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Abstract—As new scientific instruments generate ever more
data, we need to parallelize advanced data analysis algo-
rithms such as machine learning to harness the available
computing power. The success of commercial Big Data systems
demonstrated that it is possible to automatically parallelize
many algorithms. However, these Big Data tools have trou-
ble handling the complex analysis operations from scientific
applications. To overcome this difficulty, we have started to
build an automated parallel data processing engine for science,
known as ARRAYUDF. This paper provides an overview of
this data processing engine, and a use case involving a feature
extraction task from a large-scale seismic recording technology,
called distributed acoustic sensing (DAS). The key challenge
associated with DAS data sets is that they are vast in volume
and noisy in data quality. The existing methods used by the
DAS team for extracting useful signals like traveling seismic
waves are complex and very time-consuming. Our parallel data
processing engine reduces the job execution time from 10s of
hours to 10s of seconds, and achieves 95% parallelization effi-
ciency. ARRAYUDF could be used to implement more advanced
data processing algorithms including machine learning, and
could work with many more applications.

Keywords-ArrayUDF, distributed acoustic sensing, local sim-
ilarity

I. INTRODUCTION

Scientific experiments and simulations generate enormous

amount of data that requires machine learning and other

advanced data analyses to extract useful information (e.g.,

features or patterns). Extracting features from massive data

sets requires the computing power of a large number of

computers working in parallel. However, developing parallel

data analysis programs is a very labor intensive process. In

the recent decades, the Big Data systems including Google’s

MapReduce and Apache Spark have demonstrated a data

parallel approach to automate the complex data analysis

operations. This approach employs a simple data model to

capture a large variety of application needs and enables

application programmers to concentrate on the operations

to be performed on a small unit of data, while leaving

the common tasks of data management, parallelization, and

error-recovery in the data processing engine to be developed

by a relatively small group of experts. Though this approach

has been wildly successful in commercial applications, its

impact on scientific applications has been limited because

of mismatching data model and the lack of support for

complex analysis operations. In this paper, we provide an

overview of the automated parallel data processing engine

we are developing, and demonstrate its capability with a

large-scale seismic monitoring application with distributed

acoustic sensing (DAS).

DAS [13][12] is a new seismic recording technology that

can record vibration amplitudes of every small segment

of a telecommunication fiber-optic cable. With such dense

recordings along long cables, the size of signal data from

DAS system can easily reach to petabytes, even exabytes.

These enormous amounts of DAS data are useful in many

applications such as earthquake detection [11], seismic mon-

itoring of the near surface [7], and permafrost condition

change [2]. One of the key signal in DAS data is the traveling

waves induced by seismic events like moving vehicles and

earthquakes. Our work will concentrate on extract such a

signal, which should pave the way for more advanced data

analysis such as machine learning.

Several types of methods have been developed to locate

traveling waves based on traditional seismic sensors and can

be applied to DAS data as well. The first type is usually

called “energy detector” and is based on capturing the rapid

amplitude or energy increases in the recorded signals which

are mostly induced by traveling waves. Related methods in-

clude short-term average over long-term average (STA/LTA)

[8] and many of its variants. Secondly, noting that a traveling

wave can induce similar recorded signals in independent

seismic sensors, high waveform similarities of signals from

independent sensors can also be used to locate traveling

waves. Methods of this type [9][10][18] often use cross-

correlations to quantify the waveform similarity but have dif-

ferent post processings of the calculated cross-correlations.

Lastly, there are also attempts to use convolutional neural

networks (CNN) [14] particularly for earthquake detections.

However, CNN mostly requires labeled data to guide its

model training while in many cases, there is no label in

DAS data for locating general traveling waves. These state-

of-art algorithms are very time-consuming, especially for the

large DAS data. For example, a small sample (1 minute) of

DAS recording is projected to take tens of hours with the

existing matlab procedures used by the application scientists.

Therefore, it is highly necessary to parallelize the analysis

procedures to harness the power of many computers.



To simplify the development of parallel data analysis

programs, the Big Data systems such as MapReduce [5]

include a new generation of parallel data analysis engines.

With a MapReduce system, users first define operations on

an atomic data structure, i.e., key-value (KV) pair, and then

pass these operations to either Map operator or Reduce oper-

ator to compose complex analysis procedures. Many higher

level scalable data analysis systems such as Spark [17]

and HBase [4] are then further built based on MapReduce.

The basic KV pair structure of these MapReduce-based

systems, however, does not match the multidimensional

array structure used in DAS and other common scientific

applications [15]. Meanwhile, Chaimov et al. [3] also shows

that these MapReduce-based systems can not scale well on

supercomputers. More recently, TensorFlow [1] uses array

as basic data structure but it only supports customized op-

erators. Using its built-in operators to define new operations

may require code development, parallelization, performance

tuning, and other challenging tasks.

To overcome these shortcomings, we develop AR-

RAYUDF. We demonstrate the effectiveness of ARRAYUDF

with a use case of locating traveling waves in DAS data.

More specifically, our work has following contributions:

• We introduce a newly-developed data processing engine

ARRAYUDF that can automatically parallelize data

processing methods that apply a fixed compute kernel to

different local sub-blocks of multi-dimensional arrays.

The ARRAYUDF only requires users to provide a few

parallelization parameters and a compute kernel. It

can automatically manage data partitioning and parallel

execution of the compute kernel on a supercomputer

with tens of thousands of computing nodes.

• We develop a DAS data analysis method based on

the concept of local similarity [10] recently developed

for conventional sensors. This method can effectively

locate traveling waves among noisy DAS data and also

turns out to have scalable performance on supercom-

puters.

• We experimentally show the effectiveness of our local-

similarity based method and the scalability of AR-

RAYUDF on a supercomputer. Test results show that

ARRAYUDF can achieve around 95% parallel effi-

ciency in our data analysis calculation. More impor-

tantly, it reduces the compute time from tens of hours

to tens of seconds.

Organization of this paper is as follows. Section II gives

an overview of ARRAYUDF. In Section III, we introduce

our target application DAS and its data analysis challenges.

In Section IV, we present the local-similarity based method

for traveling wave detection in DAS data and our approach

to parallelize the local similarity calculation with the help

of ARRAYUDF. Section V reports the experiment results.

We conclude our paper with future works in Section VI.
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Figure 1: High-level overview of ARRAYUDF for automated

parallel data processing.

II. AUTOMATED PARALLELIZATION FOR DATA

PROCESSING

The fundamental idea behind the current Big Data systems

such as MapReduce and Apache Spark is to define a data

model that allows users to define a variety of analysis

operations on a basic unit of data. The basic unit of data

in a MapReduce system is a key-value pair, while most

of the scientific data is organized as arrays. To directly

support operations on array elements, we introduce a new

data processing engine ARRAYUDF [6].With ARRAYUDF,

the processing power of a supercomputer can be easily

harnessed to accelerate many scientific applications.

A high-level overview of ARRAYUDF is presented in Fig-

ure 1. ARRAYUDF only requires a compute kernel and a few

parallelization parameters from users. The compute kernel

describes a universal data processing operation applied to

every local sub-block centered at different entries of the

original array. The parallelization parameters include chunk

size and ghost zone size, which are used to split the original

array for parallel processing. After splitting the array, all the

chunks with their ghost zones are read and scheduled onto

available computing nodes using round-robin method. Each

computing node then executes the given compute kernel to

all the local sub-blocks in its assigned chunks.

Ghost zone is a classic technique in parallel computing to

keep the computation local at each node and avoid expensive

communications. Specifically, in ARRAYUDF, applying the

compute kernel to a sub-block centered at an entry near

chunk boundary usually needs to access entries from a

neighboring chunk. If without ghost zone, this calculation

requires expensive and also complicated node-to-node com-

munications during the execution of the compute kernel.

ARRAYUDF utilizes a generic user-defined function inter-

face for users to define the compute kernel. The user-defined

function interface is commonly used by database systems

and MapReduce to allow diverse operations. The parallel

execution of this user-defined function to different local sub-

blocks is then automatically parallelized and completed by



ARRAYUDF. More specifically, ARRAYUDF provides the

following two major C++ classes for easy-to-use:

• The ARRAY class provides an in-memory pointer and

an abstraction for any multi-dimensional array stored on

disks. Its initialization requires a storage path of the ar-

ray and also chunk and ghost zone sizes to configure the

splitting of the array. The APPLY function is the main

method of ARRAY that takes a user-defined function

and then applies it to local sub-blocks centered at each

entry of the ARRAY. In order to support more diverse

operations, users can also specify a stride parameter

to skip applying the user-defined function to certain

entries, e.g., every other entry along one dimension.

One example of using APPLY is

B = Apply(A, f, #»c , #»g ),

where A and B are input and output ARRAY, respec-

tively, f is a pointer of the user-defined function, and
#»c and #»g are two vectors that specify chunk and ghost

zone sizes.

• The STENCIL class is an abstract data structure to

represent a general sub-block of an ARRAY. It is for

user-defined functions to define the compute kernel over

a set of neighboring entries around a reference entry.

Just like the view concept in database, a STENCIL

instance provides a logical view of a data array and

there is no overhead to maintain multiple STENCILs

over a physical array which is important for the parallel

application of the compute kernel. In more details,

STENCIL has a “center” being the reference entry of

a sub-block which the user-defined function is applied

to. Users can then use relative offsets from the center

entry to specify the neighboring entries involved in

the compute kernel. For example, consider the 5-points

moving average operation applied over a time series.

At each entry, the moving average operation needs

2 neighboring entries in both directions. Denote a

STENCIL variable as s. The user-defined function for

moving average operation can be expressed as

f(s){

return
s(−2) + s(−1) + s(0) + s(1) + s(2)

5
}

where s(i) represents the value at the ith offset from the

center and all these five entries together form a logical

view of the array. When the APPLY method of ARRAY

class above applies the user-defined function to a sub-

block, it automatically creates a STENCIL instance as

the input for the user-defined function.

III. DAS: DISTRIBUTED ACOUSTIC SENSING

Distributed acoustic sensing can re-purpose unused

telecommunication fiber-optic cables as a series of single-

component seismic sensors, with sensing point separations

as fine as 1 meter or less. Comparing to the conventional

spatially-discrete electronic sensors, DAS system has a large

number of seismic sensors at low cost. With the improved

spatial resolution of sensors, DAS has much larger capabil-

ities in various seismic applications [11][7][2].

The DAS system we work on is based on a 25 kilometer

fiber-optic cable connecting two cities in California. It

provides 10,000 sensors (called channels in DAS) along

the cable and adjacent channels are 2 meters away. These

channels are indexed from 1 to 10000 in order. The sampling

rate of each channel, as a sensor, is 500 Hz. An overview of

this DAS system is shown in Figure 2a. As illustrated, the

cable used by DAS goes through very diverse surroundings,

leading to different and complicated noises at different DAS

channels. An overall illustration of the recorded signals by

DAS channels is plotted in Figure 2b which contains 6
minutes records around the time when an M4.4 earthquake

happened near this DAS system.

The feature of interest in this paper is the recorded signals

of traveling waves induced by seismic events like moving

vehicles and earthquakes. Figure 3 shows a detailed example

of the digital signals recorded by three neighboring channels

and a traveling wave captured. The basic assumption is that

recorded signals at each channel are a combination of noise

and traveling waves, i.e.,

DAS recorded signals = Noise + Traveling waves.

In most of the time, the recorded signals are noises such as

those flat signals shown in Figure 3 and the blue background

in Figure 2b. The traveling waves may be strong enough to

induce amplitude spikes in the recorded signals but may also

be buried in the noise.

Of all the signal analysis of traveling waves, the most

critical and basic task is to locate traveling waves in the

records of each channel. Taking Figure 3 as an example, the

same traveling wave arrives at these three well separated

channels at different times. If knowing these arrival times,

it is possible to estimate the speed and direction of this

traveling wave. The main challenges of locating traveling

waves in DAS data include:

• The large number of channels in DAS system generate

enormous amount of data even for a short time period,

e.g., around 12 terabytes data for one-week records with

the DAS system in this study. Any data analysis method

applied has to be computationally efficient and scalable.

• The DAS system has diverse noises at different chan-

nels which are induced by different surroundings as

shown in Figure 2 and also by the optic-based mea-

surement technique used in DAS.

In this work, we focus on analyzing the DAS data to

locate traveling waves while trying to address the above

challenges. In following discussions, we denote xn as the
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Figure 2: Deployment of the fiber-optic cable used by

the DAS system from West Sacramento to Woodland in

California. (a) The dotted line depicts the 25-kilometer

cable going through high ways, bridges, farms, and other

diverse surroundings. (b) Example of a 6-minute noisy DAS

records of all the channels. Brighter color stands for larger

signal amplitudes. Note that different channels have different

background noise amplitudes. The horizontal bright line at

the 2nd minute is associated with an earthquake.

signal vector recorded by channel n. We follow standard

MATLAB routines to denote array entries and sub-blocks.

For example, xn(i) is the recorded signal at wall time

t = iδ and xn(i : j) is the recorded discrete signals in the

time interval [iδ, jδ] where δ = 0.002 second is the unit

time difference between two consecutive recorded signals

according to the 500 Hz sampling rate of channels.
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Figure 3: Example of recorded signals at the 7990th, 8000th,

and 8010th channel in a 10-second time period. Red boxes

mark a traveling wave arriving at the three channels with

time lags.

IV. DAS DATA ANALYSIS AND ITS PARALLEL

IMPLEMENTATION

To develop a scalable method for locating traveling waves

in large and noisy DAS data, we introduce a local-similarity

based method and its parallel implementation based on the

data processing engine ARRAYUDF.

A. Local similarity method

The concept of local similarity [10] was introduced quite

recently for seismic data analysis and is originally used

for large arrays of conventional spatially-discrete electronic

sensors. The basic idea is that if a strong seismic wave

arrives at two different channels, the two channels should

record “similar” signals at the corresponding time intervals.

The similarity between two signal segments, say two vectors

x and y, can be quantified by their absolute correlation

without subtracting their mean values, i.e.,

AbsCorr(x, y) =
|xT y|

‖x‖2‖y‖2
= | cos (θ(x, y)) |, (1)

where θ(x, y) is the angle between x and y. The two vectors

are similar if x is close to y or −y in terms of direction,

which is equivalent to AbsCorr(x, y) being close to 1.

It is worth noting that two random noises from inde-

pendent channels are always likely to have small absolute

correlations and thus will not be identified to be highly

similar. From another viewpoint, consider a signal segment

xn

(

(i−M) : (i+M)
)

at channel n recorded in the time

interval [(i−M)δ, (i+M)δ] around wall time t = iδ where

M is an integer parameter to define the segment length.

If there are signal segments in a neighboring independent



channel similar to xn

(

(i−M) : (i+M)
)

, we may identify

the time interval [(i−M)δ, (i+M)δ] at channel n to have

some traveling waves.

Based on this idea, the local similarity between the target

channel n and a neighboring channel, taking channel (n+K)
with a separation parameter K as an example, at wall time

t = iδ is defined as,

Sn,n+K(i) = max
−L6l6L

AbsCorr
(

xn

(

(i−M) : (i+M)
)

,

xn+K

(

(i−M+l) : (i+M+l)
)

)

(2)

where time shift l ∈ [−L,L] is introduced to capture trav-

eling waves that arrive at the two channels with time lags.

L is an integer parameter to define the maximum time shift

range. Sn,n+K(i) exactly captures the maximum similarity

between the target signal segment xn

(

(i−M) : (i+M)
)

and

all the signal segments at channel (n+K) with small time

shifts.

Symmetrically, Sn,n−K(i) can be calculated between

channel n and (n−K). The local similarity of channel n at

wall time t = iδ with all the defined neighboring channels,

channel (n−K) and (n+K), is then defined as

Sn(i) =
1

2

(

Sn,n−K(i) + Sn,n+K(i)
)

. (3)

Time window length 2Mδ and maximum time shift Lδ

are usually set as 2 and 0.6 seconds, respectively, leading

to M = 500 and L = 300. Channel separation number

K needs to be at least 5 since the recorded signals of any

two channels that are less than 5 channels away are intrin-

sically correlated due to the measurement technique used

in DAS. Using the recorded signal examples in Figure 3,

the calculated local similarity vector Sn =
(

Sn(i)
)

at the

8000th channel with the 7990th and 8010th channel as the

neighboring channels is illustrated in Figure 4. As expected,

the local similarity dramatically increases when the marked

traveling wave arrives at the channel. Thus, for each channel,

the common practice is to set up a threshold based on the

calculated local similarities at all the times. Any time point

with its local similarity above the threshold is then identified

to have a traveling wave. This technique is referred to as

thresholding in later discussions.

The original local similarity method, only for earthquake

detection, further stacks the similarity vectors {Sn} of all

the sensors (channels in DAS case), i.e.,

SLS(i) =
1

N

N
∑

n=1

Sn(i), N = # of channels, (4)

to smooth out high local similarities induced by local

traveling waves. The method then applies thresholding to

the stacked local similarity vector SLS =
(

SLS(i)
)

for

earthquake detections.

The main challenge of this local-similarity based method

is the intensive calculation required since Sn(i) at each
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Figure 4: Calculated local similarity vector Sn (bottom) of

the 8000th channel with M = 500, L = 300, and K = 10
using the recorded signals shown in Figure 3. The recorded

signal at the 8000th channel is plotted (top) for reference.

channel n and at each time point t = iδ is calculated. Denote

the number of channels as N and the number of recording

time points as T . Ignoring Sn(i) with indices n and i near

boundaries, there are around NT local similarities {Sn(i)}
to be calculated. For each Sn(i), its calculation takes around

48ML 1 arithmetic operations. In total, the computational

complexity of this method is around 48MLNT which is

quite large due to the magnitudes of N and T .

Based on fraction tests of our preliminary implementa-

tions, a sequential local similarity calculation in MATLAB

for an one-minute DAS data is projected to take more than

200 hours. Meanwhile, a 64-thread shared memory python

implementation will still take more than 40 hours. Thus, it

is critical to parallelize and accelerate the local similarity

calculation of DAS data.

B. Parallel scheme for local similarity calculation

DAS data is stored as a 2D array, denoted as D, whose

columns are the discrete signal vectors {xn} recorded by all

the channels. For any channel n, consider the calculation of

Sn(i) at wall time t = iδ. By the definition (3), calculating

Sn(i) needs to access sub-arrays D((i−M) : (i+M), n) and

D((i−M −L) : (i+M +L), n ± K), which are centered

at xn(i), or equivalently at D(i, n). A simple illustration of

this calculation locality is plotted in Figure 5.

It can be observed that the calculation of Sn(i) only

depends on entries with some fixed offsets to the center

entry D(i, n) and thus can be regarded as applying a

1The calculation mainly contains (4L+2) times of AbsCorr evaluations
betwxeen vectors of length (2M + 1). One such AbsCorr evaluation has
three vector inner-products and takes 3×2×(2M+1) arithmetic operations.



Figure 5: Illustration of data accesses in D for the calculation

of Sn(i). All colored entries are accessed. The red entry is

D(i, n) where the whole calculation is centered at. The blue

bands on the (n−K)th column is an example of D((i−M+l) :
(i+M+l), n+K). Important row/column indices are labeled.

fixed compute kernel to D(i, n) and its neighboring entries.

Specifically, for any fixed i and n, denote D̃ as the local

sub-block of D centered at D(i, n) of size (2M + 2L +
1) × (2K + 1), i.e., the sub-block between the two green

bands in Figure 5. Index D̃ in a symmetric way so that

D̃(0, 0) = D(i, n) and the ranges of row and column indices

of D̃ are [−M −L,M +L] and [−K,K] respectively. The

compute kernel applied to D(i, n) and its neighboring sub-

block D̃ to calculate Sn(i) is then specified in Algorithm 1.

Based on this interpretation, we can apply the same

compute kernel to any entry of D and calculate the cor-

responding local similarity in parallel. The detailed idea of

the parallel scheme for local similarity calculations of DAS

data is illustrated in Figure 6. We first can split the DAS

array D uniformly into sub-blocks, called chunks, at certain

columns (for simplicity). For each chunk, add two ghost

zones of which each contains K columns of D that are next

to the chunk. Assign each chunk and its associated ghost

zones to one computing node which applies the compute

kernel Algorithm 1 to each entry in the chunk. Lastly, collect

the partial local similarity results from each computing node

together.

C. Parallel local similarity calculation with ARRAYUDF

Combining the abstract parallel scheme in Section IV-B

and the automated parallel data processing engine AR-

RAYUDF in Section II, the calculation of all local sim-

Algorithm 1 Compute kernel for local similarity calculation

Note:D̃ is a sub-block of D centered at the target D(i, n)
and is of size (2M + 2L+ 1)× (2K + 1). It is indexed

in a symmetric way so that D̃(0, 0) = D(i, n).

function LOCALSIMILARITYKERNEL(D̃,M,L,K)

Wn = D̃(−M :M, 0) ⊲ segment at channel n

Sn,n+K = Sn,n−K = 0 ⊲ initialization

for l = −L : L do

W1 = D̃((l−M) : (l+M),+K)
⊲ segment at channel n+K

W2 = D̃((l−M) : (l+M),−K)
⊲ segment at channel n−K

Sn,n+K = max{Sn,n+K ,AbsCorr(Wn,W1)}
Sn,n−K = max{Sn,n−K ,AbsCorr(Wn,W2)}

⊲ maximum of the absolute correlations

end for

return 1
2 (Sn,n+K +Sn,n−K) ⊲ local similarity Sn(i)

end function

Figure 6: Diagram of the parallel scheme for the local

similarity calculation of DAS data.

ilarities {Sn(i)} of DAS data can be easily parallelized

using ARRAYUDF. The pseudocode of our implementation

using ARRAYUDF is presented in Figure 7. The user-defined

function in ARRAYUDF is defined exactly as the compute

kernel in Algorithm 1 applied to each entry of DAS data D.

Each entry D(i, n) and its neighboring sub-block D̃ can be

exactly abstracted as a STENCIL variable centered at D(i, n).
Then, the local similarity can be computed by applying the

user-defined function to one stencil. The benefit of using

ARRAYUDF in DAS data analysis is obvious. The execution

engine in ARRAYUDF can easily distribute our intensive

local similarity calculation task onto many computing nodes

while we, as users, only need to implement the compute

kernel in Algorithm 1 and set up the chunk and ghost zone

sizes properly.

V. RESULTS

We work on a 6-minute DAS data around time when an

M4.4 earthquake happened near this DAS system, which



#define M 500 // time window offset

#define L 300 // time shift offset

#define K 10 // neighbor channel offset

//User defined function on a Stencil

//to calculate local similarity.

float DAS UDF( STENCIL s ){
//w0 has current signal segment

w0 = s(−M:M, 0 ) ;
//nw1 has entries of all shifted signal segments

//on the Kth channel after the current channel

nw1 = s (−(M+L ) : + (M+L ) , K ) ) ;
//nw2 has entries of all shifted signal segments

//on the Kth channel before the current channel

nw2 = s (−(M+L ) : + (M+L ) , −K ) ;
//Maximum AbsCorr with shifted signal segments

for ( i = 0 ; i < 2 ∗ L ; i ++){
s1 = MAX ( s1 , AbsCorr ( w0 , nw1 [ i : i +2∗M] ) ) ;
s2 = MAX ( s2 , AbsCorr ( w0 , nw2 [ i : i +2∗M] ) ) ;

}
return ( s1+s2 ) / 2 ;

}

int main ( ){
v e c t o r<int> cs ( 2 ) ={3 0 0 0 0 , 1 0} ; //Chunk size

v e c t o r<int> gs ( 2 ) ={0 , 1 0} ;
//Ghost zone size

ARRAY<float> A("data.h5" ) ;
ARRAY<float> B("result.h5" ) ;
//Run DAS_UDF function using Apply method

//Store the result in B

B = A−>Apply (DAS UDF, cs , gs ) ;
}

Figure 7: Pseudocode for calculating local similarities

{Sn(i)} of DAS data using ARRAYUDF. The DAS data

is stored in file “data.h5” and the result is stored in file

“result.h5”. DAS UDF function implements the compute

kernel in Algorithm 1 with a STENCIL variable. The chunk

and ghost zone sizes specified in this code are examples

for an one minute DAS data, i.e. the array is of dimension

30000 × 10000, with K = 10. The whole array is split

into 1000 chunks. Each chunk has two ghost zones with

extra 10 columns added to its two sides. For example, the

chunk D(:, 21 : 30) assigned to a computing node needs

to be augmented with two ghost zones D(:, 11 : 20) and

D(:, 31:40).

has also been plotted in Figure 2b. The data has dimension

180000 × 10000 and is of size 3.5 GB in HDF5 file

format [16]. For simplicity, we fix the parameter M = 500
and L = 300 and test different channel separation number

K.

A. Computational scalability

We use the NERSC CORI
2 supercomputer which is a

Cray XC40 system with over 2000 computing nodes for the

numerical results reported in this section. Each node has 32

Intel Xeon “Haswell” CPU cores. For each channel n, we

only calculate local similarities Sn(i) at every 10th recording

2https://www.nersc.gov/users/computational-systems/cori/
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Figure 8: Runtime (top), speedup (middle), and parallel

efficiency (bottom) of the local similarity calculation with

different numbers of CPU cores. Number of CPU cores

tested ranges from 25 to 1000. Runtime does not include

the data reading and result writing processes. Speedup and

parallel efficiency are defined as
25×(Runtime of 25 CPU cores)

Runtime of N CPU cores

and
25×(Runtime of 25 CPU cores)
N×(Runtime of N CPU cores) , respectively. The runtime of a

serial calculation for this problem is projected to take nearly

10 hours through a fraction test.

time point since 0.02 second time resolution should be

fine enough for locating traveling waves. In ARRAYUDF,

chunk size is set as 180000× 10 and thus the data array is

split into 1000 chunks. Each computing node is uniformly

assigned with multiple chunks for local similarity calcu-

lation. Figure 8 shows the runtime, speedup, and parallel

efficiency of the whole computation using different numbers

of CPU cores with K = 10. As can be noted, the parallel

implementation based on ARRAYUDF scales very well and

the execution is 935 times faster when using 1000 CPU

cores.

B. Earthquake detection by thresholding

First, we follow the original local similarity method to

calculate the stacked local similarity vector SLS =
(

SLS(i)
)

defined in (4) from {Sn} of all the channels. With different



channel separation number K, the stacked local similarity

is plotted in Figure 9. The original method then sets up a

threshold as the median of SLS plus ten times the median

absolute deviation (MAD) of SLS, where MAD of SLS is

defined as

MAD(SLS) = median(|SLS(i)− median(SLS)|).

Even from direct observations, the only spike of each

curve in Figure 9 clearly shows the time interval of the

target earthquake. These results corroborate the validity of

detecting earthquakes by applying the original local similar-

ity method to DAS data.

Figure 9: Stacked local similarity over all channels in DAS.

The estimated detection thresholds for K = 10, 100, 500 are

0.19, 0.14, 0.12 respectively and plotted in dash lines.

In addition, a subtle difference between these three curves

and their thresholds in Figure 9 is that with larger K, the

stacked local similarity has less variations in non-earthquake

time period and thus can help to estimate earthquake arrival

time more precisely through thresholding. A further expla-

nation of this difference will be discussed later.

C. Constant threshold for general traveling wave detection

Different from estimating a threshold using median and

MAD in the original method, we find that, from our nu-

merical experiments, a constant threshold around c0 = 0.18
works very well over the local similarities of all the chan-

nels to locate general traveling waves in DAS data. More

specifically, any time point t = iδ at any channel n can be

marked to have some traveling wave if the local similarity

Sn(i) is above c0. An example of the general traveling wave

detection with this constant threshold is shown in Figure 10.

To explain this new finding, Figure 11 shows the local

similarities of two completely independent channels with
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Figure 10: Traveling wave detection by local similarity

thresholding with c0 = 0.18 and K = 10. Yellow dots are

marked time points at corresponding channels. Observations:

(1) the two lines in area [6000, 8000] × [0, 1] are waves

induced by two vehicles driving along the cable; (2) the two

vertical bands in channels [1000, 1500] and [6000, 7000] are

waves induced by some persistent vibrating sources; (3) the

horizontal band at time [2, 3] is associated with the target

earthquake.

K = 10 and K = 500. Note that the local similarity

baselines of these two independent channels with both tested

K are quite close to a constant around 0.12 when there

is no traveling wave. From all our numerical tests, it is

always the case for any channels and any K as long as

M and L are fixed. Also, different settings of M and L will

lead to a different constant other than 0.12. Mathematically

speaking, it is likely that this constant might be the mean

value of the local similarities between two independent

random background noises. This phenomenon is worth of

further study. Therefore, taking local similarity variations

into account, we heuristically choose the constant threshold

c0 = 0.18 for general traveling wave detections.

D. Screen local seismic events for earthquake detection

In terms of earthquake detections, the local traveling

waves, such as those induced by vehicles and persistent

vibrating sources detected in Figure 10 using constant

thresholding, are also noises and need to be screened by

further data processing. The main difference between these

local traveling waves and earthquake wave is that local

traveling waves can only reach small number of channels

while earthquake wave can reach almost all the channels in

DAS within a short time period.

Taking advantage of this difference, the original method

stacks the local similarities {Sn} of all channels to smooth
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Figure 11: Example of local similarities at two independent

and far apart channels with K = 10 and K = 500,

respectively. Baselines of the four curves are all close to

0.12.

out those high local similarities induced by local traveling

waves as described in Section V-B. Our new idea for DAS

system is to increase channel separation number K in local

similarity calculation and then combine with the constant

thresholding as illustrated in Figure 10. The reason is that

the local similarities between channel n and n + K, i.e.,

Sn,n+K in (2), will not detect any local traveling waves that

cannot spread 2K meters (adjacent channels are 2 meters

away). Thus, large separation number K can help screen

out the information of local traveling waves in the calculated

local similarities.

Figure 12 shows the traveling wave detections by constant

thresholding with local similarities calculated with K = 100
and K = 500. These results clearly show that local traveling

waves appearing in Figure 10 fade out when larger K is

used. From another viewpoint, we can also tell that the

vehicle-induced traveling waves can only spread out less

than 200 meters while the waves of those two persistent

vibrating sources both can spread more than 200 meters but

less than 1000 meters.

VI. CONCLUSIONS

In this paper, we briefly introduce the automated parallel

data processing engine ARRAYUDF and demonstrate its

effectiveness with a compute-intensive feature extraction

method with large DAS data. Around 95% parallel efficiency

has been achieved based on the engine while using up to

1000 CPU cores in our application. It was able to complete

a task in tens of seconds that was projected to take over 10

hours in a serial calculation. Furthermore, because it only

requires the scientists to provide a core compute kernel, it is

very simple for the scientists to easily exploit the computing
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Figure 12: Traveling wave detection by local similarity

thresholding with K = 100 (top) and K = 500 (bottom).

power of supercomputers without programming anything in

MPI.

In addition, our work also shows that the local-similarity

based method can effectively locate traveling waves out

of the background noise in DAS data. We plan to further

explore additional data analysis tasks with ARRAYUDF for

seismological studies. These tasks may include analyzing

long-term DAS data (several hundreds terabytes of data) for

earthquakes not recorded by other devices and developing

sensitive real-time earthquake detection methods based on

DAS.
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