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HPC’s Future if we Don’t Change Course

AVERAGE PERFORMANCE IMPROVEMENT PER 11 YEARS FOR SUM OF
TOP500 LIST SYSTEMS
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Specialization is Nature’'s Way

Powerful General Purpose Many Lighter Weight Many Different SpeCiaIized
(post-Dennard scarcity)

(Post-Moore Scarcity)
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Xeon, Power Intel KNL, AMD, Cavium/Marvell, GPUs Apple, Google, Amazon, AWS
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We Have to Understand The Market

Control of the computing ecosystem

Follow the Trillion+ $ (USD) companies
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Domain Specific Compute Driven by Hyperscalars

Dharmesh Jani, Facebook —
ODSA W orkshop, Regnonal Summlt Amsterdam Sep. 2019
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Opportunity for HPC: New Economic Model

Jpen Iplets lviarketpliace Is torming (UUSA and U

express
— Licensable IP and assembly by 3™ party lowers that barrier

— Leverage the economic model being created by HyperScale
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Leverage this baseline and extend to support HPC
— Smaller incremental cost for HPC to “play”

— HPC has become “too small to attack the city”

80:20 Rule: Focus open efforts on what uniquely benefits HPC
— Build up a library of reusable accelerators for HPC.

— Interoperability for sustainability: /Interoperate with
commercial IP where it exists and focus on open the 20% that
doesn’t make commercial sense to license
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Architecture Specialization for Science

Materials

Density Functional Theory
(DFT)

Use O(n) algorithm
Dominated by FFTs
FPGA or ASIC
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Accelerator

LBNL detector
750 GB / sec

Custom ASIC near
detector

Genomics
Accelerator
String matching

Hashing
2-8bit (ACTG)
FPGA

Digital fluid
Accelerator

3D integration
Petascale chip
1024-layers

General / special HPC
solution
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Algorithm-Driven Design of Programmable Hardware Accelerators

Example: LS3DF/Density Functional Theory (DFT)

What: Design the hardware acceleration
around the target algorithm/application

25%+ of DOE
workload is
Density
Functional
Theory (DFT)

Why: Huge opportunities to improve
performance density and efficiency

— FFT hardware accelerator 50x-100x faster than GPU
(using SPIRAL generator)

How: Target Density Functional Theory
1. Large fraction of the DOE workload Exp. Data Analysis Fusion (Cont. or PIC)
2. Mature code base and algorithm

3. LS3DF formulation minimizes off-chip
communication and scales O(N)




The DFT kernel for each fragment

Communication Avoiding LS3DF Formulation — Scales O(N)
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Comm bound if non-local

gl How do we integrate in a system’?
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LS3DF O(N) Algorithm Formulation
Minimizes off-chip Communication

— 3D parallel FFT
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Chiplets Make Specialization Accessible for HPC

Reusable function blocks

QR decomposition
Waveforms

FFT

Big Data Movement

< Image processing
* Machine Learning

= High-speed chiplet networks

From DARPA
CHIPS

-3Hg& of custom solutions

2%

7\6

\ Compute
:‘;;;L‘l‘ PrOjE G

7‘,»$,°N

Connect. Collaborate.
Accelerate.


https://sites.google.com/lbl.gov/chiplets-workshop-2023/home

More Flexible and Lower Cost

PROVEN EXISTING BUSINESS MODELS

[L. Su, IEDM’17]
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Since 1987 - Covearing the Fastest Computors

it dhe World and the Peogpie Who Run Them

match non-AMD processors in a custom chip package.

BORIBOnN Channots “We are focused on making it easier to implement chips with more flexibility,”

Job Bank said Mark Papermaster, chief technology officer at AMD during the analyst

day meeting late last week.
About

L~ Home
© Topics AMD Opens Up Chip Design to the Outside for
i Custom Future

& Sectors By Agam Shah

) Exascale

© Specials June 15, 2022

© Resource Library AMD is getting personal with chips as it sets sail to make products more to the
liking of its customers.

& Podcast
The chipmaker detailed a modular chip future in which customers can mix and

& Eventis
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AMD will allow customers to implement
multiple dies — also called chiplets or
compute tiles — in a tight chip package. AMD
already uses tiles, but is now welcoming third
parties to make accelerators or other chips to
be included in 2D or 3D packages alongside
its x86 CPUs and GPUSs.
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Standardized die-to-die (D2D) Physical Layer Interfaces (ODSA)

/stack option 1 — board to package \
Chiplet 1 paCKage Chiplet 2
Substrate i s
Chiplet Chiplet = S s
=1 Asban =4
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Blue Cheetah supplies the IP for the
) Die-to-Die (D2D) Phy.
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Open Chiplet: Platform on a Package

A protocol: UCle

Chip-to-Chip Interface (UCle)

Customer IP and 20X I/O Performance at 1/20t Power at
U Ses CX I— or P C I e Customized Chiplets Launch — Gap more prominent with better

on-package technologiesin future

|/0 attach with PCle/CXL.io

- Memory use cases: CXL.mem
» Accelerator use cases:
CXL.cache

Memory

Advanced 2D/
25D/3D

https://www.nextplatform.com/2022/03/02/ Packaging

industry-behemoths-back-intels-universal-chiplet-interconnect/

https://www.snia.org/sites/default/files/PM-Summit/2022/PMCS22-Park-CXL-and-
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ODSA: Open Domain Specific Architecture

Creating an Open Chiplet Marketplace

Open D2D [TFIEIE:
Interface

Reduce barmier (0 ... o
: . =
interoperation

Reference ==~ .
Designs | o
Starting point for =~ T - | g [
new designs =— w - —§ : :

13]

Chiplet
Marketplace

Integrate best-in-class

chiplets from muiltiple

vendors through open
interfaces

Reference
Workflows

Reusable, open =
practices — =
y

ODSA Activities

% Project®

OCP modular
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Photonic MCM for High Escape Bandwidth for Remote Memory

-10]
Wavelength [nm] 2
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Silicon interposer 1024 data links / HBM stack @ 500MHz




Project38: HPC Improvements Through Innovative Architecture

Cross-agency architectural exploration

Project 38 (P38) is a set of vendor-agnostic architectural explorations involving DOD, the DOE
Office of Science, and NNSA

= Mission:

= Demonstrate high performance IUSG node -- codesigned to accelerate GraphBLAS

= Demonstrate modular integration of LBNL/ANL IUSG + commercial IP using Open Chiplets
= Create new capability for the USG to rapidly assemble/prototype server-class chip designs

Affordable heterogeneous

Accomplishments thus far co-integration using chiplets
* Released integration platform (MoSAIC) Recoding Engine GraphBL(l-\S Ac;:elerator Photonic Links
—  Abstract model to RTL to chiplets or FPGAs (UC/ANL) / LBNL ./(Columbia)
+ Created end-to-end cost model for chiplet E
integration T “oown N -l
. ' ' L Stack 1 oo | anvue |8 R . (Columbia)
» Chisel FFT, sparse matrix multiply, and 9 - T | & B e caryina 05- 1 This
TSGR generators c il ] e
. (Géaé)h)BLAS Accelerator ISA for RISC-V 9 / AX| Protocol PCle Protocol
I A = (Ventana)

» AMD collaboration showed benefit of H(':i;?::)" .m“ RISC-V
sparse matrix/tensor accel Processor (Ventana)

Look for the project 38 poster!
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One Challenge is Escape Bandwidth

Through-Silicon Vias (TSVs),

v—;ﬁ—m DA I ” l solm‘ Good News: Extenql bandwidth density
T SmBMkontioldraiemm | and lower power/bit
Silicon interposer el ke ® Bad News: Limited (~2cm) reach
' — Cannot get outside of the package (but we
Package substrate need to)

= 5X the bandwidth v. GDDR5
= Up to 16GB
= One-third the footprint

= Half the energy per bit

= Managed memory stack for optimal
levels of reliability, availability and
serviceability



Chiplet Bandwidth Roadmap (5 generations of BW doubling)

Table 5: Physical 10 Scaling Roadmap for 2D and Enhanced-2D Architectures

that use both solder and hybrid interconnects.

Generation Number - 1 2 3 4 5
Raw Linear Bandwidth Density (GBps/mm) 125 250 500 1000 2000
Minimum Bump Pitch (um)'’ 55 40 30 20 10
Package Technology Linear Escape Density (I0/mm) 500 667 1000 2000 4000
Areal Escape Density (I0/mm?) 331 625 1111 2500 10000
Signaling Speed (Gbps) 2 3 4 4 4
5.1.2 Area Interconnects for 3D Architectures (see Figure 1)
Table 6: Physical 10 Scaling Roadmap for 3D architectures that use both solder and hybrid interconnects.
Generation Number - 1 2 3 4 5
Raw Areal Bandwidth Density (GBps/mm?)'® 125 250 500 1000 2000
Package Technology Minimum Bump Pitch (um)*° 40 30 20 15 10
Areal Escape Density (I0/mm?) 625 1111 2500 4444 10000
Signaling Speed (Gbps)?° 1.6 1.8 1.6 1.8 1.6




Package Limited Bandwidth

Gates x GHz
Doubled every 16 months
Now every 30 months

Signal Pins x GHz
Doubled every 28 months
10 . Now every 4 years

Its been a problem for years,
1978 1986 2000 But we need to claw this back
for disaggregation to work

,?,>”|ﬁ| Source: J. Poulton, Nvidia
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Motivation

* MPW prototyping of chip designs necessarily have small chips - lower performance

* Many necessary subsystems (memory controllers, PCle) better supplied from commercial IP.

* Need in-package integration (2.5D co-packaging) to meet bandwidth requ
Our Mission

* Demonstrate high performance IUSG node -- codesigned to accelerate GraphBLAS

irements

« Demonstrate modular integration of LBNL/ANL IUSG + commercial IP using Open Chiplets
* Create new capability for the USG to rapidly assemble/prototype server-class chip designs

» Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)
* RISC-V and ARM cares
« Fixed function FFT {Generated by SPIRAL)

= Micro-bumps

+ Word Granularity Scratchpad Memory (Gather Scatter):
* Gather-scatter within processor tile
* more effective SIMD

' M & data reorg.)

ent over processor core)

+ Hardware Message Queues {Lightweight Interprocessor Communication)

* Gather-scatter between processor tiles
* Async between tiles to eliminate overhead of barriers

High-bandwidth, energy-efficient silicon photonic
building blocks...
Compatible with CMOS microelectronics!

Chiplets
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Our Team

Berkeley Laboratory
John Shalf, Thom Popovici, Anastasiia Butko, Cy Chan,

Patricia Gonzalez, George Michelogiannakis, Nirmal Patra

Argonne National Laboratory
Valerie Taylor, Ray Bair, Jose Monsalve Diaz, Dawson Fox

University of Chicago
Andrew Chien

Columbia University
Keren Bergman

PNNL
Antonino Tumeo, Roberto Gioiosa, Jim Ang

Scalable IUSG computing
systems comprised of small
chiplet building blocks

losf/
Sustained scalability!
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Package Performance is Pin Limited

Rent’s Rule:
Number of pins = K x Gates? (IBM, 1960)
K =0.82, a=0.45 for early Microprocessors

Pins x GHz from Rent’s Rule

‘Bandwidth Gap:
~500 x and growing!

High SERDES rates run
counter to end of
Bna Dennard Scaling

Source: J. Poulton, Nvidia




Datacenters: Worsten climate change without ultra-energy-efficiency

And data movement dominates that power consumption

1E+22 576 Exajoules or 546 Quads in
2019 according to |EA
“ZIP” is Zetta instructions/ . F
second where “zetta = 1071
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Source: SRC 2021

Source: Gordon Keeler (DARPA)

® January 2021 SRC report projects datacenter energy growth rates will lead to ~25%
consumption of planetary energy by 2040.

® Data movement is a dominant contributor to that power consumption




Micro-bumps -
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