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By Langston Hughes, 1951

What happens to a dream deferred?
Does it dry up

like a raisin in the sun?

Or fester like a sore—

And then run?

Does it stink like rotten meat?

Or crust and sugar over—

like a syrupy sweet?

Maybe it just sags
like a heavy load.

Or does it explode?


http://hdl.loc.gov/loc.pnp/cph.3b38891
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Pioneers in Science and Technology Series: John Backus, 1984
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The Fortran Automatic Coding System fort he IBM 704,
the first programmer’s reference manual for Fortran
(Public Domain)
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“Fortran is a new and exciting language
used by programmers to communicate
with computers. It is exciting as it is the
wave of the future.”

Character of Dorothy Vaughan,

a NASA mathematician and programmer,
as played by Octavia Spencer in

Hidden Figures (20th Century Fox, 2016).
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1977 Turing Award Lecture:
“Can Programming be Liberated from the von Neumann
Style? A Functional Style and lts Algebra of Programs”

Can Programming Be Liberated from th
Neumann Style? A Functional Style and Its
Algebra of Programs

Jabi Bavhes
TBM Rovcarch | abaralory. San fusc

Backus, J., Communications of the ACM, August 1978, 21:8
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Rumors of Fortran’s Demise...

Retire Fortran? A Debate Rekindled 2 Programming Alternatives

In 1984, McGraw noted that by all indications fu-
ture supercomputers would be multiprocessors. To-
day, most supercomputer users and vendors agree.
But can programmers take advantage of the horse-

David Cann
Computing Research Group, L-306
Lawrence Livermore National Laboratory
P.O. Box 808, Livermore, CA 94550

cann@Ill-crg.llnl.gov

Abstract

In the May 1984 issue of Physics Today, Jim McGraw
debated David Kuck and Michael Wolfe on the ques-
non of retu-mg FORTRAN. They a.ddressed such ques-

July 24, 1991
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cause of today’s software crisis. We be|
Graw in 1984, that increased product
utility, portability, and performance
ble if programmers avoid the constr3
tive la.nguages and adopt a hxghcr leve

model to the imperative model of FORTRAN. To be-
gin, we list the desired characteristics of a true parallel
programming language [1]:

1. The language must insulate the programmer
from the underlying machine. Deriving and ex-
pressing a parallel algorithm is hard enough; one
should not have to reprogram it for each new
machine.

. Parallelism must be implicit in the semantics of
the language. The compilation system should
not have to unravel the behavior of the compu-
tation.

. When a programmer desires determinancy, the
language should guarantee it. Regardless of the
conditions of execution, a program that realizes
a determinate algorithm should yield the same
results for the same data.

Of the three items, the last is an issue only when
automatic parallelizing compilers are not available and
the programmer is responsible for expressing and man-
aging parallelism. Programmers will make mistakes,
and these mistakes may remain hidden until system
activity changes the rate of execution. This is all
we will say about determinancy, as most parallel ma-
chines support automatic parallelizing compilers.

Regarding the first two items, however, imperative
languages fail to meet the requirements. Remember
that languages like FORTRAN were designed to exploit
von Neumann machines. As such their computational
model assumes that a single program counter will step

For example, consider the following FORTRAN ex-
cerpt:

Foo(X)
Goo(Y)

Determining if these statements can execute in par-
allel requires a full understanding of both functions.
Because of COMMON blocks, they might share data.
Further, because of aliasing, some combination of X, ¥,
A, or B might represent the same memory cell. Hence
the parallelism in this excerpt is not immediately obvi-
ous, and its discovery requires interprocedural analysis
or function expansion.

Functional languages, on the other hand, meet all
the requirements listed above and do not require anal-
ysis for the discovery of parallelism [1,11,13,14].
functional program is a collection of mathematically
sound expressions comprised of both intrinsic and user
defined functions. These functions are well defined and
determinate. That is, they define a unique mapping
between their domain and their range. A function
passed the same set of values will yield the same results
regardless of the environment of invocation. This es-
tablishes referential transparency, which implies that
the evaluation of an expression, or the sharing of its
subexpressions, does not change the value it denotes.
Consequently, expressions are side effect free. The
concept of a FORTRAN COMMON block does not ex-
ist. In the absence of side effects, programmers cannot
see the target machine; the concept of data replaces
memory, and the concept of creation replaces update.
Further, in the absence of side effects, programs are
implicitly parallel.
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Single Program Multiple Data (SPMD) parallel execution

— Synchronized launch of multiple “images” (process/threads/ranks)

— Asynchronous execution except where program explicitly synchronizes
— Error termination or synchronized normal termination

@® [ ] rouson — vim hi.f90 — 67x5

1 frogram main
2 implicit none
3 print *,"Hello from image ", this_image(), "of", num_images()

4 end program
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Image 1

(eoe rouson — vim NLIDO — 67x8.
1 Program main
2 implicit none
3 print *,"Hello from image ", this_image(), "of", num_images()

4 end program Image 2

. L] rouson — vim N.IDO — 67x8
1 frogram main
2 implicit none
3 print *,"Hello from image ", this_image(), "of", num_images()
4 end program

Time

l ‘print *,"Hello from image ", this_image(), "of", num_images()

‘print *,"Hello from image ", this_image(), "of", num_images() ‘ l

l end program
end program Image
control
statement

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.
v 2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

12
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Coarrays: cd fortran
make run-hello

— Distributed data structures — greeting
— Facilitate Remote Memory Access (RMA) — line 15

@® [ ] cuf23-tutorial — vim hello.f90 — 74x21
1 program main
2 !l One-sided communication of distributed greetings
3 implicit none
4 integer, parameter :: max_greeting_length=64, writer = 1
5 integer image
6  character(len=max_greeting_length) :: greeting[*] ! scalar coarray
7
8

associate(me => this_image(), ni=>num_images())

9

10 write(greeting,*) "Hello from image",me,"of",ni ! local (no "[]")
11 sync all ! image control

12

13 if (me == writer) then

14 do image = 1, ni

15 print *,greetinglimage] ! one-sided communication: "get"

16 end do

17 end if

18

19 end associate
20 end program



Additional Parallel

Features BERKELEYLAB .
Lo Teams of images can be formed at runtime.
L Collective subroutines: co {broadcast, sum, max, min, reduce}
L2 Atomic subroutines:
— atomic_ {define,ref,add, fetch add,..}
— Events: counting semaphores with post/wait/query operations
w

Failed/stopped image detection, locks, critical sections, ...
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L2 Coarray Fortran began as a syntactically small extension to Fortran 95:
— Square-bracketed “cosubscripts” distribute & communicate data

L2 Integration with other features:
—Array programming: colon subscripts

—OOP: distributed objects

Lo Minimally invasive:

® ) example — vim heat-equation.f90 — 87x17
—Drop brackets when not [l & "o e
communicating G xesl, sllocatable : halox(:, )]

1 dy_

r 1 west=1, east=2
'my nx, nx, ny, me, num_subdomains, my_internal_west, my_internal_east

L2 Communication is explicit:

jul jure exchange_halo
f (me 1) halo_x(east,:)[me-1] = self¥%s_(1,:)

- USG braCketS When Fme num subdomains) halo x(west,:)[m;l']. self¥%s_(my_nx,:)

communicating 81,1




PRIF

* Enable a compiler to target multiple

implementations of PRIF
— lL.e. enable a vendor to supply their
own parallel runtime

« Enable a PRIF implementation to be used
by multiple compilers

« |solate a compiler’s support of the parallel
features of the language from any particular
details of the communication infrastructure

*  Our group’s experience with UPC and
OpenCoarrays has shown this to be
valuable

PRIF

Compiled Fortran Code

Compiler Runtime

Parallel Runtime

Communication Library
(i.e. GASNet, MPIl, SHMEM, etc.)

Network Hardware
(InfiniBand, Slingshot, Aries, Omni-
Path, Ethernet, ...)
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Caffeine: CoArray Fortran Framework of Efficient

ofs to N X En

Caffeine

Co-Array Fortran Framework of Efficient Interfaces
to Network Environments

Lo Caffeine supports the parallel features of
Fortran 2018 for compilers.

w

Caffeine leverages GASNet-
EX, a high-performance
networking middleware that
undergirds a broad ecosystem
of languages, libraries, GASNet-EX

frameworks, and applications.

Application

Caffeine




GASNet-EX

GASNet-EX Ecosystem Microbenchmark: GASNet-EX vs MPI

10 T T T T T T T T T
g e q A 9 == % o B R S
Scientific Applications . / B
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coarrays 5 a
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In addition to the SPMD/PGAS features that work in shared or distributed memory,
several features facilitate expressing unordered sets of calculations amenable to
multithreading, vectorization, or accelerator offloading:

L do

9
10

concurrent + pure procedures, including elemental procedures

integer row, col
integer, parameter :: window=4, time=1

11
12 associate(rows => size(distance%body,1), cols => size(distance%body,2))
13 do concurrent(row=1:rows, col=1:cols)
14 associate(first_row => max(1, row-window), last_row=>min(row+window, rows))
15 distance%body(row,col) = minval(hypot( &
16 this%body(first_row:last_row, time) - rhs%body(row, time), &
17 this%body(first_row:last_row, col) - rhs%body(row, col) &
18 ))
19 end associate
20 end do 4t
21 end associate 45 where(rhs_filtered/=0._rkind)
oo 46 distance%body = distance%body/rhs_filtered
n 47 elsewhere
48 distance%body = 0.
L where statement 27 end where

\» Array statements + elemental procedures (intrinsic or user-defined):
matmul, reduce, transpose, dot product, merge, pack, unpack,
count, any, all, findloc, ...
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Use Case: Bringing Science Solutions to the World

- Large-batch, concurrent inference and in situ training of neural networks for high-
performance computing applications in modern Fortran.

Goals:
- To explore language-based parallelism, including GPU offloading.
- To simplify the workflow for training neural networks, i.e., eliminate the telephone game.

How:

- Afunctional programming style that facilitates concurrent inference across a large collection
of inputs using multiple specialized neural networks.

- Atraining algorithm that squeezes out most unnecessary programmer-imposed ordering of

Discussion D],S,S u$i19n ‘ DlSCUSilqn

'/ Import training R Y7 Import network
~ RunICAR and _~, data into PyTorch un nexport to - into ICAR via
Save Training Data and train neural |~ €XPOrt network to 5= ncerence-Engine

w JSON/ and validate

|
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Inference-Engine
""" BERKELEY LAB

Use Case: Bringing Science Solutions to the World

- Large-batch, concurrent inference and in situ training of neural networks for high-
performance computing applications in modern Fortran.

Goals:
- To explore language-based parallelism, including GPU offloading.
- To simplify the workflow for training neural networks, i.e., eliminate the telephone game.

How:

- Afunctional programming style that facilitates concurrent inference across a large collection
of inputs using multiple specialized neural networks.

- Atraining algorithm that squeezes out most unnecessary programmer-imposed ordering of

Runtime Training in ICAR

with embedded Inference- % o
Engine » ° —
e -
-
Rinse, Repeat... » \ i
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Ondfej Certik

FASTGPT: FASTER THAN PYTORCH IN 300 LINES

OF FORTRAN

March 14, 2023
Authors: Ondrej Certik, Brian Beckman

In this blog post | am announcing fastGPT, fast GPT-2 inference written in Fortran. In it, | show
1. Fortran has speed at least as good as default PyTorch on Apple M1 Max.
2. Fortran code has statically typed arrays, making maintenance of the code easier than with Python

3. Itseems that the bottleneck algorithm in GPT-2 inference is matrix-matrix multiplication. For physicists
like us, matrix-matrix multiplication is very familiar, unlike other aspects of Al and ML. Finding this
familiar ground inspired us to approach GPT-2 like any other numerical computing problem.

4. Fixed an unintentional single-to-double conversion that slowed down the original Python.

5. 1am asking others to take over and parallelize fastGPT on CPU and offload to GPU and see how fast
you can make it.

About one month ago, | read the blogpost GPT in 60 Lines of NumPy, and it piqued my curiosity. | looked at
the corresponding code (picoGPT) and was absolutely amazed, for two reasons. First, | hadn't known it could
be so simple to implement the GPT-2 inference. Second, this looks just like a typical computational physics
code, similar to many that | have developed and maintained throughout my career.

ps://tinyurl.com/fastgpt-by-certit




do k=1, lev
do j=1,lon
do i=1,1lat
outputs(i,j,k) = inference_engine%infer(inputs(i,j,k))
end do
end do
end do

do concurrent(i=1:1lat, j=1:1lon, k=1:lev)

outputs(i,j,k) = inference_engine%infer(inputs(i,j,k))
end do

outputs = inference_engine%infer(inputs) ! elemental

Al



Motility Analysis of T-Cell Histories in Activation (Matcha)

A parallel virtual T-cell model.

w Matcha tracks the stochastic T-cell motions according to multiple distributions of speeds and
angles, accounting for the dependence of speed on the turning angle and on the previous speed.

w T cells must mount a coordinated attack in order to avoid overwhelming the host tissue.

w The study of T-cell/T-cell interactions remains in its infancy [1].

w Some communication occurs via secreting soluble mediators, e.g., cytokines and chemokines.

w Matcha models mediator spread via a 3D diffusion equation:
Matcha Cc

¢t _ DVQQb Caffeine

GASNet' E Y

where ¢; = 0¢/0t.

System Runtime & Memory

[1]L.F. Uhl and A. Ge'rard A. “Modes of communication between T cells and relevance for

25
immune responses.” Int. J. Mol. Sci. 2020, 21, 2674; doi:10.3390/ijms21082674

Presentation Title | BERKELEY LAB
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cd fortran
make run-heat-equation

(TY" L =TV + At - o - VH{T}"

'Ti= T|+|dt |*|alpha |#|.laplacian. {T

pure user-defined operators
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test — vim subdomain_test_m.f90 — 68x28

function functional_matches_procedural() result(test_passes) Office of Science
logical test_passel

integer, parameter :: steps = 6000, n=32 A Fu
real, parameter :: tolerance = 1.E-06, alpha = 1.
real, parameter :: side=1., boundary_val=1., internal_val=2.
associate( T_f => T_functional(), T_p => T_procedural())
associate(L_infinity_norm => maxval(abs(T_f - T_p))) . .
test_passes = L_infinity_norm < tolerance 2 Explicitly pure procedures
end associate

end associate Side-effect free: no 1/0, no stop, no image control, etc.
contains F t - int £ (i t

function T_functional() unc IOI‘IIS. 22} en_ _(ln) arguments
real, allocatable :: T_functional(:,:,:) Subroutines: specified argument intent
type(subdomain_t), save :: T[x] Deterministic in most cases (Fortran 202X simple removes
Intager-step most non-determinism)
call T%define(side, boundary_val, internal_val, n) 2 Implicitly pure procedures: elemental
associate(dt => T%dx()*T%dy()/(4*alpha)) I Associate

doszﬁipaill' akens Define immutable state by associating with an expression, e.g.,

T = T+ dt * alpha * .laplacian. T function reference. . -
end do 2 Only pure procedures may be invoked inside a do concurrent

end associate block.
sefunetioned m polivesld Every.mtrl_nsp function is pure
end function I2 Error termination in pure procedures
Variable stop codes
2 Use objects to encapsulate multiple entities in one function results.

- ——
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“subdomain halo ...
y _ _

v

116 real(rkind), allocatable :: halo_x(:,:)[:]
117 integer, parameter :: west=1, east=2

134 me = this_image()
135 num_subdomains = num_images()
137 my_nx = nx/num_subdomains + merge(1l, 0, me <= mod(nx, num_subdomains))

232 subroutine exchange_halo(self)

233 class(subdomain_2D_t), intent(in) :: self

234  if (me>1) halo_x(east,:)[me-1] = self%ss_(1,:)

235 if (me<num_subdomains) halo_x(west,:)[me+1] = self%s_(my_nx,:)
236 end subroutine

28
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(4]

D8 ¢ X X U ip-172-31-33-230.us-west-2.compute.inter
¥ Applications  Places  TAU: ParaProf: Statistics for: node 0 - /home/tutorial/SRC/demo/matcha Wed 04:13 &% l'.l
TAU: ParaProf: for: node 0 - - o x
File Options Windows Help
| LD RECE DT LT DL DR BRRBRRRRRRERLEL LT .
(R i Name Exclu... Inclu...7 Calls Chil...
W .TAU application 0 1516 1 1<
¢ Otaupreload_main 0801 1516 161,499
¢+ MICONTEXT] taupreload_main 0 0811 27 0
¢ O[SUMMARY] __subdomain_2d_m_MOD_laplacian [{/home/tutorial/SRC/demo/matcha/example/heat-equation.f90 }] 0.6 0.6 20 0
OI[SAMPLE] __subdomain_2d_m_MOD_laplacian [{/h ial/SRC/demo/ h ple/h quation.f90} {188}]  0.54 0.54 18 0
W[SAMPLE] __subdomain_2d_m_MOD_laplacian [ {/home/tutorial/SRC/demo/matcha/example/heat-equation.f90} {183 }] 0.03 0.03 1 0
WI[SAMPLE] _ subdomain_2d_m_MOD_laplacian [ {/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {187}] 0.03 0.03 1 0
W[SAMPLE] _ subdomain_2d_m_MOD_copy [ {/home/tutorial/SRC/demo/matcha/example/heat-equation.f90} {217}] 0.06 0.06 2 0
B[SAMPLE] _ subdomain_2d_m_MOD_add [ {/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {212}] 0.06 0.06 2 0
B[SAMPLE] _subdomain_2d_m_MOD_multiply [ {/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {207}] 0.03 0.03 1 0
M[SAMPLE] raw_write [{unix.c} {0}] 0.03 0.03 1 0
W[SAMPLE] __tls_get_addr [{/usr/lib64/1d-2.26.50} {0}] 0.03 0.03 1 0
=@ MPI_Win_lock() 0363 0.36320,481 0
+@MPI_Barrier() 021 0.21 12 o
W MPI_Finalize() 0.094 0.094 1 0
WMPI_Win_unlock() 0.018 0.01820,481 0
WMPI_Put() 0.017 0.017 20,480 0
WMPI_Init_thread() 0.01 0.01 1 0
B MPI Collective Sync 0.002 0.002 2 0
WMPI_Comm_dup() 0 0.001 1 1‘
BWMPI_Win_create() 0 0 1 (V)

(halo_left(j) - 2%rhs%s_(i, j) + rhs%s_(i+1,j ))/dx_*x2 + &
190 (rhs%s_(i, j—1) — 2%rhs%s_(i, j) + rhs%s_(i ,j+1))/dy_xx*2
191 end do 20

188 do concurrent(j=2:ny-1) line continuation
189  laplacian_rhs%s_(1i, j) = &/



® @ Repositories — vim nse.f90 — 63x12

Brogram main
use vector_field_m, only : vector_field_t
use scalar_field_m, only : scalar_field_t
implicit none
type(vector_field_t) u, u_t
type(scalar_field_t) p
real, parameter :: rho = 1.23, nu=1l.65E-05

u_t = -(.grad. p)/rho + nu*.laplacian. u - u .dot. (.grad. u)

d - i i
il e Purely functional parallel algorithms (user-defined operators)

operating on distributed objects (derived type coarrays) with
automatic GPU offloading via do concurrent.




Compiler Status

Supporting CAF features: LLVM Flang:

- Cray S Parses and verifies CAF syntax and semantics
- Intel w Does not yet lower CAF features

- GNU - Berkeley Lab develops

_,; NAG -- Frontend unit tests for CAF features

-- Frontend bug fixes
Automatic offloading of do concurrent: - Caffeine: a candidate parallel runtime

- NVIDIA -- PRIF: a specification
.; Intel

- Cray

(ISP
S

PRIF | BERKELEY LAB



The World’s Shortest Bug Reproducer

end

EEEEEEEEEEEEEEE



Overview

From Software Archaeology to Software Modernity

01 02

Background Motivation

05 06

HPC Ruminations

What Happens to a Dream Deferred?| BERKELEY LAB

03

Parallelism in Fortran 2023

04

Al

33



eve < > 8 & www.tiobe.com/tiobe-index/ e O M + O
TIOBE Q=
{0 saare qustey companmy )
1 1 @ Python 16.33% +2.88%
2 2 G c 9.98% -3.37%
3 4 a @ Ce+ 9.53% -2.43%
4 3 v A Java 8.69% -3.53%
e ct 6.49% -0.94%
JS  JavaScript 3.01% +0.57%
@ Visual Basic 2.01% 1.83%
@ Go 1.60% +0.61%
@ saL 1.44% -0.03%
-
@ Fortran 1.24% +0.46%




eve < > B & www.tiobe.com/tiobe-index/ ¢ © M + O
TIOBE A =
(o sobvesre qusy company )
1 1 @ Python 16.33% +2.88%
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: . (TlOBE) Schedule a demo Q =
4 3 The main reason for Fortran's resurrection is the growing importance of numerical/mathematical computing.
Despite lots of competitors in this field, Fortran has its reason for existence. Let's briefly check the [
5 5 l competition out. Python: choice number one, but slow, MATLAB: very easy to use for mathematical
computation but it comes with expensive licenses, C/C++: mainstream and fast, but they have no native
6 7
' mathematical computation support, R: very similar to Python, but less popular and slow, Julia: the rising
7 6 new kid on the block, but not mature yet. And in this jungle of languages, Fortran appears to be fast, having
&e mathematical computation support, mature, and free of charge. Silently, slowly but surely, Fort e "'
’b
8 12 ground. It is surprising but undeniable. --Paul Jansen CEO TIOBE Software s =Taie ‘
9 9 SQL SQL 1.44% 0.03% -
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Ruminations

What Happens to a Dream Deferred?

01 02 03 04

Sometimes it sags like a Sometimes it explodes in a Sometimes it explodes in Let’'s hope the popularity
heavy burden. segmentation fault! popularity. maintains and realizes the
~dream.

P [ |

POETRY FOUNDATION
POEMS & POETS HARRIET ARTICLES VIDEO PODCASTS LEARN EVENTS POETRY MAGAZINE

After all these sensory experiences, the poem ends abruptly and
dramatically in a way that demands consideration. One of the most
ready-to-hand interpretations of that final line—"Or does it explode?™—
is to think of the expl, as a riot, a refl of the possibility that the

PP diti ginalized ies in Harlem and across
Jim Crow America face might lead to open rebellion. In James
Smethurst’s words, Hughes's poem “both psychologically contextualizes
the Harlem riots of 1935 and 1943 and predicts future unrest.” In the
larger context of the book, however, two other meanings of explesion are
in play—the rapid growth of a population and the breakdown of a
misconception, as when someone or something “explodes” a cultural
myth, fantasy, or decply held assumption.

Of course, these ings are i lated. Several great mi

'

'8

transformed northern US cities in the first half of the 20th century. The

explosion that “Harlem” anticipates. then, might also be imagined in
UPDATED WEBSITE NAVIGATION AND HOMEPAGE DESIGNS ARE COMING IN JUNE!

midcentury New York City. At the end of the 19205, one-quarter of the

What Happens to a Dream Deferred?| BERKELEY LAB https://www.poetryfoundation.org/articles/150907/langston-hughes-harlem 36
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w Popularity and Use

—Tiobe Index
—NERSC Data
—Open-Source: fpm, Caffeine, Veggies, Rojff

—Growth in Compilers: LFortran, LLVM Flang, ...

w Fortran 2023 by Example
—Fusion
—Weather
—Climate
—FFTs, Multigrid, etc.

w«w So what are the Problems?

—Perception

—Geography/Culture
— State of Practice
— State of Compilers



Compiled languages used at NERSC

Fortran C++ C .
. - e Fortran remains a common language for

scientific computation.
Survey 2015 e Noteworthy increases in
C++ and multi-language
Edison 2014 ?o Language use inferred from runtime
libraries recorded by ALTD.
= (previous analysis used survey data)
Edison 2018 o ALTD-based results are mostly in
line with survey data.
o No change in language ranking
) Cori 2018 o  Survey underrepresented Fortran
use.

| -
| 0 25 50 75 e Nearly ¥4 of jobs use Python. f - ‘% >

- Fraction of Users (%)
Totals exceed 100% because some users rely on multiple languages.

L ———— . 2

. \iSource: B. Austin et al., NERSC-10 Workload Analysis, 2020, doi:10.25344/S4N30W.
od X\ . & v of 1 A | 7
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CAF at Scale: Magnetic Fusion == A BERKELEY LAB

nging Science Solutio

w Application focus:

— The shift phase of charged particles in a
Multithreaded Global Add Spmf i . .
Techniques for i on tokamak simulation code

Fusion A
UItra-ScaI. Platforms

Robart Protssl Nathan Wichi Bl Lo H H .
e e w Programming models studied:
AT
rproissidibl.gov
et Gpetue  Matoge — CAF + OpenMP or
Nasonad Laboranory Phyeios Lasoraory Nasorel Laboratory
B i ided MPI
— Two-sided MPI + OpenMP

w Highlights:
— Experiments on up to 130,560 processors

— 58% speed-up of the CAF implementation
over the best multithreaded MPI shifter
algorithm on largest scale
B asmm oo  Bakes e aesnt Tosmntiburs — “the complexity required to implement ...
of the quasi-two-dimensional electrostatic potential MPI-2 one-sided, |n add|t|on to severa|
other semantic limitations, is prohibitive.”

Preissl, R., Wichmann, N., Long, B., Shalf, J., Ethier, S., & Koniges, A. (2011,
November). Multithreaded global address space communication techniques for
gyrokinetic fusion applications on ultra-scale platforms. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis (pp. 1-11).



CAF at Scale: Weather e T

Bringing Science Solutions to the Worla

w Application:
— European Centre for Medium Range
Weather Forecasts (ECMWF) operational
weather forecast model

Ak

A Partitioned Global Address Space
implementation of the European
Centre for Medium Range Weather
Forecasts Integrated Forecasting
System

s Programming models studied:
— CAF or
— Two-sided MPI

George Mozdzynski, Mats Ham rud and Nils Wedi

w Highlights:

— Simulations on > 60K cores

— performance improvement from switching to
CAF peaks at 21% around 40K cores

I
I

Fgare 7. Q. REGIONS parianing of oridoint apome. showng 2 arition af the poles and hen an increseg nunte of
POrNG & we XONOON e SR

_ Nmier of Cores

Mozdzynski, G., Hamrud, M., & Wedi, N. (2015). A partitioned global address T A e
space implementation of the European centre for medium range weather N
£ ts integrated for & yst The Int tional Journal of High 20

Computing Applications, 29(3), 261-273.




CAF at Scale: Climate

D p 1t and per comparison of MP1 and Fortran
Ci ys within an pheric r model
Extorded Abstract
Soren Raamusean ', Ethan D Guamann?, Brian Frieson?, Damian Rouson®, Sahalore Filgpare |,

ABSTRACT

Th e e

o M Py s I v cown PR 0
o ™

1) 420 pairtts par procms 1) Cray weok scafing

Figuro 3 () Weak scaling resuts for 25, 100, and 400 points per process () weak scaling for Cray.

Rasmussen, S., Gutmann, E. D., Friesen, B., Rouson, D., Filippone, S., &
Moulitsas, I. (2018). Development and performance comparison of MP| and
Fortran Coarrays within an atmospheric research model. Parallel Applications
Workshop - Alternatives to MPl+x (PAW-ATM), Dallas, Texas, USA.
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Bringing Science Solutions 1o

w Application:

— Intermediate Complexity Atmospheric
Research (ICAR) model

— Regional impacts of global climate change

w Programming models studied:
— CAF over one-sided MPI
— CAF over OpenSHMEM
— Two-sided MPI
— Cray CAF

= Highlights:

— “... we used up to 25,600 processes and
found that at every data point OpenSHMEM
was outperforming MPL.”

— “The coarray Fortran with MPI backend
stopped being usable as we went over
2,000 processes... the initialization time
started to increase exponentially.”



CAF at Scale: CFD, FFTs, Multigrid BERKELEY LAB
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BEEN

Ferae Gomoeh s anar b o cnceC0r ot
“'.‘1»‘3 Journal of Computational Physics

Comparing Coarray Fortran (CAF) with MPI for saveral
siructured mesh POE applications

@

Sudip Garain ", Dinshaw S Bafsara®, John Reia®
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Relative efficiency for 7 point stencil
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Cores

Garain, S., Balsara, D. S., & Reid, J. (2015). Comparing Coarray Fortran (CAF)

with MPI for several structured mesh PDE
Physics, 297, 237-253.

pplications. Journal of Comp

Bringing Science Solutions to

w Applications studied:
— Magnetohydrodynamics (MHD)

— 3D Fast Fourier Transforms (FFTs) used in
infinite-order accurate spectral methods

— Multigrid methods with point-wise
smoothers requiring fine-grained messaging
s Programming models studied:
— CAF or
— One-sided MPI-3

s Highlights:
— Simulations on up to 65,536 cores

— “... CAF either draws level with MPI-3 or
shows a slight advantage over MPI-3.”

— “CAF and MPI-3 are shown to provide
substantial advantages over MPI-2.

— “CAF code is of course much easier to write
and maintain...”



