
What Happens to a Dream Deferred?
Chasing Automatic Offloading in Fortran 2023

Damian Rouson
Computer Languages and Systems Software Group
International Workshop on Automatic Performance Tuning (iWAPT), 31 May 2024

What Happens to a Dream Deferred?| BERKELEY LAB

02
Motivation

03
Parallelism in Fortran 2023

04
AI

05
HPC

06
Ruminations

Overview

2

From Software Archaeology to Software Modernity

01
Background

“Harlem”
By Langston Hughes, 1951

What happens to a dream deferred?
Does it dry up
like a raisin in the sun?
Or fester like a sore—
And then run?
Does it stink like rotten meat?
Or crust and sugar over—
like a syrupy sweet?

Maybe it just sags
like a heavy load.

Or does it explode? Langston Hughes (1901-1967)

Portrait by Carl Van Vechten, 1936. Public Domain.
Library of Congress Prints and Photographs Division Washington, D.C. 20540

http://hdl.loc.gov/loc.pnp/cph.3b38891

http://hdl.loc.gov/loc.pnp/cph.3b38891

John Backus (1924-2007)
Pioneers in Science and Technology Series: John Backus, 1984

© City of Oak Ridge, Oak Ridge, TN 3783 (Public Domain)
https://cdm16107.contentdm.oclc.org/digital/collection/p15388coll1/id/526

The Fortran Automatic Coding System fort he IBM 704,
the first programmer’s reference manual for Fortran

(Public Domain)

https://cdm16107.contentdm.oclc.org/digital/collection/p15388coll1/id/526

1956

“Fortran is a new and exciting language
used by programmers to communicate

with computers. It is exciting as it is the
wave of the future.”

Character of Dorothy Vaughan,
a NASA mathematician and programmer,

as played by Octavia Spencer in
Hidden Figures (20th Century Fox, 2016).1961

What Happens to a Dream Deferred?| BERKELEY LAB

02
Motivation

03
Parallelism in Fortran 2023

04
AI

05
HPC

06
Ruminations

Overview

6

From Software Archaeology to Software Modernity

01
Background

19 77 A C M T u r i n g A w a r d L e c t u r e

The 1977 ACM Turing Award was presented to John Backus
at the ACM Annual Conference in Seattle, October 17. In intro-
ducing the recipient, Jean E. Sammet, Chairman of the Awards
Committee, made the following comments and read a portion of
the final citation. The full announcement is in the September
1977 issue of Communications, page 681.

"Probably there is nobody in the room who has not heard of
For t ran and most of you have probably used it at least once, or at
least looked over the shoulder of someone who was writing a For-
t ran program. There are probably almost as many people who
have heard the letters BNF but don' t necessarily know what they
stand for. Well, the B is for Backus, and the other letters are
explained in the formal citation. These two contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer field and both were made by John
Backus (which in the For t ran case also involved some col-
leagues). It is for these contributions that he is receiving this
year's Turing award.

The short form of his citation is for 'profound, influential,
and lasting contributions to the design of practical high-level
programming systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.'

The most significant part of the full citation is as follows:
' . . . Backus headed a small IBM group in New York City

during the early 1950s. The earliest product of this group's
efforts was a high-level language for scientific and technical corn-

putations called Fortran. This same group designed the first
system to translate For t ran programs into machine language.
They employed novel optimizing techniques to generate fast
machine-language programs. Many other compilers for the lan-
guage were developed, first on IBM machines, and later on virtu-
ally every make of computer. For t ran was adopted as a U.S.
national standard in 1966.

During the latter part of the 1950s, Backus served on the
international committees which developed Algol 58 and a later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as a means for de-
veloping programs and as a formal means of publishing the
algorithms on which the programs are based.

In 1959, Backus presented a paper at the UNESCO confer-
ence in Paris on the syntax and semantics of a proposed inter-
national algebraic language. In this paper, he was the first to
employ a formal technique for specifying the syntax of program-
ming languages. The formal notation became known as B N F -
standing for "Backus Normal Form," or "Backus Naur Form" to
recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of problem-solving on computers and to the theoretical
world existing at the interface between artificial languages and
computational linguistics. For t ran remains one of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal syntactic definition.' "

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs
John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author's address: 91 Saint Germain Ave., San Francisco, CA
94114.
© 1978 ACM 0001-0782/78/0800-0613 $00.75

613

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ruing inherited from their common ancestor- - the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

Communications August 1978
of Volume 21
the ACM Number 8

1977 Turing Award Lecture:
“Can Programming be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs”

Backus, J., Communications of the ACM, August 1978, 21:8

Rumors of Fortran’s Demise…

1991

Or a Roadmap for Fortran’s Future?

What Happens to a Dream Deferred?| BERKELEY LAB

02
Motivation

03
Parallelism in Fortran 2023

04
AI

05
HPC

06
Ruminations

Overview

10

From Software Archaeology to Software Modernity

01
Background

Explicit Parallelsim in Fortran 2023

Single Program Multiple Data (SPMD) parallel execution
— Synchronized launch of multiple “images” (process/threads/ranks)
— Asynchronous execution except where program explicitly synchronizes
— Error termination or synchronized normal termination

11

SPMD Execution Sequence

Ti
m

e
Image 2

Image 1

print *,"Hello from image ", this_image(), "of", num_images()

print *,"Hello from image ", this_image(), "of", num_images()

end program

end program Image
control
statement}

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

12

Partitioned Global Address Space
(PGAS)

Coarrays:

— Distributed data structures — greeting
— Facilitate Remote Memory Access (RMA) — line 15

cd fortran
make run-hello

13

Collective subroutines: co_{broadcast, sum, max, min, reduce}

Atomic subroutines:

— atomic_{define,ref,add,fetch_add,…}

— Events: counting semaphores with post/wait/query operations

Teams of images can be formed at runtime.

Failed/stopped image detection, locks, critical sections, …

Additional Parallel
Features

Coarray Fortran began as a syntactically small extension to Fortran 95:
— Square-bracketed “cosubscripts” distribute & communicate data

Integration with other features:

—Array programming: colon subscripts

—OOP: distributed objects

Minimally invasive:

—Drop brackets when not

communicating

Communication is explicit:

—Use brackets when

communicating

Explicit Parallelsim:
Coarray Fortran

Caffeine
Co-Array Fortran Framework of Efficient Interfaces
to Network Environments

LLVM for HPC Workshop

 
GASNet-EX

System Runtime & Memory Technologies

Application
C O

M
P
I
L
E

R

 
Caffeine

Caffeine leverages GASNet-
EX, a high-performance
networking middleware that
undergirds a broad ecosystem
of languages, libraries,
frameworks, and applications.

Caffeine supports the parallel features of
Fortran 2018 for compilers.

GASNet-EX

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

Cori-I:
Haswell

Aries
Cray MPI

B
a

n
d

w
id

th
 (

G
iB

/s
)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

D. Bonachea and P. H. Hargrove, “GASNet-EX: A High- Performance, Portable Communication
Library for Exascale,” in Proceedings of Languages and Compilers for Parallel Computing
(LCPC’18), ser. LNCS, vol. 11882. Springer, October 2018, doi:10.25344/S4QP4W.

Microbenchmark: GASNet-EX vs MPI

 GASNet-EX

......

SHMEM

Network Hardware
(InfiniBand, Cray Aries, HPE Slingshot, Ethernet, Intel Omni-Path, ...)

Active Messages

One-sided Get/Put RMA

CollectivesAtomics

Non-contiguous RMA

Memory Technologies
(Host memory, GPUs, ...)

Fortran
coarrays UPCChapel ...

NWChemEx ExaGraph FLeCSI FlexFlow ExaBiome

Legion UPC++

AMReX Arkouda

Scientific Applications

GASNet-EX Ecosystem

What Happens to a Dream Deferred?| BERKELEY LAB

02
Motivation

03
Parallelism in Fortran 2023

04
AI

05
HPC

06
Ruminations

Overview

19

From Software Archaeology to Software Modernity

01
Background

Implicit Parallelism

Array statements + elemental procedures (intrinsic or user-defined):
matmul, reduce, transpose, dot_product, merge, pack, unpack,
count, any, all, findloc, …

In addition to the SPMD/PGAS features that work in shared or distributed memory,
several features facilitate expressing unordered sets of calculations amenable to
multithreading, vectorization, or accelerator offloading:

where statement

do concurrent + pure procedures, including elemental procedures

Inference-Engine
Use case:

- Large-batch, concurrent inference and in situ training of neural networks for high-
performance computing applications in modern Fortran.

Goals:

- To explore language-based parallelism, including GPU offloading.

- To simplify the workflow for training neural networks, i.e., eliminate the telephone game.

How:

- A functional programming style that facilitates concurrent inference across a large collection
of inputs using multiple specialized neural networks.

- A training algorithm that squeezes out most unnecessary programmer-imposed ordering of

Import training
data into PyTorch
and train neural

network

Discussion

Run ICAR and
Save Training Data

Run nexport to
export network to

JSON

Import network
into ICAR via

Inference-Engine
and validate

Discussion Discussion

Inference-Engine
Use case:

- Large-batch, concurrent inference and in situ training of neural networks for high-
performance computing applications in modern Fortran.

Goals:

- To explore language-based parallelism, including GPU offloading.

- To simplify the workflow for training neural networks, i.e., eliminate the telephone game.

How:

- A functional programming style that facilitates concurrent inference across a large collection
of inputs using multiple specialized neural networks.

- A training algorithm that squeezes out most unnecessary programmer-imposed ordering of

Rinse, Repeat…

Runtime Training in ICAR
with embedded Inference-

Engine

Fast-GPT

https://tinyurl.com/fastgpt-by-certik

AI
 do k=1,lev
 do j=1,lon
 do i=1,lat
 outputs(i,j,k) = inference_engine%infer(inputs(i,j,k))
 end do
 end do
 end do

 outputs = inference_engine%infer(inputs) ! elemental

 do concurrent(i=1:lat, j=1:lon, k=1:lev)
 outputs(i,j,k) = inference_engine%infer(inputs(i,j,k))
 end do

Presentation Title | BERKELEY LAB

Motility Analysis of T-Cell Histories in Activation (Matcha)

Matcha tracks the stochastic T-cell motions according to multiple distributions of speeds and
angles, accounting for the dependence of speed on the turning angle and on the previous speed.
T cells must mount a coordinated attack in order to avoid overwhelming the host tissue.
The study of T-cell/T-cell interactions remains in its infancy [1].
Some communication occurs via secreting soluble mediators, e.g., cytokines and chemokines.

Matcha models mediator spread via a 3D diffusion equation:

where .

25

A parallel virtual T-cell model.

GASNet-

Caffeine
Matcha C

L

M
O

P
I

ER

System Runtime & Memory

[1] L.F. Uhl and A. Ge ́rard A. “Modes of communication between T cells and relevance for
immune responses.” Int. J. Mol. Sci. 2020, 21, 2674; doi:10.3390/ijms21082674

<latexit sha1_base64="AqEPtW9BgsMbe6HCgiAmkki6uq4=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJWk+NoIRV24rGAf0NZyM520QyeTMDMRSqgbf8WNC0Xc+hfu/BunaRbaeuDC4Zx7ufceL+JMacf5tnILi0vLK/nVwtr6xuaWvb1TV2EsCa2RkIey6YGinAla00xz2owkhcDjtOENryZ+44FKxUJxp0cR7QTQF8xnBLSRuvZeOxqwrsYX+Bq3BXgc7ss41eyiU3JS4HniZqSIMlS79le7F5I4oEITDkq1XCfSnQSkZoTTcaEdKxoBGUKftgwVEFDVSdIPxvjQKD3sh9KU0DhVf08kECg1CjzTGYAeqFlvIv7ntWLtn3cSJqJYU0Gmi/yYYx3iSRy4xyQlmo8MASKZuRWTAUgg2oRWMCG4sy/Pk3q55J6WTm6Pi5XLLI482kcH6Ai56AxV0A2qohoi6BE9o1f0Zj1ZL9a79TFtzVnZzC76A+vzB27/lZ0=</latexit>

�t = Dr2�
<latexit sha1_base64="4CvL2ojX2auJGJpsULRk4Tp1ZIw=">AAACCnicbVDLS8MwHE59zvmqevQSHYKn2YqvizD04nGCe8BaSpqlW1iahiQVRtnZi/+KFw+KePUv8OZ/Y7oV0c0PAl++3yP5vlAwqrTjfFlz8wuLS8ullfLq2vrGpr213VRJKjFp4IQlsh0iRRjlpKGpZqQtJEFxyEgrHFzn9dY9kYom/E4PBfFj1OM0ohhpIwX2nif6NNDwEnoCSU0Rg7ly9HPTgV1xqs4YcJa4BamAAvXA/vS6CU5jwjVmSKmO6wjtZ/k+zMio7KWKCIQHqEc6hnIUE+VnYysjeGCULowSaQ7XcKz+nshQrNQwDk1njHRfTddy8b9aJ9XRhZ9RLlJNOJ48FKXGXwLzXGCXSoI1GxqCsKTmrxD3kURYm/TKJgR32vIsaR5X3bPq6e1JpXZVxFECu2AfHAIXnIMauAF10AAYPIAn8AJerUfr2Xqz3ietc1YxswP+wPr4BjuNmf4=</latexit>

�t = @�/@t

Heat Equation

<latexit sha1_base64="jZZKy2kYhWG7FyzDqvbXmuSdi8k=">AAACLXicbVDLSgMxFM3UV62vqks3wSIIhTJTfG2Eol24VLAqdNpyJ03b0ExmSO4IZegPufFXRHChiFt/w/QhqPVAwrnnnktyTxBLYdB1X53M3PzC4lJ2Obeyura+kd/cujFRohmvsUhG+i4Aw6VQvIYCJb+LNYcwkPw26J+P+rf3XBsRqWscxLwRQleJjmCAVmrlq3567Q+bqSp6Q3pKJ5WiRepXuUSgSH3WjuwNMu7Bd6EgkNAsf9tb+YJbcsegs8SbkgKZ4rKVf/bbEUtCrpBJMKbuuTE2UtAomOTDnJ8YHgPrQ5fXLVUQctNIx9sO6Z5V2rQTaXsU0rH6cyKF0JhBGFhnCNgzf3sj8b9ePcHOSSMVKk6QKzZ5qJNIihEdRUfbQnOGcmAJMC3sXynrgQaGNuCcDcH7u/IsuSmXvKPS4dVBoXI2jSNLdsgu2SceOSYVckEuSY0w8kCeyCt5cx6dF+fd+ZhYM850Zpv8gvP5BRBupts=</latexit>

{T}n+1 = {T}n +�t · ↵ ·r2{T}n

T = T + dt * alpha * .laplacian. T

local objects

pure user-defined operators

cd fortran
make run-heat-equation

<latexit sha1_base64="3a/AC/Yvj+HUGGp7yUrJJF8ttDY=">AAACGnicbVDLSgMxFM3UV62vqks3wSK4KjPF10YounFZoS/ojOVOmmlDM5khyQhl6He48VfcuFDEnbjxb0zbAbX1QOBwzr3cnOPHnClt219Wbml5ZXUtv17Y2Nza3inu7jVVlEhCGyTikWz7oChngjY005y2Y0kh9Dlt+cPrid+6p1KxSNT1KKZeCH3BAkZAG6lbdNxAAkndGKRmwHF9/MP1GF9iF3g8AOwK8DncVXC9WyzZZXsKvEicjJRQhlq3+OH2IpKEVGjCQamOY8faSydHCKfjgpsoGgMZQp92DBUQUuWl02hjfGSUHg4iaZ7QeKr+3kghVGoU+mYyBD1Q895E/M/rJDq48FIm4kRTQWaHgsSEjvCkJ9xjkhLNR4YAkcz8FZMBmK60abNgSnDmIy+SZqXsnJVPb09K1ausjjw6QIfoGDnoHFXRDaqhBiLoAT2hF/RqPVrP1pv1PhvNWdnOPvoD6/Mbfiigfg==</latexit>

@T

@t
= ↵r2T

26

04-5

Explicitly pure procedures

Side-effect free: no I/O, no stop, no image control, etc.
Functions: intent(in) arguments
Subroutines: specified argument intent
Deterministic in most cases (Fortran 202X simple removes
most non-determinism)

Implicitly pure procedures: elemental

Associate
Define immutable state by associating with an expression, e.g.,
function reference.

Only pure procedures may be invoked inside a do concurrent
block.

Every intrinsic function is pure
Error termination in pure procedures

Variable stop codes
Use objects to encapsulate multiple entities in one function results.

A Functional Programming Pattern

Halo Exchange

116 real(rkind), allocatable :: halo_x(:,:)[:]
117 integer, parameter :: west=1, east=2

134 me = this_image()
135 num_subdomains = num_images()
137 my_nx = nx/num_subdomains + merge(1, 0, me <= mod(nx, num_subdomains))

232 subroutine exchange_halo(self)
233 class(subdomain_2D_t), intent(in) :: self
234 if (me>1) halo_x(east,:)[me-1] = self%s_(1,:)
235 if (me<num_subdomains) halo_x(west,:)[me+1] = self%s_(my_nx,:)
236 end subroutine

x

y
subdomain halo …

28

Loop-Level Parallelism

188 do concurrent(j=2:ny-1)
189 laplacian_rhs%s_(i, j) = &
 (halo_left(j) - 2*rhs%s_(i, j) + rhs%s_(i+1,j))/dx_**2 + &
190 (rhs%s_(i, j-1) - 2*rhs%s_(i, j) + rhs%s_(i ,j+1))/dy_**2
191 end do

line continuation

29

Purely functional parallel algorithms (user-defined operators)
operating on distributed objects (derived type coarrays) with

automatic GPU offloading via do concurrent.

PRIF | BERKELEY LAB 31

PRIF | BERKELEY LAB

The World’s Shortest Bug Reproducer

32

end

What Happens to a Dream Deferred?| BERKELEY LAB

02
Motivation

03
Parallelism in Fortran 2023

04
AI

05
HPC

06
Ruminations

Overview

33

From Software Archaeology to Software Modernity

01
Background

What Happens to a Dream Deferred?| BERKELEY LAB

02
Sometimes it explodes in a
segmentation fault!

03
Sometimes it explodes in
popularity.

04
Let’s hope the popularity
maintains and realizes the
dream.

Ruminations

36

What Happens to a Dream Deferred?

01
Sometimes it sags like a
heavy burden.

https://www.poetryfoundation.org/articles/150907/langston-hughes-harlem

Presentation Title | BERKELEY LAB

Acknowledgements

37

The Berkeley Lab Fortran Team
Dan Bonachea, Hugh Kadhem, Brad Richardson, Kate Rasmussen

Past and Present Collaborators
Jeremy Bailey, David Torres, Kareem Jabbar Weaver, Jordan Welsman, Yunhao Zhang

The Problem is Not Fortran
Damian Rouson

Computer Languages and Systems Software (CLaSS) Group ()

NUCLEI Meeting, 29 May 2024

38

http://go.lbl.gov/class

Popularity and Use
—Tiobe Index

—NERSC Data

—Open-Source: fpm, Caffeine, Veggies, Rojff

—Growth in Compilers: LFortran, LLVM Flang, …

Fortran 2023 by Example
—Fusion

—Weather

—Climate

—FFTs, Multigrid, etc.

So what are the Problems?
—Perception
—Geography/Culture
—State of Practice
—State of Compilers

Compiled languages used at NERSC

● Fortran remains a common language for
scientific computation.

● Noteworthy increases in
C++ and multi-language

● Language use inferred from runtime
libraries recorded by ALTD.
(previous analysis used survey data)

○ ALTD-based results are mostly in
line with survey data.

○ No change in language ranking
○ Survey underrepresented Fortran

use.

● Nearly ¼ of jobs use Python.

Totals exceed 100% because some users rely on multiple languages.

Source: B. Austin et al., NERSC-10 Workload Analysis, 2020, doi:10.25344/S4N30W.

https://doi.org/10.25344/S4N30W

41

42

43

44

