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Abstract. Particle-in-Cell (PIC) methods employ particle representations of

unknown fields, but also employ continuum fields for other parts of the problem.
Thus projection between particle and continuum bases is required. Moreover,
we often need to enforce conservation constraints on this projection. We derive

a mechanism for enforcement based on weak equality, and implement it in the

PETSc libraries. Scalability is demonstrated to more than 1B particles.
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1. Introduction

The Particle-in-Cell (PIC) method is a hybrid discretization, using a grid of
finitely supported basis function to represent some fields, and a distribution of
radial basis functions to represent other fields. The first discretization is usually
called the mesh basis, whereas the second is called the particle basis. The particle
basis can be useful for representing sharply localized quantities [6, 14], or fields
in high dimension, or quantities that are more sensitive to artificial diffusion and
dispersion. For example, it is common in plasma physics to represent clusters of
electrons as a single “macro particle” eliminating the computational overhead of
individual electron interactions [6]. In high dimension, particles are capable of more
rapid convergence than mesh discretizations [1]. The self-consistent interaction of
particles and fields in PIC methods can be important in resolving localized nonlinear
effects [2].

Particles may be represented using a shape function to capture particle width in
the same way that finite element shape functions represent field behavior inside a
mesh cell. Radial basis function methods are an example of this representation [11].
In our experiments, we will use only the traditional delta function representation
of particles, but the algebraic relations derived in Section 2 remain valid for any
shape function for which accurate quadrature is available. Each particle is assigned
a weight, the coefficients of a basis function in the particle representation.
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When employing PIC in large scale, long running simulations, particular attention
must be paid to the choice of time marching integrator, selection of the mesh/particle
bases, and projections between the bases to appropriately conserve mass, momentum,
and energy. Conservation of these quantities has motivated a great deal of study
in particle methods, particularly in the field of computational plasma physics
[25, 10, 22, 8]. In this paper, we focus on a conservative projection between basis
representations, meaning projection which enforces the conservation of moments of
the distribution. For example, conservation of the zeroth moment is equivalent to
mass or charge conservation, the first moment to momentum conservation, and the
second moment to energy conservation.

To begin, we will briefly define the PIC representation in 2. Performance bench-
marks for preconditioning and linear solves are discussed in 3. We remark on
the applications for these projection operators in 4 before commenting on future
improvements in 5

2. Derivation

Suppose our system is comprised of small, massive bodies interacting with a
potential. The standard representation is to assign a shape function to each, such
that their weighted sum comprises the particle distribution function fP . This
distribution function can be interpreted as the probability of finding a particle at a
given location x in configuration (or phase) space. Note that since we are working
in phase space, x would comprise both position and velocity. Thus, we can find by
expected number of particles n by integrating over all phase space∫

Ω

fP = n.(1)

where Ω is the phase space domain. For simplicity, we use delta functions for this
discussion, but our method does not depend sensitively on the choice of shape
function. The full particle distribution function can then be written

fP =
∑
p

wpδ(x− xp)(2)

where x represents the configuration space variable, xp is the particle location
and velocity, and wp the particle weight. The finite element representation, using
function space V, is given by the weighted sum of basis function,

fFE =
∑
i

fiφi(x)(3)

where φi ∈ V denotes the basis function, and fi the associated coefficient.
At this point, we must determine what we mean when we say these two expressions

represent the same field. For instance, in phase space, the two systems need to
contain the same mass, represented by equivalence of the integrals∫

Ω

fFE =

∫
Ω

fP .(4)

In PIC codes, it is very common to enforce a tensor produce structure on the phase
space. For example, many collision operators, such as the Landau operator, are
completely localized in space. This converts the integral over phase space into
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an integral over velocity space ΩV [12, 24]. This means that equality of the first
moment in phase space, ∫

Ω

xfFE =

∫
Ω

xfP .(5)

becomes the conservation of momentum∫
ΩV

mvfFE =

∫
ΩV

mvfP(6)

when multiplied by the mass m. In the same way, conservation of the second moment∫
Ω

|x|2fFE =

∫
Ω

|x|2fP(7)

becomes the conservation of kinetic energy∫
ΩV

1

2
m|v|2fFE =

∫
ΩV

1

2
m|v|2fP .(8)

These conditions are all specific instances of what we will call weak equivalence,
namely the equivalence of two expressions in the subspace spanned by some set of
functions, ∫

Ω

φi fFE =

∫
Ω

φi fP ∀φi ∈ V(9)

The finite dimensional analogue of 9 is perhaps easier to interpret. We begin by
expanding each field into its components [15, 16]∫

Ω

φi
∑
j

fjφj =

∫
Ω

φi
∑
p

wpδ(x− xp),(10)

∑
j

fj

∫
Ω

φiφj =
∑
p

wp

∫
Ω

φiδ(x− xp).(11)

We can rewrite this using linear algebraic notation,

Mf = V w(12)

where M is the FEM mass matrix

M =

∫
Ω

φiφj ,(13)

V the particle mass matrix

V =

∫
Ω

φiδ(x− xp),(14)

f the vector of finite element coefficients, and w the vector of particle weights. The
particle mass matrix entries are the evaluation of FEM basis functions at the particle
positions, with the basis function determining the row and the particle determining
the column. This simple equation allows us to convert particle weights to finite
element coefficients, and vice versa, while preserving all the moments which are
contained in the finite element space. Note, that as particle positions or momenta
change, V will likewise change.

Computation of M and V is straightforward when delta functions are used to
express fP . If more general shape functions are used, accurate calculation of the
elements of V could become expensive since accurate quadrature for the overlap of
the FEM basis functions and the particle shape function would be necessary.
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Inversion of the finite element mass matrix, M, is straightforward given the
favorable conditioning [28], and we employ conjugate gradient method preconditioned
with ILU(0) in 3. The particle mass matrix need not be square, and thus a
solver for over/underdetermined systems is necessary [26], in most cases with
preconditioning for scalability. Typical preconditioning uses an approximation to
the normal equations, so we recall that

Vip =

∫
Ω

φiδ(x− xp),(15)

so that our normal equations are given by

V TV = VqiVip,(16)

=

(∫
Ω

φiδ(x
′ − xq)

)(∫
Ω

φiδ(x− xp)

)
,(17)

= φi(xq)φi(xp)(18)

In our experiments, preconditioning with the normal equations is quite effective,
and reduces the number of iterations by one to two orders of magnitude.

3. Numerical Results

We have implemented the projection algorithm from Section 2 using the PETSc
libraries [4, 5, 3]. Our particle basis is embodied by a DMSwarm object [23], and
the finite element mesh and function space by a DMPlex object [17, 21]. The
PETSc suite of linear solvers is used to solve the algebraic equations for conservative
projection, Eq 12.

The principal application for this algorithm is currently the projection of a particle
field to a finite element space for the purpose of applying a collision operator, in
particular the Landau operator [1, 24]. Therefore, we will restrict our phase space
to the velocity component. We produce a mesh covering this space that defines our
finite element space, and a set of particles which define the particle field. We project
the particle field to the finite element space and back, checking for conservation of
moments at each step.

Runtime of the projections solves is controlled principally by the choice of
preconditioner. A strong preconditioner is also necessary in order to reach high
accuracy in the solve. We require errors on the order 10−14 in our tests. Inversion of
the finite element mass matrix in the particle deposition step is well understood, and
our choice of CG/ILU(0) is sufficient. However, the weakly coupled, block nature of
the particle mass matrix presents an opportunity to study block preconditioners
for the normal equations, using LSQR [26] as the Krylov solver. To this end, a
weak scaling study is presented for preconditioned LSQR preconditioned with Block
Jacobi on the normal equations using sparse LU on each block, as well as Additive
Schwarz (ASM) with ICC(0) on each block. All tests were performed using standard
PETSc examples, making it straightforward for a reader to reproduce the results,
and to alter the solvers, such as replacing our choice of Krylov solver or block
subsolver. The numerical results present a study on fixed particle number per cell,
with an increasing number of cells such that the number of cells across a fixed
domain remain fixed on each node.

All performance studies were conducted on the Geosolver cluster, located at the
University at Buffalo Center for Computational Research. The Geosolver consists of
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100 Intel Xeon Gold 2.6GHz 12-core 6126 processors, with 8GB of RAM per core,
for a total of 1200 cores across 50 nodes with Intel Omnipath interconnects. We
present the PETSc log for a representative run consisting of > 1 billion particles
in the supplementary materials associated with this article, as well as instructions
for solver configurations in PETSc for duplication of the presented results. We
present 3 as a smaller version of the system being solved in both a field and particle
representation.

Weak scaling is demonstrated with an initial configuration of 256× 256 = 65, 536
quadrilateral, or tensor, cells with 200 particles per cell, and a simplicial mesh of
128 × 128 = 16, 348 cells with 200 particles per cell. Particle coordinates within
each cell are randomized for each run. One node using 24 MPI processes was chosen
as a starting point. As the number of nodes were doubled, the domain was further
subdivided by increasing the cell count by a factor of two, resulting in each node
holding a 256× 256 cell mesh in the tensor case, or 128× 128 in the simplicial case.
All tests use a quadratic element space, with third order quadrature on the cells,
however the simulation can change the order and quadrature with command line
arguments.

(a) FE Coefficients (b) Particles

Figure 1. Visualization of the finite element field (a) arising for a
distribution of particles (b) on a 4x4 grid with 5 particles per cell.

Before we discuss the scaling with respect to a moderate, fixed particle number
per cell, it is useful to observe the capabilities of these projections on a smaller scale.
To do so, we configure an initial 256x256 tensor mesh on one node, with each cell
containing one particle positioned at its centroid. Particle deposition, the projection
of the particle field into the FE space (ptof), and particle synthesis, projection from
the FE to particle space (ftop), are then performed, and the relative error between
the moments of the bases are observed. 2 plots the relative error of each moment
as a function of mesh size, and demonstrates the ability to accurately reconstruct
the field in the particle synthesis step with a single particle. An additional weak
scaling study is presented with a ”checkerboard” configuration in the respective
subsections for each solver configuration. The particle numbers in the checkerboard
configuration alternate between five and six particles for each given cell of the mesh.
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(a) Tensor Cells (b) Simplices

Figure 2. Moment error for the zeroth (mass), first (momentum),
and second (energy) moments after projection from particles to
FE (deposition) and FE to particles (synthesis) in a single particle
per cell case for simplices and tensor cells. The particle is located
at the centroid of each cell, and demonstrates a single particle is
sufficient to reconstruct the field with relative moment error within
100 ∗ εmachine [30] regardless of overall mesh size.

3.1. Block Jacobi+LU Weak Scaling. Using LSQR as the outer Krylov solver,
with a Block-Jacobi preconditioner built from the normal equations using sparse LU
on each block is effective and exhibits good weak scaling. 3a displays this behavior
for both particle synthesis and deposition on a tensor mesh, and 3b displays results
for the simplicial grid.

(a) 256x256 tensor cells

per node

(b) 128x128 simplicial

cells per node

Figure 3. Weak scaling for system solution on tensor and simplicial
grids. Both systems have 200 particles per cell and a LSQR/Block
Jacobi/LU solver.

Block Jacobi/LU reliably solves the system to within 100 ∗ εmachine ∼ 2.2 ∗ 10−14

regardless of the division of the domain and spacing of the particles when the
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(a) 256x256 tensor cells
per node

(b) 128x128 simplicial
cells per node

Figure 4. Weak scaling for system solution on tensor and simpli-
cial grids. Both systems are comprised of a ”checkerboard” pattern,
alternating five and six particles per cell. The LSQR/Block Ja-
cobi/LU solver is used in both cases.

iterative residual tolerance is low enough, at ∼ 10−15. However, runtimes for
moderately large systems can be improved using ASM, as discussed in 3.2. Parallel
direct solvers such as MUMPS and SuperLU dist were considered, but did not
decrease the overall time due to increased setup costs, communication overhead,
and memory limitations.

In the case of simplicial elements with varying particle number per cell, the
number of Krylov iterates scales well, however, at these particle numbers, scatter
operations do not scale well and contribute heavily to increases in run time at each
increase in the number of nodes and size of the grid. It is also observed in the tensor
elements that the increased cost of scatter operations heavily increases run time,
with scattering operations on average taking 100x longer in addition to the increase
in Krylov iterations necessary to sufficiently solve the system as shown in 4.

3.2. Additive Schwarz with Incomplete Cholesky. We can accelerate conver-
gence using ASM [29, 27] since only weak coupling exists between the blocks and
their nearest neighbors. Incomplete Cholesky factorization (ICC) [9] is used to
precondition the blocks, with the factorization being done in-place. ASM/ICC(0)
improves total solve time by a factor of 2 or more in many cases, as seen in 5a, and
reduced the memory footprint. However, the time due to communication overhead
is noticeable at larger problem sizes, and might be eliminated with a coarse problem.
In our largest test case, a run of 1,000,833,800 particles on a 2237 × 2237 tensor
mesh was converged to machine precision, well beyond what could be achieved with
the memory constraints in performing a direct solve.

Compred to the Block Jacobi/Sparse LU, 6 demonstrates similar behavior of
ASM/ICC(0) in regards to scattering operations with low particle number and
varying numbers of particles per cell.

An alternative approach to this problem would be to employ a discontinuous
Galerkin (DG) discretization for the FEM basis [18, 13]. This would completely
eliminate coupling between blocks, making the solver purely local. However, this
would require a more sophisticated solver for the FEM mass matrix, and also for
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(a) 256x256 tensor cells per

node

(b) 128x128 simplicial cells

per node

Figure 5. Weak scaling for system solution on tensor and sim-
plicial grids. Both systems have 200 particles per cell and a
LSQR/ASM/ICC solver.

(a) 256x256 tensor cells per
node

(b) 128x128 simplicial cells
per node

Figure 6. Weak scaling for system solution on tensor and simplicial
grids. Both systems are comprised of a ”checkerboard” pattern,
alternating five and six particles per cell. The LSQR/ASM/ICC
solver is used in both cases.

the associated finite element problem for the continuum physics. For simulations
which are already formulated using a DG discretization, this would seem to be a
good choice.

4. Applications

Conservative projection operations have applications wherever the PIC discretiza-
tion is used, but we place particular emphasis on applications in plasma physics
codes. For instance, the conservative projection operations we present here have
been adapted for, and implemented in, the gyrokinetic PIC code XGC [19, 20] in
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order to maintain conservation in their particle to velocity-grid mappings. This code
uses the same PETSc solvers detailed above to enforce the algebraic condition in
Eq. 12. If conservation is not maintained to high precision, it can cause numerical
problems for the simulation, such as artificial heating of the plasma in a steep edge
pedestal [24]. Furthermore, conservative particle-to-grid transformations offer an
opportunity to fully leverage the work of Adams and Hirovijoki in the formulation
of conservative discretizations of the Landau Collision integral [12] (implemented in
PETSc) when used in other PIC codes where conservation at each step is crucial
for overall numerical accuracy.

Another potential application is the direct tracking of different material phases
without explicit interface tracking. For example, in a hybrid rocket engine, solid
paraffin fuel atomizes and is entrained in the liquid oxidizer [7]. These fuel droplets
can be tracked using a particle basis, and interact thermally with the oxidizer using
a PIC scheme. Moreover, the transition between mesh based computation of droplet
formation and a Lagrangian particle description in the oxidizer flow can be handled
using our conservative projection scheme.

5. Conclusions

We have derived a method to conservatively project a field between particle and
finite element representations, and studied the weak scaling behavior of these solves
with different types of preconditioning on the particle mass matrix. LSQR/BJ/LU
offers a reliable solve that scales well, but can be limited by the memory footprint.
LSQR/ASM/ICC(0) overcomes the memory limitation while maintaining scalability,
but can suffer some loss of accuracy near machine precision. This is likely a result of
the factor shift introducing some ill-conditioning. This effect is limited and does not
always occur, and in general LSQR/ASM/ICC(0) is a good choice for the particle
projection solve.
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