are co-packaged

– Bandwidths range from 100 Gbps to 2 Tbps

– Rely on silicon comb laser sources
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To maximize bandwidth density and meet goals

Comb laser source provides

multiple frequencies

Rings modulate different

frequencies
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Embedded Photonic Connectivity
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CPUs, 

GPUs or 

router
Comb source
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Building up a Rack Using MCMs
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Demonstrated in 2.5D and 3D. Can use UCIe or CXL
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Building up a Rack Using MCMs With Integrated Photonics
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Demonstrated in 2.5D and 3D. Can use UCIe or CXL

Per MCM: 32 fibers, 64 wavelengths, 25 Gbps per 

wavelength
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Photonic Switch At the Center of a Blade
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Building Up a Rack
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Types of Photonic Switches
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Reconfigurable spatial or all-to-all arrayed waveguide grating routers (AWGRs)

B Lin., “Generalization of an Optical ASA Switch”, 2019

Q Cheng et al., “Photonic 

Switching in High Performance 

Datacenters”, 2018
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Optical Switch State of the Art

• Some switches can achieve more than 25 Gbps per wavelength. We pessimistically 

use 25 Gbps for all

• We also included wave-selective (few-to-few)
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Switch Type State of the art

Switch Radix Cascaded AWGRs

Spatial / Wave selective

370

256

Gbps per wavelength All switches 25

Wavelengths per port Cascaded AWGRs

Spatial / Wave Selective

370

256
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Spatial Switches

• Quantization of bandwidth

– I.e., too much bandwidth 

between some sources, 

and none between others

• Have to be reconfigured

– Requires control plane 

and downtime

AWGRs

• Low point-to-point bandwidth

– Poor bandwidth utilization

• Expected to be smaller-radix

– Spatial switches likely to 

grow in radix faster

Challenges With Optical Switches
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Neither spatial nor AWGR are a perfect fit

Can we design our rack with AWGRs to avoid reconfiguring spatial switches?
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Indirect Routing to Increase AWGR Point-to-Point BW

If an endpoint’s 

wavelength to the desired 

destination is already in 

use, the endpoint picks an 

intermediate source 

whose wavelength to the 

destination is available
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Local decisions. Have to broadcast or piggyback congestion information
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Multiple Parallel AWGRs Satisfy Full Escape BW

• 125 Gbps suffices 99.5% of the time between CPU and memory

– That means, no indirect routing 99.5% of the time

• GPUs use more bandwidth but many pairs (i.e., HBM to HBM) use 

no bandwidth. After analysis, the probability that no indirect path 

exists is negligible
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At least five wavelengths between any MCM pair. Thus, 125 Gbps
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Additional Latency is 35ns

• Target reach for a rack is no more than 

4 meters

– Therefore, 20ns of propagation 

delay max

• 10ns for serialization delay for 200 

Gbps

• FEC (lightweight) latency 2-3ns

• Total: We assume 35ns of end-to-end 

photonic latency
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Slowdown for Out of Order (OOO) CPUs
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Improving latency with better hardware is important
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For NVIDIA A100 GPUs
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Why Photonics: Compared to Electronic Switches
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Electronic switches add 85ns latency (latest PCIe and Anton 3 networks)
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Other Results

• Rack power overhead approximately 5%

• Intra-rack disaggregation preserves system throughput 

and reduces memory modules by 4x and NICs by 2x

22
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Questions?
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