
Temporal and SFQ Pulse-Streams Encoding for Area-Efficient
Superconducting Accelerators

Patricia Gonzalez-Guerrero
lg4er@lbl.gov

Lawrence Berkeley National Laboratory
Berkeley, California, USA

Meriam Gay Bautista
mgbautista@lbl.gov

Lawrence Berkeley National Laboratory
Berkeley, California, USA

Darren Lyles
dlyles@lbl.gov

Lawrence Berkeley National Laboratory
Berkeley, California, USA

George Michelogiannakis
mihelog@lbl.gov

Lawrence Berkeley National Laboratory
Berkeley, California, USA

ABSTRACT

Superconducting technology is a prime candidate for the future

of computing. However, current superconducting prototypes are

limited to small-scale examples due to stringent area constraints

and complex architectures inspired from voltage-level encoding in

CMOS; this is at odds with the 𝑝𝑠-wide Single Quantum Flux (SFQ)

pulses used in superconductors to carry information. In this work,

we propose a wave-pipelined Unary SFQ (U-SFQ) architecture that

leverages the advantages of two data representations: pulse-streams

and Race Logic (RL). We introduce novel building blocks such as

multipliers, adders, and memory cells, which leverage the natu-

ral properties of SFQ pulses to mitigate area constraints. We then

design and simulate three popular hardware accelerators: i) a Pro-

cessing Element (PE), typically used in spatial architectures; ii) A

dot-product-unit (DPU), one of the most popular accelerators in

artificial neural networks and digital signal processing (DSP); and

iii) A Finite Impulse Response (FIR) filter, a popular and computa-

tionally demanding DSP accelerator. The proposed U-SFQ building

blocks require up to 200× fewer JJs compared to their SFQ binary

counterparts, exposing an area-delay trade-off. This work mitigates

the stringent area constraints of superconducting technology.

CCS CONCEPTS

• Hardware → Emerging technologies; • Theory of compu-

tation → Modal and temporal logics; • Computer systems

organization→ Architectures.

KEYWORDS

superconducting logic; temporal logic; race logic; pulse-streams

arithmetic; finite impulse response; dot product unit; digital signal

processing

ACM Reference Format:

Patricia Gonzalez-Guerrero, MeriamGay Bautista, Darren Lyles, and George

Michelogiannakis. 2022. Temporal and SFQ Pulse-Streams Encoding for

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9205-1/22/02.
https://doi.org/10.1145/3503222.3507765

Area-Efficient Superconducting Accelerators. In Proceedings of the 27th

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’22), February 28 – March 4,

2022, Lausanne, Switzerland. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3503222.3507765

1 INTRODUCTION

Metals have the reputation of being good conductors. However,

certain metals exhibit zero electric resistance at low temperatures,

making them superconductors! Superconductivity is the property of

certain metals to have zero resistance below a critical temperature

that is usually a few degrees Kelvin [50]. While in the semiconduc-

tor realm, the MOSFET and the CMOS logic family have dominated

digital design, in superconductors, the Josephson junction (JJ), an

ultra-fast switching device, and the Rapid-Single-Flux-Quantum

(RSFQ) logic family [30] have been the most popular approach.

In RSFQ, a logic transition is represented as pico-seconds-wide,

tens-of-millivolts-amplitude pulse (Figure 1) which enables process-

ing speeds of tens of GHz [26, 28, 50] while keeping the switch-

ing energy six orders of magnitude less than current CMOS pro-

cesses [33, 50].

Typical superconducting architectures implement logic using

CMOS-inspired data representation, predominantly with AND-OR

logic. Because in RSFQ AND-OR gates are synchronous, RSFQ logic

circuits today often use deeply-pipelined datapaths where almost

every cell in the designmust be synchronizedwith a global clock [30,

51]. These deeply-pipelined structures suffer from control and data

hazards and stringent timing constraints that result in expensive

clock trees [21]. Besides architectural challenges, manufacturing

limitations restrict the number of active devices to just a few tens

of thousands of JJs per die [5]. Thus, superconducting circuits have

been limited to relatively low scales.

Alternative computing paradigms might hold the key to compute

in a language that is more natural to SFQ. Unary computing is a

promising solution to improve the area and energy efficiency of

massively-parallel computing [55]. In CMOS unary computing, a

number is represented as a stream of high and low voltages, en-

abling computing with a very low area footprint. Some typical

examples of CMOS unary computing are Synchronous Stochas-

tic Computing (SSC) [14] and Race Logic (RL) [29]. Other more

exotic flavours include asynchronous stochastic computing [15]

and computing with ΣΔ-Modulated [16] or Pulse-Width-Modulated

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

963

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-4377-7496
https://doi.org/10.1145/3503222.3507765
https://doi.org/10.1145/3503222.3507765
https://doi.org/10.1145/3503222.3507765

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland P. Gonzalez-Guerrero, M. Bautista, D. Lyles, G. Michelogiannakis

Figure 1: SFQ fundamentals. (a) The JJ is an ultra-fast switching device built as a superconductor-insulator-superconductor

sandwich. (b) Data is represented as ps wide SFQ pulse. (c) The SQUID is the basic building component in the RSFQ logic family.

(d) With the SQUID we can build the basic SFQ gates such as the DFF, TFF2, NDRO, DFF2, and inverter. The merger, splitter, and

JTL are stateless cells used to facilitate interconnection between gates [11, 58].

streams [39]. A typical CMOS SSC multiplier is implemented as

a simple AND gate [14]. Calculating the minimum between two

values in RL requires a single OR gate [29], yielding area savings of

more than 90% compared to calculating the minimum of two binary

values.

Previous work has explored unary approaches such as SSC and

RL in SFQ technology, demonstrating beneficial trade-offs between

area and energy/power consumption for selected applications [6,

51]. Stream-based methods, such as SSC, are particularly efficient

for mathematical operations yet sacrifice accuracy to latency. On

the other hand, RL yields area efficiency for dynamic programming

algorithms [29], yet it is expensive for arithmetic computations

such as multiplication and addition. Can we leverage the advantages

of both pulse-streams and RL?

This paper addresses RSFQ architectures challenges by propos-

ing a novel wave-pipelined Unary SFQ (U-SFQ) architecture. Our

work combines the best of computing with pulse streams and RL,

leveraging SFQ pulses as an efficient form of data representation.

Our contributions are as follows:

• Data representation: Section 3 extends RL to make it suit-

able for arithmetic operations and defines SFQ pulse stream

characteristics for efficient computing.

• U-SFQ Building Blocks: Section 4 introduces novel build-

ing blocks such as multipliers, adders, and memory elements

for unary SFQ data representation.

• Architecture Evaluation: We evaluate the potential of the

proposed U-SFQ architecture in Section 5 by analyzing three

hardware accelerators. First we introduce a PE for Coarse-

Grained Reconfigurable Architectures (CGRAs) or Spatial Ar-

chitectures (SpA) for CNNs. Second, we show a dot-product

unit (DPU), which is a basic building block of artificial neu-

ral networks and Digital Signal Processing (DSP). Finally,

we evaluate a novel programmable Finite Impulse Response

(FIR) filter accelerator. FIR filters are one of the most used

DSP hardware accelerators but also demand a high number

of hardware resources given the high number of additions

and multiplications [53, 56].

Our proposed U-SFQ processing elements yield up to 200× sav-

ings in area (number of JJs) compared to their binary counterparts.

This results in 28%-98% savings in area for a U-SFQ PE array com-

pared with its binary counterpart for the same throughput. More-

over, our U-SFQ architecture is resilient to computing errors. In

binary, a 30% error rate results in +30dB of signal to noise ratio

(SNR) degradation, versus only 4dB for our U-SFQ architecture.

2 BACKGROUND AND MOTIVATION

2.1 RSFQ Logic

Superconductors are metals with zero resistance below critical

temperatures [50]. The warhorse for superconducting circuits is

the JJ [45] (Figure 1a) that allows current through with no resistance

until a critical current 𝐼𝑐 . Reaching 𝐼𝑐 causes the JJ to switch to a

resistive state and emit a 𝑝𝑠 wide voltage pulse [30].

A basic building block for RSFQ logic is the Superconducting

QUantum Interference Device (SQUID). The SQUID, shown in Fig-

ure 1c, is built using two JJs (𝐽1,𝐽2) connected by an inductance 𝐿,

and has two stable stationary states that differ by the direction of the

persistent current 𝐼𝐿 circulating in the loop. Assume that 𝐼𝐿 circu-

lates counterclockwise so that the current in 𝐽1 = 𝐼𝑏/2 + 𝐼𝐿 ≈ 0.7𝐼𝑐 ,

with 𝐼𝑏 the bias current. This state represents a zero. If an SFQ pulse

arrives at input S, the current through 𝐽1 reaches its critical current,

provoking a quick superconducting→resistive→superconductive

transition (also known as a kickback), and the direction of 𝐼𝐿 be-

comes clockwise. A clockwise current direction represents a "1".

Now, if an SFQ pulse occurs at input port R, the current through 𝐽2
reaches its critical current and the cell reverts to a state "0". This fast

kickback generates an SFQ pulse at J2, which will be propagated at

output Q [34].

In RSFQ logic, the SQUID is the basis of all traditional binary

logic gates [58]. Table 1 describes the RSFQ gates of interest for

this work while Figure 1d shows the cells symbols.

964

Temporal and SFQ Pulse-Streams Encoding for Area-Efficient Superconducting Accelerators ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Table 1: Relevant superconducting gates [11, 58]. *Acronym

Acro* Summary

S Produces a pulse at both outputs per input pulse.

M Produces a pulse at the output for a pulse at either input.

JTL Acts as a buffer, sharpening the output pulse.

FA
Produces an output pulse at the first time an input pulse

arrives at either of its two inputs.

DFF
S sets the SQUID to 1. R resets the SQUID and generates an

output pulse.

DFF2
A sets the SQUID to 1. C1(C2) resets the SQUID and generates

an output pulse at Y1(Y2).

TFF2
Distributes the incoming pulses through alternating output

ports.

NDRO
Ports S, R, and Q resemble a DFF. A pulse at the CLK port

reads the SQUID’s state without altering it.

2.1.1 Binary Multipliers and Adders in RSFQ. Two major archi-

tectures dominate the design of multipliers and adders in SFQ

technology: a) bit parallel and b) wave-pipelined. In bit-parallel

architectures, every cell is clocked. The frequency of the pipeline

is dictated by the maximum cell propagation time added to the

cell’s setup and hold times. Recent work demonstrated a 48GHz 8

bits multiplier, which is 48GOPs of throughput, using 17K JJs [37].

Typically in bit-parallel architectures, there is a significant synchro-

nization overhead [8].

In wave-pipelining, a calculation starts as soon as both operands

arrive and advances as a flow of pulses instead of waiting for the

clock. Wave-pipelining yields up to 3× better area metrics due

to the absence of a clock signal per cell, yet it has a performance

penalty due to the extra time required to avoid data collisions among

the data waves [9, 10, 12]. Table 2 summarizes key metrics for

representative adders and multipliers from literature. Throughout

the paper, we compare our proposed adders and multipliers with

the ones summarized in this table.

Table 2: State of the art for RSFQ multipliers and

adders. BP=Bit-Pipelined, WP=Wave-Pipelined, K=Kogge-

Stone, S=Sparse-Tree, NG=Northtrop Grumman, SA=Systolic

Array, C=Carry-Save. *Projected from [8]. ** Projected

from [40]

Ref. Bits
JJ

count

Latency

(ps)
Arch. Technology

Adder

[23] 4 931 50 BP KOPTI 1.0𝑘𝐴/𝑐𝑚2Nb

[41] 8 6581 588 WP, K AIST-STP2

[8]* 8 4351 222 WP, K NG

[8] 16 16683 255 WP, K NG

[9] 16 9941 352 WP, S ISTEC1.0𝜇𝑚10𝑘𝐴/𝑐𝑚2

Multiplier

[40] 4 2308 1250 SA NEC 2.5𝑘𝐴/𝑐𝑚2

[40] 8 4616 2540 SA ∗∗

[37] 8 17000 333 BP 1𝜇𝑚Nb/AlOx/Nb

[10] 8 5948 447 WP, C ISTEC1.0𝜇𝑚10𝑘𝐴/𝑐𝑚2

[40] 16 9232 5120 SA ∗∗

2.1.2 SFQ Power Considerations. SFQ power consumption can be

divided in threemajor components: i) active due to switching, which

is proportional to the number of JJs and the activity factor; ii) passive

due to biasing of the JJs; and iii) cooling power. Although RSFQ

is the pioneer and most popular logic family, it suffers from high

passive power consumption due to using resistors for biasing which

results in a constant current draw. To address this, logic families

such as energy-efficient RSFQ (ERSFQ) [33] replace biasing resistors

for a network of JJs eliminating the passive power consumption

at the expense of a slight increment in the area. With ERSFQ, the

performance per W of superconducting designs can be 493×-1.23×

higher than a CMOS implementation without and with the cooling

costs respectively [21]. Moreover, we believe that ongoing work

in cryocooling fostered by the advancement of cryosensors and

quantum computing will further increase the energy and power

savings of SFQ compared with CMOS [7]. Given that previous work

has demonstrated the potential for superconducting circuits for

better throughput and energy efficiency [21, 38, 50], in this work

we focus on comparing binary SFQ architectures with our proposed

U-SFQ architecture.

2.1.3 SFQ Roadmap and Challenges. Superconducting technology

has the potential to address the current challenges of high per-

formance computing. However, the following limitations hinder

wider-spread adoption of superconducting digital computing:

(1) Limited device density: There is a 1000× device density

gap between superconducting technology and CMOS. This

limited device density is exacerbated by the fact that SFQ

logic requires more devices to implement traditional binary

designs than CMOS [50].

(2) Reliability: JJs are susceptible to flux-trapping and manu-

facturing defects. This results in a fault mode that is signif-

icantly different than CMOS. Architecture-level solutions

such as redundancy have been proposed [50], exacerbating

the device density limitations mentioned before. Another

option is the development of appropriate EDA tools [13] that

include this fault modes in the synthesis and P&R flow.

(3) Memory: Although cryogenic memories such as (i) Vortex-

Transition-Memory (VTM), (ii) Josephson-CMOS SRAM, (iii)

Magnetic RAM (MRAM), and (iv) superconducting nanowire

RAM (SNM) have been proposed [49, 52], there are still den-

sity, integration and performance limitation to be addressed.

For practical reasons the most viable on-chip memory for

SFQ technologies uses DFF-based shift registers [21].

(4) EDA tools: have been developed as part of academic re-

search efforts mostly focused on device and gate level simple

synthesis that reaches thousands of gates [27]. To achieve

large scale integration capable of reaching billions of active

devices, tools that enable back-annotation from the layout to

schematic, and parameter extraction are still required [13].

Programs such as Supertools [20] are tackling the EDA chal-

lenge.

2.2 Alternative Data Representations

2.2.1 Race Logic. Recent work explored Race Logic (RL) as an al-

ternative way of encoding and processing information using RSFQ

965

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland P. Gonzalez-Guerrero, M. Bautista, D. Lyles, G. Michelogiannakis

logic [51]. In RL, information is encoded as a delay from a refer-

ence signal. Computation is performed by observing the relative

propagation times of signals injected into a circuit (i.e. the outcome

of races) [29]. For example, Figure 2a shows the computation of the

minimum between two RL signals. FA requires only 8 JJs [51], while

a binary implementation of the minimum between two numbers

requires more than 4K JJs. Because RL encodes data in time, it is

well-suited for dynamic programming [29] but basic arithmetic

operations such as addition and multiplication are expensive.

Figure 2: (a) Example of computing the minimum between

two RL signals A=2 and B=3 with the FA primitive [51]. (b)

Example of CMOS pulse stream multiplication. A=0.5 is a

pulse stream, while B is a CMOS signal that is high 25% of the

time. For this example, 𝑃𝑚𝑎𝑥 = 8 and the output represents

1/8 = 0.125 [35]

2.2.2 CMOS Pulse Stream Arithmetic. łpulse streamž encoding in

biological networks might hold the key to mitigate RL limitations.

When a neuron is ON, it fires a regular train of voltage spikes. When

the neuron is OFF, it does not. This biologically-inspired, impulse-

based data representation kick-started pulse stream arithmetic and

is mostly used in spiking neural networks [35, 36]. In pulse stream

arithmetic, a number 𝑝 is mapped to the rate (𝑅𝑝) of a train of

voltage spikes such that 𝑅𝑝 = 0 for 𝑝 = 0, and 𝑅𝑝 = 𝑅𝑚𝑎𝑥 for 𝑝 = 1.

Consequently, there is a maximum number of pulses 𝑁𝑚𝑎𝑥 that

occurs when 𝑝 = 1. Then, 𝑝 is recovered from the pulse stream by

counting the number of pulses and dividing them by 𝑁𝑚𝑎𝑥 .

Opposite to RL, pulse stream representation favours mathemat-

ical operations such as multiplication and addition. For example,

multiplication is performed by filtering out a fraction of the pulses

with an AND gate [36]. Figure 2b shows an example of pulse stream

multiplication with A=0.5 represented as a stream of pulses firing

at half the maximum frequency and B=0.25 represented as a CMOS

level signal. The result 𝑦 can be obtained by 𝑦 = 𝑁𝑦/𝑁𝑚𝑎𝑥 where

𝑁𝑦 is the number of pulses coming out of the AND gate.

3 UNARY SFQ DATA REPRESENTATION

Inspired by the natural occurrence of pulses in SFQ logic, we com-

bine pulse stream-arithmetic with RL to propose a unary SFQ data

representation. We aim to alleviate SFQ area constraints by de-

signing processing elements with a minimum area footprint while

leveraging the high SFQ processing speeds.

3.1 Race Logic for Mathematical Operations

To understand the proposed U-SFQ data representation, let us start

from RL. Figure 3a shows a typical RL epoch. We define an epoch

to be subdivided into time slots. To represent number 3, the SFQ

pulse arrives at the time slot identified as Id=3. We then modify the

original RL definition by dividing the time slot Id by the maximum

time slot in the epoch, thus obtaining a numerical representation

between 0 and 1. This unipolar data representation enables opera-

tions for positive numbers, which agrees with the natural evolution

of time. Inspired by the bipolar stochastic computing representa-

tion [14], we can obtain a RL bipolar representation by scaling and

shifting the unipolar Id such that 𝐼𝑑𝑏 = 2𝐼𝑑𝑢 − 1, where 𝐼𝑑𝑢 is the

unipolar Id and 𝐼𝑑𝑏 the equivalent bipolar Id.

3.2 SFQ Pulse Train Data Representation

We propose to map a number 𝑝 to the frequency 𝑅𝑝 of a peri-

odic train of SFQ pulses, inspired by pulse stream arithmetic (Sec-

tion 2.2.2). A unipolar data representation maps the maximum rate

𝑅𝑚𝑎𝑥 , or equivalently the maximum number of pulses 𝑁𝑚𝑎𝑥 in an

epoch, to 1 and the absence of pulses to 0. Notice that 𝑝 = 𝑛/𝑁𝑚𝑎𝑥 ,

where 𝑛 is the number of pulses during a computing epoch. Also,

each pulse has an associated weight of 1/𝑁𝑚𝑎𝑥 . Similar to SSC [14],

to enable negative numbers we can derive a bipolar data represen-

tation as 𝑝𝑏 = 2𝑝𝑢 − 1, where 𝑝𝑢 is the unipolar representation and

𝑝𝑏 is the equivalent in a bipolar representation.

4 UNARY SFQ BUILDING BLOCKS

Because direct mapping of CMOS-pulse stream-arithmetic building

blocks to SFQ is expensive, we can combine pulse streams with

the compactness of RL to enable efficient processing units. In this

section, we introduce our novel unary SFQ multiplier and unary

SFQ adder.

4.1 Unary SFQ Multiplier

Given two numbers 𝑝𝐴 and 𝑝𝐵 in the range of [0, 1], we propose

to encode 𝑝𝐴 as the rate of an SFQ pulse stream A, and 𝑝𝐵 as a RL

signal B. To calculate 𝑝𝐴 × 𝑝𝐵 , we use the RL signal B to filter out

a percentage of pulses from A (see Figure 3b). What remains after

the filtering process, encoded in a pulse stream, is the multiplica-

tion result. To implement this, we use an NDRO cell as shown in

Figure 3c (left).

Using a single NDRO, we can multiply positive numbers. That

is called unipolar multiplication. To multiply negative numbers,

we propose a bipolar multiplier shown in Figure 3c (right). Notice

that the proposed multiplier is inspired by a CMOS XNOR, that

is the bipolar multiplier for stochastic computing [14]. Before the

arrival of the RL pulse B, the top NDRO lets the pulse stream A pass

through. As a result,𝑂1 = 𝐴∧𝐵. When B arrives, it sets the bottom

NDRO letting ¬𝐴 pass. As a result, 𝑂2 = ¬𝐴 ∧ ¬𝐵. The merger

combines 𝑂1 and 𝑂2 obtaining 𝑂𝑈𝑇 = (𝐴 ∧ 𝐵) ∨ (¬𝐴 ∧ ¬𝐵).

To evaluate the performance of our proposed multiplier, we

design and simulate the circuit withWRSpice using the open-source

MIT-LL SFQ5ee 10𝑘𝐴/𝑐𝑚2 process. Figure 4 shows the latency and

area of unary and binary multipliers.

Area: The area (number of JJs) of the binary multiplier is propor-

tional to the number of bits, while the area of the unary multiplier

remains constant. Our proposed multiplier occupies 25× to 200×

less area than the binary Wave-Pipelined (WP) architecture. When

966

Temporal and SFQ Pulse-Streams Encoding for Area-Efficient Superconducting Accelerators ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Figure 3: (a) Conventional RL data representation and our

proposed unipolar and bipolar RL data encoding. (b) Unipo-

lar multiplication examples. E signals the beginning of the

epoch. The first example with a 3-bit resolution (𝑁𝑚𝑎𝑥 = 8)

results in 0.125 = 1/𝑁𝑚𝑎𝑥 . The second example with a 4-bit

resolution (𝑁𝑚𝑎𝑥 = 16) results in 0.375 = 6/𝑁𝑚𝑎𝑥 . (c) Proposed

unipolar and bipolar multipliers. Unipolar multiplier: E sets

the SFQ loop to "1", while RL input B sets the SFQ loop to

"0". pulse stream A is connected to the non-destructive-read

input port CLK. Pulses arriving before B pass through the

NDRO while pulses after B do not. Bipolar multiplier: the

top NDRO behaves as the unipolar version, while the bottom

NDRO is set at the arrival of the RL input and resets at the

beginning of the epoch.

compared with the BP binary architecture in [37], the unary multi-

plier yields 370× savings in area.

Latency: The simulated delay for our proposed multiplier is

𝑡𝐼𝑁𝑉 = 9𝑝𝑠 , which corresponds to the propagation, setup and hold

time for the inverter. This, also results in maximum frequency of

10−2
10−1
100
101
102
103

2 4 6 8 10 12 14 16
10−2

10−1

100

101

102

2 4 6 8 10 12 14 16

Bits

Binary
Unary

Latency [𝑛𝑠]

Bits

Area #JJs ×103

Figure 4: Latency and area comparison between the proposed

U-SFQmultiplier and binarymultipliers. △ [37], ◦ [10], • [40],

(Table 2). The dashed line is a linear fit of the data reported

in Table 2.

≈ 111𝐺𝐻𝑧, which translates to a computation latency of 2𝐵𝑡𝐼𝑁𝑉
with 𝐵 the bit resolution. The latency of the binary multiplier is

linearly proportional to B, while the latency of the unary multiplier

increases exponentially with B. Compared with a BP multiplier [37],

the binary architecture is 6× faster than U-SFQ at the expense of

370×more area for 8 bits.When comparedwith theWP architecture,

the unary multiplier is faster for less than 8 bits.

4.2 Unary SFQ Addition

This section discusses two possible implementations for a unary

SFQ adder: (A) a merger and (B) a counting network.

(A) Unary SFQ Addition With a Merger: One method for

addition merges pulses into a single stream. A typical 2:1 SFQ

merger cell has two inputs (A, B), one output (Y), and resembles

the behavior of a CMOS OR gate (Figure 5a). The addition result

𝑝𝑌 = 𝑝𝐴 + 𝑝𝐵 is obtained by counting the number of pulses at the

merger’s output and dividing by the maximum number of pulses

expected in the computation time.

Figure 5: (a) Typical SFQ merger built with 5 JJs [58] and its

operation. (b) Pulse collision in a 4:1 merger cell. (c) Correct

operation for a 4:1 merger cell with a latency increase.

Computation error arises from the arrival of two pulses simul-

taneously at the merger input ports. In this case, only one pulse

appears at the output Y. Therefore, the architecture must guarantee

that pulses do not collide. This increases the minimum pulse spac-

ing, increasing the computation latency. Moreover, the distance

between input pulses is dictated by the intrinsic delay of the merger

cell. Figure 5b shows an error example for a 4:1 merger cell (an M:1

merger cell can be built from 2:1 merger cells). Notice that four

967

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland P. Gonzalez-Guerrero, M. Bautista, D. Lyles, G. Michelogiannakis

pulses come in and only three come out. Figure 5c shows how to

avoid collisions by increasing computation latency. The minimum

distance between pulses increases with the number of inputs.

Figure 6: (a) 2:2 balancer. (b) Balancer output stage. (c) Mealey

machine of the balancer routing logic. (d) 4:1 counting net-

work. (e) B-Flip Flop (BFF). (f) Balancer routing unit.

(B) Unary SFQ Addition With a Counting Network: To

avoid delay injection to avoid collisions, we propose to use an M:1

counting network (M inputs, one output) where M is a power of

two [4, 6, 31]. A balancer (Figure 6a) is the building block for count-

ing networks. A balancer has two inputs and two outputs, and acts

like a toggle mechanism that repeatedly sends one incoming pulse

to the top output and one to the bottom, balancing the number of

pulses at both outputs [4]. The advantage of the balancer over the

merger is its ability to deal with collisions. When pulses appear si-

multaneously at inputs A and B, a pulse is generated at each output.

Consequently, each balancer’s output generates (𝑁𝐴+𝑁𝐵)/2 pulses,

with 𝑁𝐴 , 𝑁𝐵 the number of pulses at input A and B, respectively.

The addition 𝑝𝑌 = (𝑝𝐴 +𝑝𝐵)/2 is obtained by counting the number

of pulses at either Y1 or Y2 and dividing by 𝑁𝑚𝑎𝑥 .

We use an M:1 counting network to accumulate pulses coming

from M parallel inputs. Figure 6d shows an example of a 4:1 count-

ing network built with three balancers. Since the balancer divides

the number of input pulses by two, the total number of pulses at

the counting network output is (𝑁𝐴1 + 𝑁𝐴2 + ... + 𝑁𝐴𝑀)/𝑀 , with

𝑁𝐴1, 𝑁𝐴2, ..., 𝑁𝐴𝑀 the number of pulses at the 𝐴1, 𝐴2,..., 𝐴𝑀 input

ports. The addition result 𝑝𝑌 = (𝑝𝐴1 + 𝑝𝐴2 + ... + 𝑝𝐴𝑀)/𝑀 is the

number of pulses at the counting network output divided by 𝑁𝑚𝑎𝑥 .

A balancer can be implemented with a merger followed by a

TFF2 [31]. However, when two pulses arrive simultaneously, one is

lost to the collision. Therefore, we propose a novel RSFQ balancer

for pulse streams that is composed of two circuits: (i) an output

stage and (ii) a routing unit.

(i) Balancer Output Stage: To enable the propagation of two si-

multaneous incoming pulses, we design the output stage shown in

Figure 6b. The stage is composed of two DFF2s facing each other

through merger cells. The SFQ loop for the DFF2 on the right (left)

is set to "1" by input A (B). After this, control signal C1 (C2) reads

the DFF2 state through the top (bottom) output. C1 and C2 are

generated by the routing unit as described below.

(ii) Balancer Routing Unit: To generate C1 and C2, we design

a routing unit following the Mealy machine shown in Figure 6c.

An incoming pulse from either A or B causes a toggle between

states 0 and 1. Outputs C1 and C2 depend on both the state and

the inputs. Figure 6f shows the routing unit which is based on the

B-Flip Flop (BFF) [43]. The BFF (Figure 6e) has four inputs that

modify a single quantizing loop with two stationary states. The

quantizing loop is formed by an inductance L closed via the ground

and two 4-JJ-low-inductance-loops [58]. We connect the balancer’s

input A (B) to S1 and R2 (S2 and R1) through splitter cells. Then

we merge Q1 and !Q1 (Q2 and !Q2) to generate outputs C1 (C2).

Figure 7 shows a waveform of our proposed balancer. The first

pulse at input port B causes the state to transition from "0" to "1"

(green), generating a pulse at output Y1. The next incoming pulse

at either input port A or B will provoke a pulse at output Y2 and the

state reset. When pulses arrive at inputs A and B simultaneously

(∼ 7𝑝𝑠), there is one pulse at each output. Each output produces a

number of pulses equal to the total number of pulses coming from

A plus B divided by 2.

0

0.4

0

0.4

0

1

0

1

0

0.4

0 0.2 0.4 0.6 0.8 1 1.2

A
[𝑚𝑉]

B

[𝑚𝑉]

Y
1 [𝑚𝑉]

Y
2 [𝑚𝑉]

St
at
e

Time [ns]

[𝜇𝐴]

Figure 7: Balancer waveforms. A and B are the inputs, while

Y1 and Y2 are the outputs. The last plot is the BFF state.

For the BFF state sequence, three different cases can be observed:

(i) Pulses at A and B arrive at different times; (ii) Pulses at A and

B arrive at the same time; and (iii) A second pulse arrives when

the BFF state is transitioning. For cases (i) and (ii), the behavior of

the cell follows the Mealy machine in Figure 6c. Moreover, because

the output stage handles two pulses simultaneously, no additional

action is needed.

Case (iii) causes unwanted behavior. If a second pulse arrives

at either input during BFF transition (𝑡𝐵𝐹𝐹 = 12𝑝𝑠), this pulse is

ignored by the control logic. Although the output is still correct

because the output unit still generates two pulses, over time the

balancer might be biased towards one output. We discuss the impact

of these errors in computation accuracy in Section 5.4.1. To avoid

this situation, wemust guarantee a minimum delay of 𝑡𝐵𝐹𝐹 between

input pulses. Thus, the adder latency is set by 𝑡 = 2𝐵𝑡𝐵𝐹𝐹 with B

the bits resolution.

Figure 8 compares the latency and area for the 2:1 merger unit,

balancer, and binary adder. We compare our adders with the adders

reported in literature (Table 2). Both the merger and balancer yield

968

Temporal and SFQ Pulse-Streams Encoding for Area-Efficient Superconducting Accelerators ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

10−2
10−1
100
101
102
103
104

4 8 16
10−3
10−2
10−1
100
101
102

4 8 16
Bits

Binary
Merger

Balancer

Latency [𝑛𝑠]

Bits

Area #JJs ×103

Figure 8: A comparison of the unary SFQ and binary adders.

△ [41], ◦ [8], • [23], � [9], (Table 2). Dashed-line only for visu-

alization.

Figure 9: a) Typical Pulse Number Multiplier (PNM) imple-

mented with TFFs [32, 46, 48]. b) Proposed PNM using TFF2s

to generate a stream resembling a uniform rate.

area savings compared to the binary adder, but with a latency

penalty. The balancer yields 11×-200× area savings versus the bi-

nary adder for 4-16 bits.

4.3 Memory Bank for Coefficients

In typical DSP and neural network accelerators, inputs are mul-

tiplied with coefficients or weights. Since these coefficients are

loaded in memory once and rarely get updated thereafter [21], they

require non-destructive-read-out memory. In binary SFQ, this type

of memory uses NDROs (Table 1). Thus, the next challenge is to

generate these SFQ pulse streams to encode the coefficients and

weights in U-SFQ.

To generate the pulse streams, we adopt a Pulse Number Mul-

tiplier (PNM) that creates a high-speed pulse train from a low-

frequency input [32, 46, 48]. Figure 9a shows the circuit and timing

diagram for a typical PNM where a clock signal (CLK) is divided

by a chain of TFFs. The output of each TFF is merged to generate

the pulse stream. The number of pulses is programmable and set

by the NDROs that each acts as an AND gate. Figure 9a shows the

pulse stream (out) with the NDROs set to "1111", which yields 15

pulses. If instead the NDROs were set to "0100", the result is four

pulses (S1).

The pulses generated by the PNM are not uniformly spaced to

the detriment of computation accuracy. Recall that the pulses must

appear at a regular frequency (Sections 3.2 and 4.1). To address this

issue, we use a dual-port Toggle-flip-flop (TFF2), which works like

a demultiplexer, splitting up a data stream into two signal lines [11].

One of the outputs of the TFF2 is used to divide the clock by half,

while the other is used to form the pulse stream. The resulting pulse

stream resembles a train of pulses with a uniform rate (Figure 9b).

Similar to an SFQ binary implementation, the NDROs in Fig-

ure 9b are the memory bank. To obtain pulse streams from this

memory bank, we use the proposed PNM to generate the clock for

the NDROs and mergers to form the pulse streams (Figure 9b). The

mergers and clock distribution network cost a 10% area overhead

compared to a binary implementation.

4.4 Shift Register

Another important piece to complete a U-SFQ accelerator is a shift

register to enable an efficient memory implementation. In a typical

binary implementation, the shift register is a bank of DFFs. Here we

explore three possible implementations of a shift register for RL: (i) a

combination of a binary shift register with binary-to-RL conversion;

(ii) a DFF-based shift register for RL; and (iii) an integrator-based

shift register for RL.

4.4.1 Binary to Race Logic Conversion. A straightforward imple-

mentation connects the binary bank of DFFs with binary-to-RL-

converters (B2RC). B2RCs are programmable counters designed as

an interleaved chain of TFFs and DFFs [22]. Figure 12 shows that

this takes up to 3.2× more area than its binary counterpart due to

the expensive converters.

4.4.2 DFF-Based RL Shift Register. To avoid expensive B2RCs, the

shift register must have inputs and outputs encoded in RL. This can

be achieved by connecting DFFs in series to create a delay chain

controlled by a clock (Figure 10a). To delay a pulse by the total

number of time-slots in an epoch, a DFF per time-slot is required.

Since the number of DFFs grows exponentially with the number of

bits, this solution is more expensive than using B2RCs (Figure 12).

4.4.3 Integrator-Based RL Shift Register. Therefore, we propose an

integrator-based buffer for RL (Figure 10b). We use an inductor to

integrate pulses from a clock source given the inductor’s current-

voltage relation 𝐼𝐿 = 1/𝐿
∫
𝑣𝐿𝑑𝑡 . The RL input pulse initiates the

integration. One epoch later, the integration stops and generates

the RL output.

In more detail, the arrival of a RL input (in) closes switch 1○,

starting the integration. The integration pauses when J1, which acts

as a comparator, reaches its critical current 𝐼𝑐 . The time it takes for

J1 to kickback is equivalent to half an epoch. Then, the circuit starts

to discharge the inductor by activating switch 2○ until it reaches

a low baseline. At that time, J2 kicks-back generating the output

pulse (out). The process of charging and discharging the inductor

delays the input signal by a complete epoch. Figure 10c shows the

SFQ circuit for the proposed buffer. The NDROs are switches 1○ and

2○, while the DFFs take only the first pulse observed at the inductor

ends 𝐿𝑎 and 𝐿𝑏 . Figure 11 shows the simulation waveforms for the

buffer.

969

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland P. Gonzalez-Guerrero, M. Bautista, D. Lyles, G. Michelogiannakis

Figure 10: (a) Race logic shift register built using SFQ DFFs.

(b) Conceptual integrator-based RL buffer using an induc-

tance to accumulate SFQ pulses. (c) SFQ control logic for the

integrator-based buffer. (d) Memory cell based on RL buffer.

A memory cell uses two buffers in parallel. While one buffer is

delaying the input from the previous epoch, the other one receives

the input from the current epoch. To interleave the two buffers,

we use an RSFQ multiplexer and de-multiplexer [57] as shown in

Figure 10d. The complete RL shift register is built by connecting

memory cells in series.

0

0.6 [𝑚𝑉]

0

0.6 [𝑚𝑉]

0

1.0 [𝑚𝑉]

0

1.0 [𝑚𝑉]

−200

200

0 0.5 1 1.5 2 2.5 3 3.5

[𝜇𝐴]

E
IN

O
U
T

𝐿

𝐿𝑎 𝐿𝑏

𝐼 𝐿

Time [𝑛𝑠]

Figure 11: Simulated waveforms for the proposed buffer. E

signals the beginning of a new epoch. The RL input pulse

(IN) carries information in the time delay measured from

the beginning of the epoch. The output pulse (OUT) appears

with the same delay at the next epoch. Signals 𝐿𝑎 and 𝐿𝑏 are

voltages at the inductor endpoints. 𝐼𝐿 is the current in the

inductor.

Figure 12 shows the area in JJs for the shift register built using our

proposed buffer. In contrast to other implementations, the number

of JJs for the buffer is constant while the inductance value increases

with the number of bits. Our preliminary simulations show that

the inductance increment is negligible compared with the JJ count

of the other implementations. The inductor value 𝐿, the frequency

of the clock, and the JJ’s 𝐼𝑐 depend on the bit resolution and epoch

time.

All in all, the integrator-based shift register is smaller than B2RCs

and the DFF-based RL options, yet it yields an area overhead com-

pared to a binary shift register. For 8 bits, the area overhead is 2.5×

but only 1.3× for 16 bits.

100

101

102

103

104

105

8 9 10 11 12 13 14 15 16
Bits

Binary
B2RC

DFF
Buffer

Area in Number of JJs ×103

Figure 12: Number of JJs of different shift registers.

5 ARCHITECTURE EVALUATION

We evaluate our novel computing paradigm with three popular

hardware accelerators: (i) A processing element (PE) suitable for

CGRAs or spatial architectures. (ii) A DPU, popular in DSP and NN

accelerators. (iii) An FIR accelerator where we also evaluate the

impact of memory.

5.1 Methodology

Weextractmetrics of performance such as accuracy, latency, through-

put, power consumption, area calculated as the number of JJs,

and efficiency calculated as throughput per JJ (Figure 18). We run

spice-level simulations using WRspice and the open-source MIT-LL

SFQ5ee 10 kA/cm2 process.

For DSP and error injection modeling we use Octave. We are

interested in the range of bit resolutions and the number of taps

where our U-SFQ architecture yields a performance advantage

over its binary counterpart. The binary multipliers and adders

are summarized in Table 2. The binary architecture uses a single

multiplier and adder unit given the area limitations of RSFQ.

5.2 Processing Element

The Processing Element (PE) is the core of popular hardware ac-

celerators such as CGRAs and SpA for CNNs [2]. Suitable kernels

mainly perform repetitive operations, such as multiply accumulate

(MAC) and arithmetic operations [2]. With the computing elements

introduced above we can build a unipolar PE for CGRAs or SpAs as

shown in Figure 13b. The proposed PE can perform the following

mathematical operations:

• Unipolar multiplication with In1 a RL input and In2 a pulse

stream (Section 4.1).

• Unipolar addition among In2 and In3 using the balancer

described in Section 4.2 and setting In1 to 1.

970

Temporal and SFQ Pulse-Streams Encoding for Area-Efficient Superconducting Accelerators ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

• A multiply-accumulation operation using the integrator de-

scribed in Section 4.4. The integrator performs two tasks.

First, each pulse from the adder is integrated in the ana-

log buffer (accumulation). Second, the accumulated result is

returned in a RL format facilitating the interface among PEs.

Figure 13: a) A simplified unipolar PE consisting of a multi-

plier, adder and integrator. b) Example of a typical array of

PEs typically used in CGRAs and SpA.

The U-SFQ PE yields significant area savings when compared

with its B-SFQ counterpart. The number of JJs for the U-SFQ PE is

126 and does not increase with the number of bits. On the other

hand, the number of JJs for the binary PE increases linearly with

the number of bits (Section 4). As an example, the U-SFQ yields

98%-99% savings in area when compared with an 8-bits B-SFQ PE

that requires 9K-17k JJs.

10−1

100

101

102

103

4 6 8 10 12 14 16
10−1

100

101

102

4 6 8 10 12 14 16
Bits

Binary
Unary

Latency [𝑛𝑠]

Bits

Area #JJs ×103

Figure 14: a) PE Latency. b) Area for the same throughput.

Dashed-lines obtained from the metrics summarized in Ta-

ble 2. •BP architecture [37, 38], × U-SFQ with a throughput

equivalent to the BP architecture.

The minimum footprint of the U-SFQ PE comes at an increased

latency. Figure 14a shows that in general the binary implementa-

tion yields better latency for an individual PE. However, the U-SFQ

PE enables the integration of multiple PEs at a reduced area cost,

thus increasing overall throughput. To evaluate this, we equalize

throughput by increasing the number of U-SFQ PEs and then com-

pare area (number of JJs) in Figure 14b. An array of U-SFQ PEs

yields 93%-96% savings in area when compared with the Wave-

Pipelined (WP) binary architecture for less than 12 bits. As the

resolution increases the area savings reduce up to 30% for 16 bits.

When compared with an 8-bit bit-parallel architecture [37, 38] there

are area savings of 28%.

5.3 The Dot-Product Unit

The dot-product is the building block for several DSP algorithms [18]

and for artificial neural networks [19]. Moreover, the dot-product

is one of the most computationally expensive operations given the

high number of multiplications required to obtain a result. These

properties make the dot-product a good benchmark for our unary

SFQ data representation. The dot product between vectors 𝑎 and 𝑏

of length L is defined as 𝑦 = 𝑎 · 𝑏 =

∑𝐿−1
𝑖=0 𝑎[𝑖]𝑏 [𝑖], where the result

𝑦 is a scalar.

A straightforward mapping of the dot-product equation requires

as many multipliers and adders as the input length L. Unfortunately,

due to poor JJ device density, the number of binary multipliers and

adders that can be practically deployed is restricted to 1-4 [21],

especially for many bits.

By leveraging the small footprint of our proposed multiplier and

adder (Sections 4.1 and 4.2), we can instantiate a larger number of

them in parallel to implement a DPU. Figure 15 shows the proposed

unary SFQ DPU. Our SFQ multiplier receives inputs 𝑎0, ...𝑎𝐿 in

RL format while inputs 𝑏0, ..., 𝑏𝐿 are pulse streams. The counting

network receives parallel pulse streams and combines them such

that 𝑌 =
𝑎0𝑏0+𝑎1𝑏1+...+𝑎𝐿𝑏𝐿

𝐿

Figure 15: Proposed U-SFQ Dot Product Unit.

Figure 16 compares the area in number of JJs for the U-SFQ and

SFQ binary implementations. The U-SFQ DPU area is independent

of the number of bits and is proportional to the vector length L,

while the binary DPU is proportional to both the number of bits and

the vector length. The unary implementation yields area savings for

𝐿 less than 64. For 𝐿 = 128, both architectures become comparable

and the area depends on the number of bits. For example, a unary

DPU for a vector length of 128 yields area savings for a resolution of

more than 12 bits. Finally, beyond 256 taps, the parallel multipliers

and adders complexity increases beyond a single binary multiply

accumulation unit.

100

101

102

6 8 10 12 14 16

32 Taps
64 Taps

128 Taps
256 Taps

Bits

Unary Binary

Area #JJs ×103

Figure 16: Area of the dot-product unit. For the unary DPU

we vary the number of multipliers and counting network

dimensions from 16 to 256. Dashed-lines obtained from the

metrics summarized in Table 2.

971

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland P. Gonzalez-Guerrero, M. Bautista, D. Lyles, G. Michelogiannakis

5.4 The Unary SFQ Finite Impulse Response
Filter (FIR)

Because of their stable and linear-phase response, FIR filters have

widespread use in digital communication [53, 56], image processing,

and signal preconditioning [24]. The output 𝑦 [𝑛] of the FIR filter of

order N is the dot product between the filter’s impulse responseℎ(𝑘)

with the input vector 𝑥 (𝑛−𝑘) defined as𝑦 [𝑛] =
∑𝑁−1
𝑘=0

ℎ(𝑘)𝑥 (𝑛−𝑘).

A typical FIR architecture (Figure 17) has N taps. A tap consists of

a multiplier, an adder, and a delay element 𝑧−1. FIR filters are com-

putationally intensive given the large number of multiplications.

For example, Infra-Red (IR) sensors require 30 taps with 6-8 bits

of resolution [3, 24, 42, 47], while Software-Defined-Radio (SDR)

requires 200-900 taps and 7-14 bits of resolution [53, 56].

Figure 17: FIR block diagram.

To implement an FIR tap we can use the DPU unit for multiplica-

tion and addition and the RL shift register (Section 4.4) to implement

the delay element 𝑧−1. To store the coefficients ℎ[𝑖], we use the

memory bank introduced in Section 4.3. In practice, the format of

external inputs and therefore any necessary conversions depends

on the application. For instance, sensors could directly generate

temporal inputs [16, 17]. For the FIR output, we could use an SFQ

pulse counter to convert to binary representation. However, the

circuit after our FIR may expect pulse streams (no need to convert)

or RL. In the latter case, we can use the integrator of Section 4.4 to

convert pulse streams to RL. In that case, the FIR latency is not af-

fected and area increases by 50-200 JJs. As we discuss in this section,

our proposed accelerator yields throughput and area advantages

depending on the number of taps and bits resolution.

5.4.1 Accuracy. To evaluate the U-SFQ FIR accelerator response in

the presence of errors, we use Octave to generate a golden reference

that includes an input 𝑥 (𝑡), the filter impulse response ℎ(𝑡), and

the filter output 𝑦 (𝑡). The synthetic input 𝑥 (𝑡) is a superposition of

sinusoidal signals with frequencies at 1KHz, 7KHz, 8KHz, and 9KHz.

We design a 16-taps FIR filter to recover the 1KHz sine wave from

𝑥 (𝑡) and filter out the remaining higher frequency waves. Inputs

are scaled to avoid overflow errors. The Signal-to-Noise-Ratio (SNR)

of the sinusoidal obtained at the FIR filter output 𝑦 (𝑡) is 25.7dBs.

We build models for fixed-point binary and U-SFQ FIR filters. As

expected, both the unary and binary architectures suffer an SNR

degradation due to quantization noise. For instance, for 16 bits, the

calculated SNR is 24𝑑𝐵𝑠 and for 6 bits is 15𝑑𝐵𝑠 .

We then randomly inject errors in the computation results. For

binary, an error typically results in bits flipped, causing the SNR

to drop quickly as the number of errors increases (Figure 19). i.e.,

three errors cause the SNR to drop ∼ 10𝑑𝐵𝑠 in average. The large

SNR variance shows that the error can be catastrophic when the

most significant bits flip.

Three possible errors can affect the U-SFQ FIR filter: (i) Lost

pulses in pulse streams: A pulse can get lost due to non-ideal

circuit behavior, i.e., flux trapped in parasitic inductors, or delay

variations causing pulse collisions in the adder (Section 4.2). (ii)

Lost pulses in RL: Similarly, the RL pulse can be lost due to the

aforementioned non-idealities of the circuit. (iii) Delayed pulses

in RL: Either positive or negative delay variations cause the RL

pulses to arrive outside the expected time-slot, modifying the value

of the RL operand.

The effect of errors (i) and (iii) on the computation accuracy is

similar. In contrast to a binary representation, each pulse in a pulse

stream has the same weight 1/2𝐵 where 𝐵 is the bit resolution.

Figure 19a shows that when the SNR for the binary implementation

drops by 10dBs on average, the SNR for the U-SFQ filter only drops

4dB. For a binary implementation, the effect of the error depends

on the bit weight as shown by the large distribution of SNR shown

in Figure 19b. In the unary implementation, for 𝐵 = 16, there are

2𝐵 pulses in the stream, and each pulse weights 0.0000152. Thus,

missing 30% of the pulses causes an SNR degradation of only 4dBs.

A delay of ±30% in the RL input has a similar effect due to its

interaction with the pulse stream. As discussed in Section 4.2, the

adder returns the total number of pulses divided by two. When

the number of pulses is odd, the result yields an error of ±0.5. Our

model includes this effect in the accuracy evaluation.

Figure 19a also shows the effect of error (ii). A lost RL pulse has

a larger effect on computation accuracy because all the information

is concentrated in a single pulse. Given the low density of RL pulses

in the FIR datapath, collisions are unlikely, in contrast to pulse

streams. Special care should be taken during the layout of the RL

lanes to avoid non-ideal effects such as unintentional flux trapped

in parasitic inductors.

5.4.2 Performance. The latency for the U-SFQ FIR is set by the

PNMdescribed in Section 4.3. The period of the low-frequency clock

used by the PNM is given by 𝑇𝐶𝐿𝐾 = 𝑡𝑇𝐹𝐹2𝐵, where 𝑡𝑇𝐹𝐹2 = 20𝑝𝑠

is the delay of the TFF2 and 𝐵 is the resolution in bits. Then, the

total computation latency is 𝑡 = 2𝐵𝑇𝐶𝐿𝐾 .

Figure 18a-b compares the latency and throughput1 of the binary

and unary FIR filters for 32 and 256 taps. The latency for the unary

implementation is independent of the number of taps. Also, it yields

latency and throughput advantages for less than 9 (12) bits with

32 (256) taps when compared with WP binary architectures. This

range covers many on-sensor and edge computing applications,

which is an area of increasing interest. Previous work in CNNs

demonstrated that fixed-point arithmetic with as low as 4 bits yields

acceptable accuracy [25]. The U-SFQ FIR yields better performance

than the BP binary counterpart for 256-taps but not for 32-taps.

This is because in the U-SFQ FIR the performance is set by the

memory elements instead of the computing elements. The delay

for the U-SFQ multiplier(adder) is 9𝑝𝑠(12𝑝𝑠) versus a PNM’s delay

of 20𝑝𝑠 .

1The operation in GOPs is the complete FIR computation.

972

Temporal and SFQ Pulse-Streams Encoding for Area-Efficient Superconducting Accelerators ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

10−3

10−2

10−1

100

101

102

4 6 8 10 12 14 16
10−3

10−2

10−1

100

101

102

103

4 6 8 10 12 14 16
100

101

102

103

4 6 8 10 12 14 16
10−2

10−1

100

101

102

103

104

4 6 8 10 12 14 16
Bits

U
B 32
B 256

(a) Latency [us]

Bits

U 32
U 256

B

(b) Thr. [GOPs]

Bits

U 32
U 256

B 32
B 256

(c) # JJs ×103

Bits

U
B 32
B 256

(d) E. [kOPs/JJ]

Figure 18: Unary vs binary FIR for 32 & 256 Taps. (a) Latency, (b) Throughput (c) Area in JJs, (d) Efficiency (throughput per JJ).

Dashed-lines obtained from the metrics summarized in Table 2, • BP architecture [37, 38]

10

15

20

25

30

0 5 10 15 20 25 30

0
5
10
15
20
25
30
35

11 14 16 19 22 24
−100
−80
−60
−40
−20

0
20

0 2 4 6 8 10

(a
)
SN

R
[d
B
]

Error rate

U(i, iii) B U(ii)

(b
)
E
rr
o
r
D
is
t.

SNR [dB]

(c
)
A
m
p
l.
[d
B
]

Frequency [kH]

0% 50%

Figure 19: FIR accuracy evaluation. (a) SNR versus error rate.

(b) Error distribution for an SFQ binary FIR with 1% of errors.

(c) Effect of errors in the frequency response for U-SFQ FIR.

Figures 18a-b show that there is a design area where the unary

architecture yields better performance than its binary WP coun-

terpart. Figure 20a shows the area boundaries. The x-axis is the

number of taps, the y-axis is the number of bits, and the z-axis

shows in color the percentage of latency savings offered by the

U-SFQ FIR accelerator. In white, we show where the binary archi-

tecture performs better. For example, an 8-bit, 32-taps U-SFQ FIR

yields 56% of latency savings compared to its binary counterpart,

yet increasing the resolution beyond 8 bits causes a latency penalty.

5.4.3 Area. Figure 18c compares the area of the WP binary and

unary FIR filters for 32 and 256 Taps. Figure 20b shows in color

where the unary architecture yields area savings and in white where

the binary architecture performs better. For 32 taps, the minimum

number of bits that yields area savings is 9, while for 256 taps, the

unary implementation always requires more area due to the parallel

adders and multipliers.

5.4.4 Efficiency Calculated as Throughput per JJ. We use through-

put per JJ as ametric of efficiency. Figure 18d compares the efficiency

of the binary and unary architectures for 32 and 256 taps. As before,

Figure 20c shows where the U-SFQ FIR yields better efficiency than

the WP binary counterpart. The U-SFQ FIR is more efficient for less

than 12 bits. Moreover, the efficiency increases with the number of

taps.

In Figure 20 we also highlight the design region of interest for

two applications: SDR and IR sensors [3, 24, 42, 47, 53, 56]. Inside

the SDR region, we place two commercial SDR cards as reference

points. For an FIR that fits the RTL-2832U [44] card, the area of a

unary implementation is 60% larger. However, it yields 80% better

efficiency than its binary counterpart due to 90% lower latency. For

IR sensors, the U-SFQ FIR accelerator yields 13%-78% savings in

latency, 40% savings in area, and overall better efficiency of 62%-89%

compared with the SFQ binary accelerator.

5.4.5 Power. We use WRspice simulations to extract power con-

sumption for the building blocks introduced in Section 4. These

simulations are set such that the activity factor is the average of

the best and worst case scenarios. Since we combine RL and pulse

streams, we obtain this average when the pulse streams are set to

be half the maximum frequency, and the RL encoded inputs are set

to be half the computing epoch.

Power consumption in RSFQ can be divided in two components.

First, active power, which is in the order of tens of 𝑛𝑊𝑠 per gate.

Second, static power produced by the resistive bias current distri-

bution network, which is typically in the order of 𝜇𝑊 s [21]. To

evaluate the power efficiency of our circuits, we simulate the pro-

posed unipolar PE (Section 5.2) using WRspice to obtain its power

consumption. Without taking into account cooling costs, we find

that the active power consumption is 0.8𝜇𝑊 while the passive

power is 262𝜇𝑊 . We also simulate the active power consumption

for a 32 taps U-SFQ DPU obtaining 8.45𝜇𝑊 (Table 3). Note that

the active power consumption is three orders of magnitude smaller

than CMOS (≈ 1𝑚𝑊).

The passive power consumption can be eliminated by using the

Energy-efficient RSFQ (ERSFQ) and energy-efficient-synchronous-

phase-compensation SFQ (eSFQ) [33, 54] logic families. These logic

families replace the resistive biasing network with limiting JJs and

series inductances [33], yielding the same performance (delay), at

the cost of a slight (1.4×) increment in area and design cost [33].

Moreover, the cost of cryocooling can be bypassed for sensors,

such as IR or x-ray detectors, that already operate at cryogenic

temperatures [7].

973

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland P. Gonzalez-Guerrero, M. Bautista, D. Lyles, G. Michelogiannakis

2 4 8 16 32 64 12
8

25
6

51
2
10
24

Taps

4

6

8

10

12

14

16

B
it
s

RTL

RSP

IR

SDR

PE

(a) Latency %

2 4 8 16 32 64 12
8

25
6

51
2
10
24

Taps

4

6

8

10

12

14

16

RTL

RSP

IR

SDR

PE

(b) JJ %

2 4 8 16 32 64 12
8

25
6

51
2
10
24

Taps

4

6

8

10

12

14

16

20

30

40

50

60

70

80

90

RTL

RSP

IR

SDR

PE

(c) E %

Figure 20: Unary vs WP binary FIR. Regions in colors show the unary gain %. Labelled areas in the plot mark the operation

region for IR sensors and SDR.

Table 3: Power evaluation for a DPU with 32 multi-

plier/adders.

Component Active [𝑚𝑊] Passive [𝑚𝑊]

Multiplier 9 × 10−5 0.05

Balancer 17 × 10−5 0.1

DPU w/o cooling 84 × 10−4 4.8

60
70
80
90
100
110
120
130
140

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

A
ct
iv
e
p
o
w
er

[𝑛
𝑊

]

Number in RL

-1
1
0

Figure 21: Active power consumption for the bipolar multi-

plier, using three different pulse streams frequencies repre-

senting the numbers −1, 1, and 0. We vary the RL input from

-1 to 1.

To evaluate the effect of the activity factor (𝛼) in the active power

consumption, we run WRSpice simulations for the bipolar multi-

plier (Section 4.1) varying the RL input from -1 to 1.We also vary the

pulse stream frequency from -1 to 1. Figure 21 shows the average

active power consumption for minimum, maximum, and interme-

diate frequencies representing the numbers -1, 1 and 0 respectively.

For -1 and 1 the number of pulses propagating from input to output

increases and decreases respectively with the value of the RL input.

This is reflected in the power consumption trends. For 0, the pulse

stream frequency is set to half the maximum frequency, and the

power consumption is constant because the same number of pulses

propagate through the multiplier independently on the RL input.

The multiplier’s active power is bounded by a minimum power of

68𝑛𝑊 and a maximum power of 135𝑛𝑊 .

6 RELATED WORK

Recent work in superconducting technology has demonstrated the

potential for fast speed and low power operation despite cooling

costs. For example, Nagaoka, et al. [37] demonstrated a supercon-

ducting pipelined 8-bit binary multiplier operating at 48GHz with

a measured power consumption of 5.6mW and 17K JJs. Due to

technology constraints, 17k JJs are already close to the maximum

number of JJs that have been successfully manufactured. This area

limitation restricts superconducting prototypes to small scales. For

example Ishida et al. [21] demonstrated a superconducting chip

with four 4-bit multiply-accumulation units and 8-bit 8-word shift

registers. These prototypes are at odds with current CMOS cir-

cuits that need more than 200 processing elements with 6-16 bits

of resolution to meet demanding requirements imposed by image

processing, artificial neural networks, and SDR [21, 53, 56].

To address SFQ constraints, Cai, et al. [6], proposed a stochastic

computing-based deep learning framework using adiabatic Quantum-

Flux-Parametron technology. Also, Tzimpragos et al. [51] adapted

RL to RSFQ. Our work introduces a novel U-SFQ architecture. The

key in our U-SFQ is the data representation that combines the advan-

tages of RL and pulse streams. We also introduce novel processing

and memory elements required to build a complete architecture.

7 CONCLUSION

Superconducting SFQ technology is hindered by stringent area

constraints. To address these challenges, we introduce the U-SFQ

architecture that combines the advantages of pulse streams and

RL data representations. We also introduce novel building blocks

such as U-SFQ memory elements, multipliers and adders. Then, we

propose and evaluate three hardware accelerators: a PE array, a

DPU and an FIR filter. We find that our U-SFQ computing elements

enable 28%-96% savings in area for the same throughput, yet, we

expose the need for efficient memory elements to fully leverage the

advantages of a U-SFQ architecture.

Data Availability Statement: We open-source a small DPU

netlist, using a rudimentary testing environment [1].

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Science, of

the U.S. Department of Energy under Contract No. DE- AC02-

05CH11231. The authors would also like to thank the anonymous

reviewers for their helpful comments.

974

Temporal and SFQ Pulse-Streams Encoding for Area-Efficient Superconducting Accelerators ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

REFERENCES
[1] 2021. SuperC-FIR. https://zenodo.org/badge/DOI/10.5281/zenodo.5746945.svg.

https://doi.org/10.5281/zenodo.5746945
[2] Omid Akbari, Mehdi Kamal, Ali Afzali-Kusha, Massoud Pedram, and Muhammad

Shafique. 2020. X-CGRA: An Energy-Efficient Approximate Coarse-Grained
Reconfigurable Architecture. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 39, 10 (2020), 2558ś2571. https://doi.org/10.1109/
TCAD.2019.2937738

[3] Matthew Ash, Matthew Ritchie, and Kevin Chetty. 2018. On the application of
digital moving target indication techniques to short-range FMCW radar data.
IEEE Sensors Journal 18, 10 (2018), 4167ś4175. https://doi.org/10.1109/JSEN.2018.
2823588

[4] James Aspnes, Maurice Herlihy, and Nir Shavit. 1994. Counting Networks. J.
ACM 41, 5 (sep 1994), 1020ś1048. https://doi.org/10.1145/185675.185815

[5] Paul Bunyk, Konstantin Likharev, and Dmitry Zinoviev. 2001. RSFQ technology:
Physics and devices. International journal of high speed electronics and systems
11, 01 (2001), 257ś305. https://doi.org/10.1142/S012915640100085X

[6] Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai Qian, Jie
Han, Wenhui Luo, Nobuyuki Yoshikawa, and Yanzhi Wang. 2019. A Stochastic-
Computing Based Deep Learning Framework Using Adiabatic Quantum-Flux-
Parametron Superconducting Technology. In Proceedings of the 46th International
Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19). Association
for Computing Machinery, New York, NY, USA, 567ś578. https://doi.org/10.
1145/3307650.3322270

[7] HS Cao and HJM Ter Brake. 2020. Progress in and Outlook for Cryogenic
Microcooling. Physical Review Applied 14, 4 (2020), 044044. https://doi.org/10.
1103/PhysRevApplied.14.044044

[8] Mikhail Dorojevets, Christopher Ayala, and Artur Kasperek. 2009. Development
and evaluation of design techniques for high-performance wave-pipelined wide
datapath RSFQ processors. In Proc. ISEC. 46.

[9] Mikhail Dorojevets, Christopher L Ayala, Nobuyuki Yoshikawa, and Akira
Fujimaki. 2012. 16-bit wave-pipelined sparse-tree RSFQ adder. IEEE trans-
actions on applied superconductivity 23, 3 (2012), 1700605ś1700605. https:
//doi.org/10.1109/TASC.2012.2233846

[10] Mikhail Dorojevets, Artur K Kasperek, Nobuyuki Yoshikawa, and Akira Fujimaki.
2012. 20-GHz 8 x 8-bit parallel carry-save pipelined RSFQ multiplier. IEEE
transactions on applied superconductivity 23, 3 (2012), 1300104ś1300104. https:
//doi.org/10.1109/TASC.2012.2227648

[11] FG Theoretische Elektrotechnik. 2021. RFSQ cell library. https://www.tu-ilmenau.
de/it-tet/forschung/supraleitende-hochgeschwindigkeits-elektronik/rsfq-cell/.

[12] Timur V. Filippov, Anubhav Sahu, Alex F. Kirichenko, Igor V. Vernik, Mikhail
Dorojevets, Christopher L. Ayala, and Oleg A. Mukhanov. 2012. 20GHz Opera-
tion of an Asynchronous Wave-Pipelined RSFQ Arithmetic-Logic Unit. Physics
Procedia 36 (2012), 59ś65. https://doi.org/10.1016/j.phpro.2012.06.130 SUPER-
CONDUCTIVITY CENTENNIAL Conference 2011.

[13] Coenrad J. Fourie. 2018. Digital Superconducting Electronics Design ToolsÐStatus
and Roadmap. IEEE Transactions on Applied Superconductivity 28, 5 (2018), 1ś12.
https://doi.org/10.1109/TASC.2018.2797253

[14] B. R. Gaines. 1967. Stochastic Computing. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference (Atlantic City, New Jersey) (AFIPS ’67
(Spring)). Association for Computing Machinery, New York, NY, USA, 149ś156.
https://doi.org/10.1145/1465482.1465505

[15] Patricia Gonzalez-Guerrero and Mircea R Stan. 2019. Asynchronous Stochastic
Computing. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers.
IEEE, 280ś285. https://doi.org/10.1109/IEEECONF44664.2019.9049011

[16] Patricia Gonzalez-Guerrero, Tommy Tracy II, Xinfei Guo, Rahul Sreekumar,
Marzieh Lenjani, Kevin Skadron, and Mircea R. Stan. 2020. Towards On-Node
Machine Learning for Ultra-Low-Power Sensors Using Asynchronous Streams.
J. Emerg. Technol. Comput. Syst. 16, 4, Article 44 (aug 2020), 20 pages. https:
//doi.org/10.1145/3404975

[17] Patricia Gonzalez-Guerrero, Stephen G Wilson, and Mircea R Stan. 2019. Error-
latency Trade-off for Asynchronous Stochastic Computing with ΣΔ Streams for
the IoT. In 2019 32nd IEEE International System-on-Chip Conference (SOCC). IEEE,
97ś102. https://doi.org/10.1109/SOCC46988.2019.1570548453

[18] Miao Hu and John Paul Strachan. 2016. Accelerating Discrete Fourier Transforms
with dot-product engine. In 2016 IEEE International Conference on Rebooting
Computing (ICRC). IEEE, 1ś5. https://doi.org/10.1109/ICRC.2016.7738682

[19] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M Grafals, Noraica
Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R Stan-
ley Williams. 2016. Dot-product engine for neuromorphic computing: Pro-
gramming 1T1M crossbar to accelerate matrix-vector multiplication. In 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1ś6. https:
//doi.org/10.1145/2897937.2898010

[20] IArpa. 2021. SuperTools program. https://www.iarpa.gov/research-programs/
supertools.

[21] Koki Ishida, Ilkwon Byun, Ikki Nagaoka, Kosuke Fukumitsu, Masamitsu Tanaka,
Satoshi Kawakami, Teruo Tanimoto, Takatsugu Ono, Jangwoo Kim, and Koji

Inoue. 2020. SuperNPU: An extremely fast neural processing unit using supercon-
ducting logic devices. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 58ś72. https://doi.org/10.1109/MICRO50266.
2020.00018

[22] M Ito, N Nakajima, K Fujiwara, Nobuyuki Yoshikawa, A Fujimaki, H Terai, and S
Yorozu. 2004. Design and implementation of SFQ programmable clock generators.
Physica C: Superconductivity 412 (2004), 1550ś1554. https://doi.org/10.1016/j.
physc.2004.02.220

[23] Jin-Young Kim, Sehoon Kim, and Joonhee Kang. 2005. Construction of an RSFQ
4-bit ALU with half adder cells. IEEE Transactions on Applied Superconductivity
15, 2 (2005), 308ś311. https://doi.org/10.1109/TASC.2005.849810

[24] Jongsun Park, Woopyo Jeong, H. Mahmoodi-Meimand, Yongtao Wang, H. Choo,
and K. Roy. 2004. Computation sharing programmable FIR filter for low-power
and high-performance applications. IEEE Journal of Solid-State Circuits 39, 2
(2004), 348ś357. https://doi.org/10.1109/JSSC.2003.821785

[25] Karen Hao. 2021. Tiny four-bit computers are now all you need to train
AI. https://www.technologyreview.com/2020/12/11/1014102/ai-trains-on-4-bit-
computers/.

[26] Ryota Kashima, Ikki Nagaoka, Masamitsu Tanaka, Taro Yamashita, and Akira
Fujimaki. 2021. 64-GHz Datapath Demonstration for Bit-Parallel SFQ Micropro-
cessors Based on a Gate-Level-Pipeline Structure. IEEE Transactions on Applied
Superconductivity 31, 5 (2021), 1ś6. https://doi.org/10.1109/TASC.2021.3061353

[27] Naveen Kumar Katam, Jamil Kawa, and Massoud Pedram. 2019. Challenges and
the status of superconducting single flux quantum technology. In 2019 Design,
Automation Test in Europe Conference Exhibition (DATE). 1781ś1787. https:
//doi.org/10.23919/DATE.2019.8747356

[28] Fei Ke, Olivia Chen, YanzhiWang, andNobuyuki Yoshikawa. 2021. Demonstration
of a 47.8 GHz High-Speed FFT Processor Using Single-Flux-Quantum Technology.
IEEE Transactions on Applied Superconductivity 31, 5 (2021), 1ś5. https://doi.org/
10.1109/TASC.2021.3059984

[29] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. 2014. Race Logic: A
Hardware Acceleration for Dynamic Programming Algorithms. In Proceeding of
the 41st Annual International Symposium on Computer Architecuture (Minneapolis,
Minnesota, USA) (ISCA ’14). IEEE Press, 517ś528. https://doi.org/10.1145/2678373.
2665747

[30] Vratislav Michal, Emanuele Baggetta, Mario Aurino, Sophie Bouat, and Jean-
Claude Villegier. 2011. Superconducting RSFQ logic: Towards 100GHz digital
electronics. In Proceedings of 21st International Conference Radioelektronika 2011.
1ś8. https://doi.org/10.1109/RADIOELEK.2011.5936486

[31] George Michelogiannakis, Darren Lyles, Patricia Gonzalez-Guerrero, Meriam
Bautista, Dilip Vasudevan, and Anastasiia Butko. 2021. SRNoC: A Statically-
Scheduled Circuit-Switched Superconducting Race Logic NoC. In 2021 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 1046ś1055.
https://doi.org/10.1109/IPDPS49936.2021.00113

[32] Yoshinao Mizugaki, Jun Saito, Masataka Moriya, and Masaaki Maezawa. 2011.
Design and operation of 64-fold variable single-flux-quantum pulse-number
multiplier. IEEE transactions on applied superconductivity 21, 6 (2011), 3604ś3607.
https://doi.org/10.1109/TASC.2011.2166396

[33] Oleg A. Mukhanov. 2011. Energy-efficient single flux quantum technology. IEEE
Transactions on Applied Superconductivity 21, 3 (2011), 760ś769.

[34] Oleg A. Mukhanov, Stanislav V. Polonsky, and Vasili K. Semenov. 1991. New
elements of the RSFQ logic family. IEEE Transactions on Magnetics 27, 2 (1991),
2435ś2438. https://doi.org/10.1109/20.133710

[35] Alan F Murray. 1989. Pulse arithmetic in VLSI neural networks. IEEE Micro 9, 6
(1989), 64ś74. https://doi.org/10.1109/40.42988

[36] Alan F Murray and Anthony VW Smith. 1988. Asynchronous VLSI neural
networks using pulse-stream arithmetic. IEEE Journal of Solid-State Circuits 23, 3
(1988), 688ś697. https://doi.org/10.1109/4.307

[37] Ikki Nagaoka, Masamitsu Tanaka, Koji Inoue, and Akira Fujimaki. 2019. A
48ghz 5.6 mw gate-level-pipelined multiplier using single-flux quantum logic.
In 2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 460ś462.
https://doi.org/10.1109/ISSCC.2019.8662351

[38] Ikki Nagaoka, Masamitsu Tanaka, Kyosuke Sano, Taro Yamashita, Akira Fujimaki,
and Koji Inoue. 2019. Demonstration of an Energy-Efficient, Gate-Level-Pipelined
100 TOPS/W Arithmetic Logic Unit Based on Low-Voltage Rapid Single-Flux-
Quantum Logic. In 2019 IEEE International Superconductive Electronics Conference
(ISEC). IEEE, 1ś3. https://doi.org/10.1109/ISEC46533.2019.8990905

[39] MHassanNajafi, Shiva Jamali-Zavareh, David J Lilja, Marc D Riedel, Kia Bazargan,
and Ramesh Harjani. 2017. Time-encoded values for highly efficient stochastic
circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 5
(2017), 1644ś1657. https://doi.org/10.1109/TVLSI.2016.2645902

[40] K Obata, M Tanaka, Y Tashiro, Y Kamiya, N Irie, K Takagi, N Takagi, A Fujimaki,
N Yoshikawa, H Terai, et al. 2006. Single-flux-quantum integer multiplier with
systolic array structure. Physica C: Superconductivity and its applications 445
(2006), 1014ś1019. https://doi.org/10.1016/j.physc.2006.05.092

[41] M. Ozer, M. Eren Çelik, Y. Tukel, and A. Bozbey. 2014. Design of RSFQ wave
pipelined KoggeśStone Adder and developing custom compound gates. Cryo-
genics 63 (2014), 174ś179. https://doi.org/10.1016/j.cryogenics.2014.05.007

975

https://zenodo.org/badge/DOI/10.5281/zenodo.5746945.svg
https://doi.org/10.5281/zenodo.5746945
https://doi.org/10.1109/TCAD.2019.2937738
https://doi.org/10.1109/TCAD.2019.2937738
https://doi.org/10.1109/JSEN.2018.2823588
https://doi.org/10.1109/JSEN.2018.2823588
https://doi.org/10.1145/185675.185815
https://doi.org/10.1142/S012915640100085X
https://doi.org/10.1145/3307650.3322270
https://doi.org/10.1145/3307650.3322270
https://doi.org/10.1103/PhysRevApplied.14.044044
https://doi.org/10.1103/PhysRevApplied.14.044044
https://doi.org/10.1109/TASC.2012.2233846
https://doi.org/10.1109/TASC.2012.2233846
https://doi.org/10.1109/TASC.2012.2227648
https://doi.org/10.1109/TASC.2012.2227648
https://www.tu-ilmenau.de/it-tet/forschung/supraleitende-hochgeschwindigkeits-elektronik/rsfq-cell/
https://www.tu-ilmenau.de/it-tet/forschung/supraleitende-hochgeschwindigkeits-elektronik/rsfq-cell/
https://doi.org/10.1016/j.phpro.2012.06.130
https://doi.org/10.1109/TASC.2018.2797253
https://doi.org/10.1145/1465482.1465505
https://doi.org/10.1109/IEEECONF44664.2019.9049011
https://doi.org/10.1145/3404975
https://doi.org/10.1145/3404975
https://doi.org/10.1109/SOCC46988.2019.1570548453
https://doi.org/10.1109/ICRC.2016.7738682
https://doi.org/10.1145/2897937.2898010
https://doi.org/10.1145/2897937.2898010
https://www.iarpa.gov/research-programs/supertools
https://www.iarpa.gov/research-programs/supertools
https://doi.org/10.1109/MICRO50266.2020.00018
https://doi.org/10.1109/MICRO50266.2020.00018
https://doi.org/10.1016/j.physc.2004.02.220
https://doi.org/10.1016/j.physc.2004.02.220
https://doi.org/10.1109/TASC.2005.849810
https://doi.org/10.1109/JSSC.2003.821785
https://www.technologyreview.com/2020/12/11/1014102/ai-trains-on-4-bit-computers/
https://www.technologyreview.com/2020/12/11/1014102/ai-trains-on-4-bit-computers/
https://doi.org/10.1109/TASC.2021.3061353
https://doi.org/10.23919/DATE.2019.8747356
https://doi.org/10.23919/DATE.2019.8747356
https://doi.org/10.1109/TASC.2021.3059984
https://doi.org/10.1109/TASC.2021.3059984
https://doi.org/10.1145/2678373.2665747
https://doi.org/10.1145/2678373.2665747
https://doi.org/10.1109/RADIOELEK.2011.5936486
https://doi.org/10.1109/IPDPS49936.2021.00113
https://doi.org/10.1109/TASC.2011.2166396
https://doi.org/10.1109/20.133710
https://doi.org/10.1109/40.42988
https://doi.org/10.1109/4.307
https://doi.org/10.1109/ISSCC.2019.8662351
https://doi.org/10.1109/ISEC46533.2019.8990905
https://doi.org/10.1109/TVLSI.2016.2645902
https://doi.org/10.1016/j.physc.2006.05.092
https://doi.org/10.1016/j.cryogenics.2014.05.007

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland P. Gonzalez-Guerrero, M. Bautista, D. Lyles, G. Michelogiannakis

[42] JENG-J Pan and Chein-I Chang. 1992. Destriping of Landsat MSS images by
filtering techniques. Photogrammetric engineering and remote sensing 58 (1992),
1417ś1417.

[43] Stanislav V. Polonsky, Vasili K. Semenov, and Alexander F. Kirichenko. 1994.
Single flux, quantum B flip-flop and its possible applications. IEEE transactions
on applied superconductivity 4, 1 (1994), 9ś18. https://doi.org/10.1109/77.273059

[44] Realtek Semiconductor Corp. 2109. RTL2832u DVB-T COFDM DEMODULATOR
+ USB 2.0. https://www.realtek.com/en/products/communications-network-ics/
item/rtl2832u.

[45] Peter Russer. 1971. General energy relations for Josephson junctions. Proc. IEEE
59, 2 (1971), 282ś283. https://doi.org/10.1109/PROC.1971.8133

[46] Vasili K. Semenov. 1993. Digital to analog conversion based on processing of the
SFQ pulses. IEEE Transactions on Applied Superconductivity 3, 1 (1993), 2637ś2640.
https://doi.org/10.1109/77.233969

[47] James J. Simpson, James R. Stitt, and David M. Leath. 1998. Improved Finite
Impulse Response Filters for Enhanced Destriping of Geostationary Satellite
Data. Remote Sensing of Environment 66, 3 (1998), 235 ś 249. https://doi.org/10.
1016/S0034-4257(98)00070-4

[48] Motohiro Suzuki, Masaaki Maezawa, Fuminori Hirayama, and Masayuki Ochiai.
2005. Design and operation of a pulse-number multiplier for a high-precision
RSFQ D/A converter. IEEE transactions on applied superconductivity 15, 2 (2005),
336ś339. https://doi.org/10.1109/TASC.2005.849827

[49] Swamit S. Tannu, Douglas M. Carmean, and Moinuddin K. Qureshi. 2017.
Cryogenic-DRAM Based Memory System for Scalable Quantum Computers:
A Feasibility Study. In Proceedings of the International Symposium on Memory Sys-
tems (Alexandria, Virginia) (MEMSYS ’17). Association for Computing Machinery,
New York, NY, USA, 189ś195. https://doi.org/10.1145/3132402.3132436

[50] Swamit S. Tannu, Poulami Das, Michael L. Lewis, Robert Krick, Douglas M.
Carmean, and Moinuddin K. Qureshi. 2019. A Case for Superconducting Acceler-
ators (CF). 67ś75. https://doi.org/10.1145/3310273.3321561

[51] Georgios Tzimpragos, Dilip Vasudevan, Nestan Tsiskaridze, George Michelo-
giannakis, Advait Madhavan, Jennifer Volk, John Shalf, and Timothy Sherwood.
2020. A Computational Temporal Logic for Superconducting Accelerators. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (Lausanne, Switzerland) (AS-
PLOS ’20). Association for Computing Machinery, New York, NY, USA, 435ś448.
https://doi.org/10.1145/3373376.3378517

[52] T. Van Duzer. 2005. Cryogenic Memories for RSFQ Ultra-High-Speed Processor.
In Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC ’05). IEEE
Computer Society, USA, 66. https://doi.org/10.1109/SC.2005.21

[53] A Prasad Vinod and EM-K Lai. 2006. Low power and high-speed implementation
of FIR filters for software defined radio receivers. IEEE Transactions on Wire-
less Communications 5, 7 (2006), 1669ś1675. https://doi.org/10.1109/TWC.2006.
1673078

[54] Mark H. Volkmann, Anubhav Sahu, Coenrad J. Fourie, and Oleg A. Mukhanov.
2013. Experimental Investigation of Energy-Efficient Digital Circuits Based on
eSFQ Logic. IEEE Transactions on Applied Superconductivity 23, 3 (2013), 1301505ś
1301505. https://doi.org/10.1109/TASC.2013.2240755

[55] Di Wu, Jingjie Li, Ruokai Yin, Hsuan Hsiao, Younghyun Kim, and Joshua
San Miguel. 2020. uGEMM: unary computing architecture for GEMM appli-
cations. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 377ś390. https://doi.org/10.1109/ISCA45697.2020.00040

[56] Zhuan Ye, John Grosspietsch, and Gokhan Memik. 2007. An FPGA based all-
digital transmitter with radio frequency output for software defined radio. In
2007 Design, Automation & Test in Europe Conference & Exhibition. IEEE, 1ś6.
https://doi.org/10.1109/DATE.2007.364561

[57] L Zheng, N Yoshikawa, J Deng, X Meng, S Whiteley, and T Van Duzer. 1999. RSFQ
multiplexer and demultiplexer. IEEE transactions on applied superconductivity 9,
2 (1999), 3310ś3313. https://doi.org/10.1109/77.783737

[58] Dmitry Zinoviev. 2021. RFSQ cell library. http://www.physics.sunysb.edu/
Physics/RSFQ/Lib/contents.html.

976

https://doi.org/10.1109/77.273059
https://www.realtek.com/en/products/communications-network-ics/item/rtl2832u
https://www.realtek.com/en/products/communications-network-ics/item/rtl2832u
https://doi.org/10.1109/PROC.1971.8133
https://doi.org/10.1109/77.233969
https://doi.org/10.1016/S0034-4257(98)00070-4
https://doi.org/10.1016/S0034-4257(98)00070-4
https://doi.org/10.1109/TASC.2005.849827
https://doi.org/10.1145/3132402.3132436
https://doi.org/10.1145/3310273.3321561
https://doi.org/10.1145/3373376.3378517
https://doi.org/10.1109/SC.2005.21
https://doi.org/10.1109/TWC.2006.1673078
https://doi.org/10.1109/TWC.2006.1673078
https://doi.org/10.1109/TASC.2013.2240755
https://doi.org/10.1109/ISCA45697.2020.00040
https://doi.org/10.1109/DATE.2007.364561
https://doi.org/10.1109/77.783737
http://www.physics.sunysb.edu/Physics/RSFQ/Lib/contents.html
http://www.physics.sunysb.edu/Physics/RSFQ/Lib/contents.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 RSFQ Logic
	2.2 Alternative Data Representations

	3 Unary SFQ Data Representation
	3.1 Race Logic for Mathematical Operations
	3.2 SFQ Pulse Train Data Representation

	4 Unary SFQ Building Blocks
	4.1 Unary SFQ Multiplier
	4.2 Unary SFQ Addition
	4.3 Memory Bank for Coefficients
	4.4 Shift Register

	5 Architecture Evaluation
	5.1 Methodology
	5.2 Processing Element
	5.3 The Dot-Product Unit
	5.4 The Unary SFQ Finite Impulse Response Filter (FIR)

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

